Exact Inference

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, University of Edinburgh

Spring Semester 2019

Recap

$p\left(\mathbf{x} \mid \mathbf{y}_{o}\right)=\frac{\sum_{z} p\left(\mathrm{x}, \mathrm{y}_{o}, \mathbf{z}\right)}{\sum_{\mathrm{x}, \mathrm{z}} p\left(\mathrm{x}, \mathbf{y}_{o}, \mathbf{z}\right)}$
Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are $d=500$ dimensional, and that each element of the vectors can take $K=10$ values.

- Issue 1: To specify $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$, we need to specify $K^{3 d}-1=10^{1500}-1$ non-negative numbers, which is impossible.
Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$?
- Directed and undirected graphical models, factor graphs
- Factorisation and independencies

Recap

$$
p\left(x \mid y_{o}\right)=\frac{\sum_{z} p\left(x, y_{o}, z\right)}{\sum_{x, z}^{p\left(x, y_{o}, z\right)}}
$$

- Issue 2: The sum in the numerator goes over the order of $K^{d}=10^{500}$ non-negative numbers and the sum in the denominator over the order of $K^{2 d}=10^{1000}$, which is impossible to compute.
Topic 2: Exact inference Can we further exploit the assumptions on $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to efficiently compute the posterior probability or derived quantities?
- Note: we do not want to introduce new assumptions but exploit those that we made to deal with issue 1.
- Quantities of interest:
- $p\left(\mathbf{x} \mid \mathbf{y}_{0}\right)$ (marginal inference)
- $\operatorname{argmax}_{\mathbf{x}} p\left(\mathbf{x} \mid \mathbf{y}_{0}\right) \quad$ (inference of most probable states)
- $\mathbb{E}\left[g(\mathbf{x}) \mid \mathbf{y}_{o}\right]$ for some function g (posterior expectations)

Assumptions

If not otherwise mentioned, we here assume discrete valued random variables whose joint pmf factorises as

$$
p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right)
$$

with $\mathcal{X}_{i} \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$ and $x_{i} \in\{1, \ldots, K\}$.
Note:

- Includes case where (some of) the ϕ_{i} are conditionals
- The x_{i} could be categorical taking on maximally K different values.

Program

1. Marginal inference by variable elimination
2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states

Program

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- Structural changes to the graph due to variable elimination
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states

Example (full factorisation)

- Consider discrete-valued random variables $x_{1}, x_{2}, x_{3} \in\{1, \ldots, K\}$
- Assume pmf factorises $p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)$
- Task: compute $p\left(x_{1}=k\right)$ for $k \in\{1, \ldots, K\}$
- We can use the sum-rule

$$
p\left(x_{1}=k\right)=\sum_{x_{2}, x_{3}} p\left(x_{1}=k, x_{2}, x_{3}\right)
$$

Sum over K^{2} terms for each k (value of $\left.x_{1}\right)$.

- Pre-computing $p\left(x_{1}, x_{2}, x_{3}\right)$ for all K^{3} configurations and then computing the sum is neither necessary nor a good idea
- Exploit factorisation when computing $p\left(x_{1}=k\right)$.

Example (full factorisation)

$$
\begin{align*}
& \text { (sum rule) } \quad p\left(x_{1}=k\right)=\sum_{x_{2}, x_{3}} p\left(x_{1}=k, x_{2}, x_{3}\right) \tag{1}\\
& \text { (factorisation) } \\
& \propto \sum_{x_{2}} \sum_{x_{3}} \phi_{1}(k) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \tag{2}\\
& \propto \phi_{1}(k) \sum_{x_{2}} \sum_{x_{3}} \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \tag{3}\\
& \propto \phi_{1}(k)\left[\sum_{x_{2}} \phi_{2}\left(x_{2}\right)\right]\left[\sum_{x_{3}} \phi_{3}\left(x_{3}\right)\right] \tag{4}
\end{align*}
$$

Example (full factorisation)

$$
\begin{equation*}
p\left(x_{1}=k\right) \propto \phi_{1}(k)\left[\sum_{x_{2}} \phi_{2}\left(x_{2}\right)\right]\left[\sum_{x_{3}} \phi_{3}\left(x_{3}\right)\right] \tag{5}
\end{equation*}
$$

What's the point?

