
Probabilistic Modelling and Reasoning

Solutions for Tutorial 2 — Additional
Practice

Spring 2019
Michael Gutmann

Exercise 1. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables v = (v1, . . . , vn)>

and h = (h1, . . . , hm)> with a probability mass function equal to

p(v,h) ∝ exp
(
v>Wh + a>v + b>h

)
, (1)

where W is a n ×m matrix. Both the vi and hi take values in {0, 1}. The vi are called the “visibles”
variables since they are assumed to be observed while the hi are the hidden variables since it is assumed
that we cannot measure them.

(a) Use graph separation to show that the joint conditional p(h|v) factorises as

p(h|v) =

m∏
i=1

p(hi|v).

Solution. Figure 1 on the left shows the undirected graph for p(v,h) with n = 3,m = 2.
We note that the graph is bi-partite: there are only direct connections between the hi and
the vi. Conditioning on v thus blocks all trails between the hi (graph on the right). This
means that the hi are independent from each other given v so that

p(h|v) =

m∏
i=1

p(hi|v).

h1 h2

v1 v2 v3

h1 h2

v1 v2 v3

Figure 1: Left: Graph for p(v,h). Right: Graph for p(h|v)

(b) Show that

p(hi = 1|v) =
1

1 + exp
(
−bi −

∑
j Wjivj

) (2)

where Wji is the (ji)-th element of W, so that
∑

j Wjivj is the inner product (scalar product)

between the i-th column of W and v.

Solution. For the conditional pmf p(hi|v) any quantity that does not depend on hi can
be considered to be part of the normalisation constant. A general strategy is to first work
out p(hi|v) up to the normalisation constant and then to normalise it afterwards.

1

We begin with p(h|v):

p(h|v) =
p(h,v)

p(v)
(S.1)

∝ p(h,v) (S.2)

∝ exp
(
v>Wh + a>v + b>h

)
(S.3)

∝ exp
(
v>Wh + b>h

)
(S.4)

∝ exp

∑
i

∑
j

vjWjihi +
∑
i

bihi

 (S.5)

As we are interested in p(hi|v) for a fixed i, we can drop all the terms not depending on
that hi, so that

p(hi|v) ∝ exp

∑
j

vjWjihi + bihi

 (S.6)

Since hi only takes two values, 0 and 1, normalisation is here straightforward. Call the
unnormalised pmf p̃(hi|v),

p̃(hi|v) = exp

∑
j

vjWjihi + bihi

 . (S.7)

We then have

p(hi|v) =
p̃(hi|v)

p̃(hi = 0|v) + p̃(hi = 1|v)
(S.8)

=
p̃(hi|v)

1 + exp
(∑

j vjWji + bi

) (S.9)

=
exp

(∑
j vjWjihi + bihi

)
1 + exp

(∑
j vjWji + bi

) , (S.10)

so that

p(hi = 1|v) =
exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) (S.11)

=
1

1 + exp
(
−
∑

j vjWji − bi
) . (S.12)

The probability p(h = 0|v) equals 1− p(hi = 1|v), which is

p(hi = 0|v) =
1 + exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) − exp
(∑

j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) (S.13)

=
1

1 + exp
(∑

j Wjivj + bi

) (S.14)

2

The function x 7→ 1/(1 + exp(−x)) is called the logistic function. It is a sigmoid function
and is thus sometimes denoted by σ(x). (For other versions of the sigmoid function, see
https://en.wikipedia.org/wiki/Sigmoid_function)

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

x

σ(x)

With that notation, we have

p(hi = 1|v) = σ

∑
j

Wjivj + bi

 .

(c) Use a symmetry argument to show that

p(v|h) =
∏
i

p(vi|h) and p(vi = 1|h) =
1

1 + exp
(
−ai −

∑
j Wijhj

)
Solution. Since v>Wh is a scalar we have (v>Wh)> = h>W>v = v>Wh, so that

p(v,h) ∝ exp
(
v>Wh + a>v + b>h

)
(S.15)

∝ exp
(
h>W>v + b>h + a>v

)
. (S.16)

To derive the result, we note that v and a now take the place of h and b from before, and
that we now have W> rather than W. In Equation (2), we thus replace hi with vi, bi with
ai, and Wji with Wij to obtain p(vi = 1|h). In terms of the sigmoid function, we have

p(vi = 1|h) = σ

∑
j

Wijhj + ai

 .

