Exercise 1. More on ordered and local Markov properties, d-separation

We continue with the investigation of the graph below

(a) Why can the ordered or local Markov property not be used to check whether a $\Perp h \mid e$ may hold?

Solution. The independencies that follow from the ordered or local Markov property require conditioning on parent sets. However, e is not a parent of any node so that the above independence assertion cannot be checked via the ordered or local Markov property.
(b) Use d-separation to check whether $a \Perp h \mid e$ holds.

Solution. The trail from a to h is shown below in red together with the default states of the nodes along the trail.

Conditioning on e opens the q node since q in a collider configuration on the path.

The trail from a to h is thus active, which means that the relationship does not hold because $a \not \Perp h \mid e$ for some distributions that factorise over the graph.
(c) The independency relations obtained via the ordered and local Markov property include $a \Perp\{z, h\}$. Verify the independency using d-separation.

Solution. All paths from a to z or h pass through the node q that forms a head-head connection along that trail. Since neither q nor its descendant e is part of the conditioning set, the trail is blocked and the independence relation follows.
(d) Determine the Markov blanket of z.

Solution. The Markov blanket is given by the parents, children, and co-parents. Hence: $\operatorname{MB}(z)=\{a, q, h\}$.

Exercise 2. Hidden Markov models

This exercise is about directed graphical models that are specified by the following $D A G$:

These models are called "hidden" Markov models because we typically assume to only observe the y_{i} and not the x_{i} that follow a Markov model.
(a) Show that all probabilistic models specified by the DAG factorise as

$$
p\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{4}, y_{4}\right)=p\left(x_{1}\right) p\left(y_{1} \mid x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) p\left(x_{3} \mid x_{2}\right) p\left(y_{3} \mid x_{3}\right) p\left(x_{4} \mid x_{3}\right) p\left(y_{4} \mid x_{4}\right)
$$

Solution. From the definition of directed graphical models it follows that

$$
p\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{4}, y_{4}\right)=\prod_{i=1}^{4} p\left(x_{i} \mid \mathrm{pa}\left(x_{i}\right)\right) \prod_{i=1}^{4} p\left(y_{i} \mid \mathrm{pa}\left(y_{i}\right)\right)
$$

The result is then obtained by noting that the parent of y_{i} is given by x_{i} for all i, and that the parent of x_{i} is x_{i-1} for $i=2,3,4$ and that x_{1} does not have a parent $\left(\mathrm{pa}\left(x_{1}\right)=\varnothing\right)$.
(b) Derive the independencies implied by the ordered Markov property with the topological ordering $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{4}\right)$

Solution.

$$
y_{i} \Perp x_{1}, y_{1}, \ldots, x_{i-1}, y_{i-1}\left|x_{i} \quad x_{i} \Perp x_{1}, y_{1}, \ldots, x_{i-2}, y_{i-2}, y_{i-1}\right| x_{i-1}
$$

(c) Derive the independencies implied by the ordered Markov property with the topological ordering $\left(x_{1}, x_{2}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$.

Solution. For the x_{i}, we use that for $i \geq 2$: $\operatorname{pre}\left(x_{i}\right)=\left\{x_{1}, \ldots, x_{i-1}\right\}$ and $\operatorname{pa}\left(x_{i}\right)=x_{i-1}$. For the y_{i}, we use that $\operatorname{pre}\left(y_{1}\right)=\left\{x_{1}, \ldots, x_{4}\right\}$, that $\operatorname{pre}\left(y_{i}\right)=\left\{x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{i-1}\right\}$ for $i>1$, and that $\mathrm{pa}\left(y_{i}\right)=x_{i}$. The ordered Markov property then gives:

$$
\begin{aligned}
x_{3} \Perp x_{1} \mid x_{2} & x_{4} \Perp\left\{x_{1}, x_{2}\right\} \mid x_{3} \\
y_{1} \Perp\left\{x_{2}, x_{3}, x_{4}\right\} \mid x_{1} & y_{2} \Perp\left\{x_{1}, x_{3}, x_{4}, y_{1}\right\} \mid x_{2} \\
y_{3} \Perp\left\{x_{1}, x_{2}, x_{4}, y_{1}, y_{2}\right\} \mid x_{3} & y_{4} \Perp\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\} \mid x_{4}
\end{aligned}
$$

Exercise 3. More on the chest clinic (based on Barber's exercise 3.3)

The directed graphical model in Figure 1 is the "Asia" example of Lauritzen and Spiegelhalter (1988). It concerns the diagnosis of lung disease ($T=$ tuberculosis or $L=l u n g$ cancer). In this model, a visit to some place in $A=A$ sia is thought to increase the probability of tuberculosis.

$$
\begin{aligned}
x & =\text { Positive X-ray } \\
d & =\text { Dyspnea (Shortness of breath) } \\
e & =\text { Either Tuberculosis or Lung Cancer } \\
t & =\text { Tuberculosis } \\
l & =\text { Lung Cancer } \\
b & =\text { Bronchitis } \\
a & =\text { Visited Asia } \\
s & =\text { Smoker }
\end{aligned}
$$

Figure 1: Graphical model for Exercise 3 (Barber Figure 3.15).
(a) Explain which of the following independence relationships hold for all distributions that factorise over the graph.

1. $a \Perp s \mid l$

Solution.

- There are two trails from a to $s:(a, t, e, l, s)$ and (a, t, e, d, b, s)
- The trail (a, t, e, l, s) features a collider node e that blocks the trail (the trail is also blocked by l).
- The trail (a, t, e, d, b, s) is blocked by the collider node d.
- All trails are blocked so that the independence relation holds.