- Because of the factorisation (independencies) we don't need to evaluate and store the values of $p\left(x_{1}, x_{2}, x_{3}\right)$ for all K^{3} configurations of the random variables.
- 2 sums over K numbers vs. 1 sum over K^{2} numbers
- Recycling/caching of already computed quantities: we only need to compute

$$
\left[\sum_{x_{2}} \phi_{2}\left(x_{2}\right)\right]\left[\sum_{x_{3}} \phi_{3}\left(x_{3}\right)\right]
$$

once; the value can be re-used when computing $p\left(x_{1}=k\right)$ for different k.

Example (chain)

- Assume the pmf factorises as

$$
p\left(x_{1}, \ldots, x_{d}\right) \propto\left[\prod_{i=1}^{d-1} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \phi_{d}\left(x_{d}\right)
$$

- Task: compute $p\left(x_{1}=k\right)$ for $k \in\{1, \ldots, K\}$
- Non-scalable approach: Pre-compute $p\left(x_{1}, \ldots, x_{d}\right)$ for all K^{d} configurations and then use sum-rule
- Smarter: Exploit factorisation when applying the sum rule

Example (chain)

We have to sum over x_{2}, \ldots, x_{d}. Let's do x_{d} first

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{d-1}\right) & =\sum_{x_{d}} p\left(x_{1}, \ldots, x_{d}\right) \tag{6}\\
(\text { factorisation }) & \propto \sum_{x_{d}}\left[\prod_{i=1}^{d-1} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \phi_{d}\left(x_{d}\right) \tag{7}\\
& \propto \sum_{x_{d}}\left[\prod_{i=1}^{d-2} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \phi_{d-1}\left(x_{d-1}, x_{d}\right) \phi_{d}\left(x_{d}\right) \tag{8}\\
\text { (by distr. law) } & \propto\left[\prod_{i=1}^{d-2} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \underbrace{\tilde{\phi}_{d}\left(x_{d-1}\right) \text { total cost: } \phi_{d-1}\left(x_{d-1}, x_{d}\right) \phi_{d}\left(x_{d}\right)}_{x_{d}} \tag{9}\\
& \propto\left[\prod_{i=1}^{d-2} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \tilde{\phi}_{d}\left(x_{d-1}\right) \tag{10}
\end{align*}
$$

Example (chain)

Factor graph for $p\left(x_{1}, \ldots, x_{d}\right) \propto\left[\prod_{i=1}^{d-1} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \phi_{d}\left(x_{d}\right)$

Factor graph for $p\left(x_{1}, \ldots, x_{d-1}\right) \propto\left[\prod_{i=1}^{d-2} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \tilde{\phi}_{d}\left(x_{d-1}\right)$

Example (chain)

Next, sum over x_{d-1}

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{d-2}\right) & =\sum_{x_{d-1}} p\left(x_{1}, \ldots, x_{d-1}\right) \tag{11}\\
(\text { factorisation) } & \propto \sum_{x_{d-1}}\left[\prod_{i=1}^{d-2} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \tilde{\phi}_{d}\left(x_{d-1}\right) \tag{12}\\
& \propto \sum_{x_{d-1}}\left[\prod_{i=1}^{d-3} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \phi_{d-2}\left(x_{d-2}, x_{d-1}\right) \tilde{\phi}_{d}\left(x_{d-1}\right) \\
\text { (by distr. law) } & \propto\left[\prod_{i=1}^{d-3} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \underbrace{\sum_{x_{d-1}} \phi_{d-2}\left(x_{d-2}, x_{d-1}\right) \tilde{\phi}_{d}\left(x_{d-1}\right)}_{\tilde{\phi}_{d, d-1}\left(x_{d-2}\right)} \\
& \propto\left[\prod_{i=1}^{d-3} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \tilde{\phi}_{d, d-1}\left(x_{d-2}\right) \tag{13}
\end{align*}
$$

Example (chain)