Note that while p(v|h) factorises, the marginal p(v) does generally not. The marginal

3

https://en.wikipedia.org/wiki/Sigmoid_function

p(v) can here be obtained in closed form up to its normalisation constant.

p(v) =
∑

h∈{0,1}m
p(v,h) (S.17)

=
1

Z

∑
h∈{0,1}m

exp
(
v>Wh + a>v + b>h

)
(S.18)

=
1

Z

∑
h∈{0,1}m

exp

∑
ij

vihjWij +
∑
i

aivi +
∑
j

bjhj

 (S.19)

=
1

Z

∑
h∈{0,1}m

exp

 m∑
j=1

hj

[∑
i

viWij + bj

]
+
∑
i

aivi

 (S.20)

=
1

Z

∑
h∈{0,1}m

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
exp

(∑
i

aivi

)
(S.21)

=
1

Z
exp

(∑
i

aivi

) ∑
h∈{0,1}m

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
(S.22)

=
1

Z
exp

(∑
i

aivi

) ∑
h1,...,hm

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
(S.23)

Importantly, each term in the product only depends on a single hj , so that by sequentially
applying the distributive law, we have

∑
h1,...,hm

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
=

 ∑
h1,...,hm−1

m−1∏
j=1

exp

(
hj

[∑
i

viWij + bj

]) ·
∑
hm

exp

(
hm

[∑
i

viWim + bm

])
(S.24)

= . . .

=
m∏
j=1

∑
hj

exp

(
hj

[∑
i

viWij + bj

]) (S.25)

Since hj ∈ {0, 1}, we obtain

∑
hj

exp

(
hj

[∑
i

viWij + bj

])
= 1 + exp

(∑
i

viWij + bj

)
(S.26)

and thus

p(v) =
1

Z
exp

(∑
i

aivi

)
m∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]
. (S.27)

Note that in the derivation of p(v) we have not used the assumption that the visibles vi are
binary. The same expression would thus obtained if the visibles were defined in another
space, e.g. the real numbers.

While p(v) is written as a product, p(v) does not factorise into terms that depend on
subsets of the vi. On the contrary, all vi are present in all factors. Since p(v) does not

4

factorise, computing the normalising Z is expensive. For binary visibles vi ∈ {0, 1}, Z
equals

Z =
∑

v∈{0,1}n
exp

(∑
i

aivi

)
m∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]
(S.28)

where we have to sum over all 2n configurations of the visibles v. This is computationally
expensive, or even prohibitive if n is large (220 = 1048576, 230 > 109). Note that different
values of ai, bi,Wij yield different values of Z. (This is a reason why Z is called the
partition function when the ai, bi,Wij are free parameters.)

It is instructive to write p(v) in the log-domain,

log p(v) = logZ +

n∑
i=1

aivi +

m∑
j=1

log

[
1 + exp

(∑
i

viWij + bj

)]
, (S.29)

and to introduce the nonlinearity f(u),

f(u) = log [1 + exp(u)] , (S.30)

which is called the softplus function and plotted below. The softplus function is a smooth
approximation of max(0, u), see e.g. https://en.wikipedia.org/wiki/Rectifier_(neural_
networks)

−6 −4 −2 2 4 6

2

4

6

u

f(u)

With the softplus function f(u), we can write log p(v) as

log p(v) = logZ +
n∑

i=1

aivi +
m∑
j=1

f

(∑
i

viWij + bj

)
. (S.31)

The parameter bj plays the role of a threshold as shown in the figure below. The terms
f (
∑

i viWij + bj) can be interpreted in terms of feature detection. The sum
∑

i viWij is
the inner product between v and the j-th column of W, and the inner product is largest if
v equals the j-th column. We can thus consider the columns of W to be feature-templates,
and the f (

∑
i viWij + bj) a way to measure how much of each feature is present in v.

Further,
∑

i viWij + bj is also the input to the sigmoid function when computing p(hj =
1|v). Thus, the conditional probability for hj to be one, i.e. “active”, can be considered
to be an indicator of the presence of the j-th feature (j-th column of W) in the input v.

If v is such that
∑

i viWij + bj is large for many j, i.e. if many features are detected, then
f (
∑

i viWij + bj) will be non-zero for many j, and log p(v) will be large.

5

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

−6 −4 −2 2 4 6

2

4

6

8

f(u)

f(u+ 2)

f(u− 2)

u

f(u)

6

