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Exercise 1. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables v = (vy,...,v,) "
and h = (hy,..., hy) " with a probability mass function equal to
p(v,h) < exp (VTWh +a'v+ bTh) , (1)

where W is a n X m matriz. Both the v; and h; take values in {0,1}. The v; are called the “visibles”
variables since they are assumed to be observed while the h; are the hidden variables since it is assumed
that we cannot measure them.

(a) Use graph separation to show that the joint conditional p(h|v) factorises as

m

(i) = [T o(hilv).

Solution. Figure 1 on the left shows the undirected graph for p(v,h) with n = 3,m = 2.
We note that the graph is bi-partite: there are only direct connections between the h; and
the v;. Conditioning on v thus blocks all trails between the h; (graph on the right). This
means that the h; are independent from each other given v so that

m

p(hlv) = [ p(hilv).
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Figure 1: Left: Graph for p(v,h). Right: Graph for p(h|v)

(b) Show that
1

1+ exp (fbi — Zj Wjivj)

where Wj; is the (ji)-th element of W, so that >, Wjv; is the inner product (scalar product)
between the i-th column of W and v.

plhi = 1|v) = (2)

Solution. For the conditional pmf p(h;|v) any quantity that does not depend on h; can
be considered to be part of the normalisation constant. A general strategy is to first work
out p(h;|v) up to the normalisation constant and then to normalise it afterwards.



We begin with p(h|v):

_ p(h,v)

) = (1)
x p(h,v) (S.2)
X exp (VTWh +alv+ bTh) (S.3)
o exp (vTWh + bTh) (S.4)

X exp (Z Z UjVVﬂhl + Z blhl> (85)

%

As we are interested in p(h;|v) for a fixed i, we can drop all the terms not depending on
that h;, so that

J

p(hi|v) oc exp (Z viWiihi + bihi) (S.6)

Since h; only takes two values, 0 and 1, normalisation is here straightforward. Call the
unnormalised pmf p(h;|v),

p(hilv) = exp (Z viWiihi + bihi) : (S.7)
We then have
_ p(hi|v)
_ p(hi|v) (5.9)

- 1+ exp (Z; v;Wii + bi)
exp (Z; v Wiih; + bihi>

= , (S.10)
1+ exp (ZJ viWi; + b¢>
so that
exp (Ej Q}jo,‘ + bl>
p(hi =1|v) = (S.11)
14 exp <Zj v Wi + bi)
1
= . (S.12)
1+ exp <— Zj ’l}jo- — bz)
The probability p(h = 0|v) equals 1 — p(h; = 1|v), which is
1+ exp (ZQ viWii + bi> exp (Z] viWii + bi)
p(hi = 0]v) = - (S.13)
14 exp (E] Ujoi + bl) 1+ exp (Z] ’Ujoi + bl)
1
(S.14)

N 1+exp (ZQ Wiiv; + bi>



The function z — 1/(1 4 exp(—=)) is called the logistic function. It is a sigmoid function
and is thus sometimes denoted by o(z). (For other versions of the sigmoid function, see
https://en.wikipedia.org/wiki/Sigmoid_function)

o(x)

With that notation, we have

plh; =1v) =0 ZWjin + b;
J

(c) Use a symmetry argument to show that

1

vih) = vi|h and v; = 1|/h) =
plvim = [Tt plv = 1[h) P T

Solution. Since v! Wh is a scalar we have (v Wh)" = hTW v = vI Wh, so that
p(v,h) o exp (vTWh +a'v+ bTh) (S.15)
X exp (hTWTV +b'h+ aTV) . (S.16)

To derive the result, we note that v and a now take the place of h and b from before, and
that we now have W rather than W. In Equation (2), we thus replace h; with v;, b; with
a;, and Wj; with W;; to obtain p(v; = 1/h). In terms of the sigmoid function, we have

p(v;=1h) =0 ZWl’jhj + a;
J

Note that while p(v|h) factorises, the marginal p(v) does generally not. The marginal


https://en.wikipedia.org/wiki/Sigmoid_function

p(v) can here be obtained in closed form up to its normalisation constant.

p(v)= > p(v,h) (S.17)

Y exp(vWhtalvy bTh) (S.18)

: [Z v;W;j + b

1

— % Z exp (Z Uithij + Z a;v; + Z bjhj (S.19)
i j
( + Zazvz (820)

. [Z ’U,'W,‘j + bj ) exp (Z a,;v,-) (8.21)

= %exp Z aivi> Z H exp (hj ZviWi]’ + bj ) (8.22)
i he{0,1}m j=1 L

= %exp < azw) Z H exp (hj [Z UiWij + bj ) (8.23)
i hiyeishm =1 i

Importantly, each term in the product only depends on a single h;, so that by sequentially
applying the distributive law, we have

Z H exp <hj [Z viWij + b;
) (5.2

Ri,eeoshim j=1
) (S.25)

) =1+exp (Z v Wi + bj) (S.26)

i

) Y ml__[lexp (hj [zi:wmj +

hi,ehm—1 j=1

Z exp (hm [Z ViWim + b
hm i

m

= Z exp (hj [Z U7;W7;j + bj
hj i

i=1

Since hj € {0,1}, we obtain

Z exp <hj [Z UiWij + bj
h;

i

and thus

(S.27)

p(v) = %GXP (Z aﬂh’) H

14 exp (Z UZ'WZ'j + bj)

Note that in the derivation of p(v) we have not used the assumption that the visibles v; are
binary. The same expression would thus obtained if the visibles were defined in another
space, e.g. the real numbers.

While p(v) is written as a product, p(v) does not factorise into terms that depend on
subsets of the v;. On the contrary, all v; are present in all factors. Since p(v) does not



factorise, computing the normalising Z is expensive. For binary visibles v; € {0,1}, Z

equals
7 — Z exp <Z CLWz‘) H 1+exp (Z viWi; + bj>

ve{o,1}n j=1
where we have to sum over all 2" configurations of the visibles v. This is computationally
expensive, or even prohibitive if n is large (220 = 1048576, 23° > 10%). Note that different
values of a;,b;, W;; yield different values of Z. (This is a reason why Z is called the
partition function when the a;, b;, W;; are free parameters.)

(S.28)

It is instructive to write p(v) in the log-domain,

logp(v) =log Z + Z a;v; + Z log
i=1 j=1

, (S.29)

(2

1+ exp (Z viWij + bj>

and to introduce the nonlinearity f(u),
f(u) =log[1 + exp(u)], (5.30)

which is called the softplus function and plotted below. The softplus function is a smooth
approximation of max(0,u), see e.g. https://en.wikipedia.org/wiki/Rectifier_(neural_
networks)

With the softplus function f(u), we can write log p(v) as

logp(v) =log Z + Z a;v; + Z f (Z v Wi + bj) . (S.31)
i=1 j=1 i

The parameter b; plays the role of a threshold as shown in the figure below. The terms
f (>, viWij + bj) can be interpreted in terms of feature detection. The sum ), v;W;; is
the inner product between v and the j-th column of W, and the inner product is largest if
v equals the j-th column. We can thus consider the columns of W to be feature-templates,
and the f (>, viWi; + b;) a way to measure how much of each feature is present in v.
Further, >, v;W;; + b; is also the input to the sigmoid function when computing p(h; =
1|v). Thus, the conditional probability for h; to be one, i.e. “active”, can be considered
to be an indicator of the presence of the j-th feature (j-th column of W) in the input v.
If v is such that ), v;W;; + b; is large for many j, i.e. if many features are detected, then
f (>, viWyj + bj) will be non-zero for many j, and log p(v) will be large.
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