Factor graph for $p\left(x_{1}, \ldots, x_{d-1}\right) \propto\left[\prod_{i=1}^{d-2} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \tilde{\phi}_{d}\left(x_{d-1}\right)$

Factor graph for
$p\left(x_{1}, \ldots, x_{d-2}\right) \propto\left[\prod_{i=1}^{d-3} \phi_{i}\left(x_{i}, x_{i+1}\right)\right] \tilde{\phi}_{d, d-1}\left(x_{d-2}\right)$

Example (chain)

- Continue eliminating the last (leaf) variable
- Each time we eliminate a variable, we need to
- compute $\phi_{i}\left(x_{i}, x_{i+1}\right)$ for all values of x_{i} and x_{i+1} (matrix with K^{2} numbers)
- sum over K numbers to compute the $\tilde{\phi}\left(x_{i}\right)$ for all K values of x_{i} (cost: $\left.O\left(K^{2}\right)\right)$
- To compute $p\left(x_{1}=k\right)$ we have to eliminate $d-1$ variables
\Rightarrow Total cost for $p\left(x_{1}\right): O\left((d-1) K^{2}\right)=O\left(d K^{2}\right)$

Example (chain)

- Benefits of exploiting the factorisation
- Linear growth in number of variables d : in contrast to exponential growth $O\left(K^{d}\right)$ when factorisation is not exploited
- Recycling/caching: most terms do not depend on x_{1} and can be re-used when we compute $p\left(x_{1}=k\right)$ for different k (e.g. $\tilde{\phi}_{d}, \tilde{\phi}_{d, d-1}$ etc.)
- Chains have the special property that they stay a chain after a leaf variable is eliminated.
- More general factor trees have the same property, which we exploit in the sum-product algorithm.
- First: variable elimination for general factor graphs.

Basic ideas of variable elimination

1. Use the distributive law $a b+a c=a(b+c)$ to exploit the factorisation ($\sum \Pi \rightarrow \Pi \sum$): reduces the overall dimensionality of the domain of the factors in the sum and thereby the computational cost.
2. Recycle/cache results

Variable (bucket) elimination

Example task: Given $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i}^{m} \phi_{i}\left(\mathcal{X}_{i}\right)$ compute the marginal $p\left(\mathcal{X}_{\text {target }}\right)$ for some $\mathcal{X}_{\text {target }} \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$.

- Assume that at iteration k, you have the pmf over $d^{k}=d-k$ variables $X^{k}=\left(x_{i_{1}}, \ldots, x_{i_{d} k}\right)$ that factorises as

$$
p\left(X^{k}\right) \propto \prod_{i=1}^{m^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)
$$

- Decide which variable to eliminate. Call it x^{*}. $\left(x^{*} \in X^{k}, x^{*} \notin \mathcal{X}_{\text {target }}\right)$
- Let X^{k+1} be equal to X^{k} with X^{*} removed. We have

$$
\begin{align*}
p\left(X^{k+1}\right) & =\sum_{x^{*}} p\left(X^{k}\right) \tag{14}\\
& \propto \sum_{x^{*}} \prod_{i=1}^{m^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \tag{15}
\end{align*}
$$

Variable elimination (cont.)

$$
\begin{align*}
p\left(X^{k+1}\right) & \propto \sum_{x^{*}} \prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \prod_{i: x^{*} \in \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \tag{16}\\
\text { (distr. law) } & \propto \prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \underbrace{\prod_{i: x^{*} \in \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)}_{\text {new factor } \tilde{\phi}_{*}} \tag{17}\\
& \propto\left[\prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)\right] \tilde{\phi}_{*}\left(\tilde{\mathcal{X}}_{*}\right) \tag{18}
\end{align*}
$$

where $\tilde{\mathcal{X}}_{*}$ is the union of all \mathcal{X}_{i}^{k} that contained x^{*}, with x^{*} removed

$$
\begin{equation*}
\tilde{\mathcal{X}}_{*}=\bigcup_{i: x^{*} \in \mathcal{X}_{i}^{k}}\left(\mathcal{X}_{i}^{k} \backslash x^{*}\right) \tag{19}
\end{equation*}
$$

Variable elimination (cont.)