2. $a \Perp s \mid l, d$

Solution.

- There are two trails from a to $s:(a, t, e, l, s)$ and (a, t, e, d, b, s)
- The trail (a, t, e, l, s) features a collider node e that is opened by the conditioning variable d but the l node is closed by the conditioning variable l : the trail is blocked
- The trail (a, t, e, d, b, s) features a collider node d that is opened by conditioning on d. On this trail, e is not in a head-head (collider) configuration) so that all nodes are open and the trail active.
- Hence, the independence relation does generally not hold.
(b) Let g be a (deterministic) function of x and t. Is the expected value $\mathbb{E}[g(x, t) \mid l, b]$ equal to $\mathbb{E}[g(x, t) \mid l]$?

Solution. The question boils down to checking whether $x, t \Perp b \mid l$. For the independence relation to hold, all trails from both x and t to b need to be blocked by l.

- For x, we have the trails (x, e, l, s, b) and (x, e, d, b)
- Trail (x, e, l, s, b) is blocked by l
- Trail (x, e, d, b) is blocked by the collider configuration of node d.
- For t, we have the trails (t, e, l, s, b) and (t, e, d, b)
- Trail (t, e, l, s, b) is blocked by l.
- Trail (t, e, d, b) is blocked by the collider configuration of node d.

As all trails are blocked we have $x, t \Perp b \mid l$ and $\mathbb{E}[g(x, t) \mid l, b]=\mathbb{E}[g(x, t) \mid l]$.

Exercise 4. Independencies

This exercise is on further properties and characterisations of statistical independence.
(a) Without using d-separation, show that $x \Perp\{y, w\} \mid z$ implies that $x \Perp y \mid z$ and $x \Perp w \mid z$. Hint: use the definition of statistical independence in terms of the factorisation of pmfs/pdfs.

Solution. We consider the joint distribution $p(x, y, w \mid z)$. By assumption

$$
\begin{equation*}
p(x, y, w \mid z)=p(x \mid z) p(y, w \mid z) \tag{S.1}
\end{equation*}
$$

We have to show that $x \Perp y \mid z$ and $x \Perp w \mid z$. For simplicity, we assume that the variables are discrete valued. If not, replace the sum below with an integral.
To show that $x \Perp y \mid z$, we marginalise $p(x, y, w \mid z)$ over w to obtain

$$
\begin{align*}
p(x, y \mid z) & =\sum_{w} p(x, y, w \mid z) \tag{S.2}\\
& =\sum_{w} p(x \mid z) p(y, w \mid z) \tag{S.3}\\
& =p(x \mid z) \sum_{w} p(y, w \mid z) \tag{S.4}
\end{align*}
$$

Since $\sum_{w} p(y, w \mid z)$ is the marginal $p(y \mid z)$, we have

$$
\begin{equation*}
p(x, y \mid z)=p(x \mid z) p(y \mid z) \tag{S.5}
\end{equation*}
$$

which means that $x \Perp y \mid z$.
To show that $x \Perp w \mid z$, we similarly marginalise $p(x, y, w \mid z)$ over y to obtain $p(x, w \mid z)=$ $p(x \mid z) p(w \mid z)$, which means that $x \Perp w \mid z$.
(b) For the directed graphical model below, show that the following two statements hold without using d-separation:

$$
\begin{align*}
& x \Perp y \quad \text { and } \tag{1}\\
& x \not \Perp y \mid w \tag{2}
\end{align*}
$$

The exercise shows that not only conditioning on a collider node but also on one of its descendents activates the trail between x and y. You can use the result that $x \Perp y \mid w \Leftrightarrow p(x, y, w)=$ $a(x, w) b(y, w)$ for some non-negative functions $a(x, w)$ and $b(y, w)$.

Solution. The graphical model corresponds to the factorisation

$$
p(x, y, z, w)=p(x) p(y) p(z \mid x, y) p(w \mid z)
$$

For the marginal $p(x, y)$ we have to sum (integrate) over all (z, w)

$$
\begin{align*}
p(x, y) & =\sum_{z, w} p(x, y, z, w) \tag{S.6}\\
& =\sum_{z, w} p(x) p(y) p(z \mid x, y) p(w \mid z) \tag{S.7}\\
& =p(x) p(y) \sum_{z, w} p(z \mid x, y) p(w \mid z) \tag{S.8}\\
& =p(x) p(y) \underbrace{\sum_{z} p(z \mid x, y)}_{1} \underbrace{\sum_{w} p(w \mid z)}_{1} \tag{S.9}\\
& =p(x) p(y) \tag{S.10}
\end{align*}
$$

Since $p(x, y)=p(x) p(y)$ we have $x \Perp y$.
For $x \not \Perp y \mid w$, compute $p(x, y, w)$ and use the result $x \Perp y \mid w \Leftrightarrow p(x, y, w)=a(x, w) b(y, w)$.

$$
\begin{align*}
p(x, y, w) & =\sum_{z} p(x, y, z, w) \tag{S.11}\\
& =\sum_{z} p(x) p(y) p(z \mid x, y) p(w \mid z) \tag{S.12}\\
& =p(x) \underbrace{p(y) \sum_{z} p(z \mid x, y) p(w \mid z)}_{k(x, y, w)} \tag{S.13}
\end{align*}
$$

Since $p(x, y, w)$ cannot be factorised as $a(x, w) b(y, w)$, the relation $x \Perp y \mid w$ cannot generally hold.