- By re-labelling the factors and variables, we obtain

$$
\begin{align*}
p\left(X^{k+1}\right) & \propto\left[\prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)\right] \tilde{\phi}_{*}\left(\tilde{\mathcal{X}}_{*}\right) \tag{20}\\
& \propto \prod_{i=1}^{m^{k+1}} \phi_{i}^{k+1}\left(\mathcal{X}_{i}^{k+1}\right), \tag{21}
\end{align*}
$$

which has the same form as $p\left(X^{k}\right)$.

- Set $k=k+1$ and decide which variable x^{*} to eliminate next.
- To compute $p\left(\mathcal{X}_{\text {target }}\right)$ stop when $X^{k}=\mathcal{X}_{\text {target }}$, followed by normalisation.

How to choose the elimination variable x^{*} ?

- When we marginalise over x^{*}, we generate a new factor $\tilde{\phi}_{*}$ that depends on

$$
\begin{equation*}
\tilde{\mathcal{X}}_{*}=\bigcup_{i: x^{*} \in \mathcal{X}_{i}^{k}}\left(\mathcal{X}_{i}^{k} \backslash x^{*}\right) \tag{22}
\end{equation*}
$$

This is the set of variables with which x^{*} shares a factor node in the factor graph ("neighbours").

- Ex.: $p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)$ If we eliminated $x^{*}=x_{3}: \tilde{\mathcal{X}}_{*}=\left\{x_{2}, x_{4}, x_{5}, x_{6}\right\}$

How to choose the elimination variable x^{*} ?

- When we marginalise over x^{*}, we generate a new factor $\tilde{\phi}_{*}$ that depends on

$$
\begin{equation*}
\tilde{\mathcal{X}}_{*}=\bigcup_{i: x^{*} \in \mathcal{X}_{i}^{k}}\left(\mathcal{X}_{i}^{k} \backslash x^{*}\right) \tag{23}
\end{equation*}
$$

This is the set of variables with which x^{*} shares a factor node in the factor graph ("neighbours").

- If $\tilde{\mathcal{X}}_{*}$ contains many variables, variable elimination becomes expensive in later iterations (exponential in size of largest \mathcal{X}^{k}).
- Optimal choice of x^{*} is difficult (for details, see e.g. Koller, Section 9.4, not examinable)
- Heuristic: choose x^{*} in a greedy way, e.g. the variable with the least number of neighbours in the factor graph (e.g. x_{5} or x_{6} in the example)

Computing conditionals

- The same approach can be used to compute conditionals.
- Example: Given
$p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)$
assume you want to compute $p\left(x_{1} \mid x_{3}=\alpha\right)$
- We can write

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6} \mid x_{3}=\alpha\right) & \propto p\left(x_{1}, x_{2}, x_{3}=\alpha, x_{4}, x_{5}, x_{6}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}^{\alpha}\left(x_{2}, x_{4}\right) \phi_{C}^{\alpha}\left(x_{5}\right) \phi_{D}^{\alpha}\left(x_{6}\right)
\end{aligned}
$$

and consider $p\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6} \mid x_{3}=\alpha\right)$ to be a pdf/pmf $\tilde{p}\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right)$ defined up to the proportionality factor.

- We can compute $p\left(x_{1} \mid x_{3}=\alpha\right)=\tilde{p}\left(x_{1}\right)$ by applying variable elimination to $\tilde{p}\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right)$.

Example

- Example:

$$
p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)
$$

- Task: Compute $p\left(x_{1}, x_{3}\right)$
- Note the structural changes in the graph during variable elimination

Example (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
First eliminate x_{6}

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{5}\right) & \propto \sum_{x_{6}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \sum_{x_{6}} \phi_{D}\left(x_{3}, x_{6}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \tilde{\phi}_{6}\left(x_{3}\right)
\end{aligned}
$$

Example (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
Eliminate x_{5}

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & \propto \sum_{x_{5}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \tilde{\phi}_{6}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{6}\left(x_{3}\right) \sum_{x_{5}} \phi_{C}\left(x_{3}, x_{5}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{6}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right)
\end{aligned}
$$

Example (cont)

Define $\tilde{\phi}_{56}\left(x_{3}\right)=\tilde{\phi}_{6}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{6}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{56}\left(x_{3}\right)
\end{aligned}
$$

Example (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
Eliminate x_{2}

$$
\begin{aligned}
p\left(x_{1}, x_{3}, x_{4}\right) & \propto \sum_{x_{2}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{56}\left(x_{3}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \sum_{x_{2}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{2}\left(x_{1}, x_{3}, x_{4}\right)
\end{aligned}
$$

Example (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
Eliminate x_{4}

$$
\begin{aligned}
p\left(x_{1}, x_{3}\right) & \propto \sum_{x_{4}} \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{2}\left(x_{1}, x_{3}, x_{4}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \sum_{x_{4}} \tilde{\phi}_{2}\left(x_{1}, x_{3}, x_{4}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{24}\left(x_{1}, x_{3}\right) \\
x_{1} & \tilde{\phi}_{24}
\end{aligned}
$$

Normalisation:

$$
p\left(x_{1}, x_{3}\right)=\frac{\tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{24}\left(x_{1}, x_{3}\right)}{\sum_{x_{1}, x_{3}} \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{24}\left(x_{1}, x_{3}\right)}
$$

Structural changes in the graph during variable elimination

- Eliminated leaf-variable and factor node
\rightarrow factor node
- Factors node depending on the same variables
\rightarrow single factor node
- Factor nodes between neighbours of the target variable \rightarrow single factor node connecting all neighbours

What if we have continuous random variables?

- Conceptually, all stays the same but we replace sums with integrals
- Simplifications due to distributive law remain valid
- Caching of results remains valid
- In special cases, integral can be computed in closed form (e.g. Gaussian family)
- If not: need for approximations (see later)
- Approximations are also needed for discrete random variables with high-dimensional range (if K is large).

Program

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- Structural changes to the graph due to variable elimination
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states

Program

1. Marginal inference by variable elimination
2. Marginal inference for factor trees (sum-product algorithm)

- Factor trees
- Sum-product algorithm = variable elimination for factor trees
- Messages = effective factors
- The rules for sum-product message passing

3. Inference of most probable states

Factor trees

- We next consider the class of models (pmfs/pdfs) for which the factor graph is a tree
- Tree: graph where there is only one path connecting any two nodes (no loops!)
- Chain is an example of a factor tree.
- Useful property: the factor tree obtained after summing out a leaf variable is still a factor tree.

Variable elimination for factor trees

Task: Compute $p\left(x_{1}\right)$ for
$p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)$

Sum out leaf-variable x_{5}
Task: Compute $p\left(x_{1}\right)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & =\sum_{x_{5}} p\left(x_{1}, \ldots, x_{5}\right) \\
& \propto \sum_{x_{5}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \sum_{x_{5}} \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \tilde{\phi}_{5}\left(x_{3}\right)
\end{aligned}
$$

Visualising the computation

Graph with transformed factors:

Graph with "messages":

Message: $\quad \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)=\tilde{\phi}_{5}\left(x_{3}\right)=\sum_{x_{5}} \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)$
Effective factor for x_{3} if all variables in the subtree attached to ϕ_{E} are eliminated (subtree does not include x_{3})

Sum out leaf-variable x_{4}

Task: Compute $p\left(x_{1}\right)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{3}\right) & =\sum_{x_{4}} p\left(x_{1}, \ldots, x_{4}\right) \\
& \propto \sum_{x_{4}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \tilde{\phi}_{5}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right) \sum_{x_{4}} \phi_{D}\left(x_{3}, x_{4}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right) \tilde{\phi}_{4}\left(x_{3}\right)
\end{aligned}
$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message: $\quad \mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right)=\tilde{\phi}_{4}\left(x_{3}\right)=\sum_{x_{4}} \phi_{D}\left(x_{3}, x_{4}\right)$
Effective factor for x_{3} if all variables in the subtree attached to ϕ_{D} are eliminated (subtree does not include x_{3})

Simplify by multiplying factors with common domain

Task: Compute $p\left(x_{1}\right)$

$\propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right)$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message: $\mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)=\tilde{\phi}_{54}\left(x_{3}\right)=\tilde{\phi}_{4}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right)=\mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)$
Effective factor for x_{3} if all variables in the subtrees attached to x_{3} are eliminated (subtrees do not include ϕ_{c})

Sum out leaf-variable x_{3}

Task: Compute $p\left(x_{1}\right)$

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\sum_{x_{3}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& \propto \sum_{x_{3}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \sum_{x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Sum out leaf-variable x_{2} and normalise

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2}} p\left(x_{1}, x_{2}\right) \propto \sum_{x_{2}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \sum_{x_{2}} \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right)
\end{aligned}
$$

$$
p\left(x_{1}\right)=\frac{\phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right)}{\sum_{x_{1}} \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right)}
$$

Alternative: sum out both x_{2} and x_{3}

Since

$$
\begin{aligned}
\tilde{\phi}_{5432}\left(x_{1}\right) & =\sum_{x_{2}} \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right) \\
& =\sum_{x_{2}} \phi_{B}\left(x_{2}\right) \sum_{x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right) \\
& =\sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{54}\left(x_{3}\right)
\end{aligned}
$$

we obtain the same result by first summing out x_{2} and then x_{3}, or both at the same time.

In any case:

$$
p\left(x_{1}\right) \propto \phi_{A}\left(x_{1}\right) \sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{54}\left(x_{3}\right)
$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message:
$\mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)=\tilde{\phi}_{5432}\left(x_{1}\right)=\sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{B}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$
Effective factor for x_{1} if all variables in the subtrees attached to ϕ_{C} are eliminated (subtrees do not include x_{1})

Representing leaf-factors with messages

Since there are no variables "behind" the leaf-factors, all leaf-factors define effective factors themselves:

$$
\begin{aligned}
& \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right)=\phi_{A}\left(x_{1}\right) \\
& \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right)=\phi_{B}\left(x_{2}\right) \\
& \mu_{\phi_{F} \rightarrow x_{5}}\left(x_{5}\right)=\phi_{F}\left(x_{5}\right)
\end{aligned}
$$

We then obtain

Variables with single incoming messages copy the message

We had

$$
\mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)=\mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)
$$

which corresponded to simplifying the factorisation by multiplying effective factors defined on the same domain. Special cases:

$$
\begin{aligned}
& \mu_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)=\mu_{\phi_{F} \rightarrow x_{5}}\left(x_{5}\right) \\
& \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)=\mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right)
\end{aligned}
$$

We then obtain

Messages from leaf variable nodes

What about x_{4} ? We can consider
$p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)$
to include an additional factor $\phi_{G}\left(x_{4}\right)=1$. We can thus set

$$
\begin{aligned}
& \mu_{\phi_{G} \rightarrow x_{4}}\left(x_{4}\right)=1 \\
& \mu_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right)=\mu_{\phi_{G} \rightarrow x_{4}}\left(x_{4}\right)=1
\end{aligned}
$$

Graph:

Single marginal from messages

We have seen that

$$
\begin{aligned}
p\left(x_{1}\right) & \propto \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right) \\
& \propto \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)
\end{aligned}
$$

Marginal is proportional to the product of the incoming messages.

Single marginal from messages

Cost (due to properties of variable elimination):

- Linear in number of variables d, exponential in maximal number of variables attached to a factor node.
- Recycling: most messages do not depend on x_{1} and can be re-used for computing $p\left(x_{1}\right)$ for any value of x_{1} (as well as for computing the marginal distribution of other variables, see next slides)

Further marginals from messages

- We have seen that

$$
\begin{aligned}
p\left(x_{1}\right) & \propto \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right) \\
& \propto \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)
\end{aligned}
$$

- Remember: Messages are effective factors

- This correspondence allows us to write down the marginal for other variables too. All we need are the incoming messages.

Further marginals from messages

- Example: For $p\left(x_{2}\right)$ we need $\mu_{\phi_{B} \rightarrow x_{2}}$ and $\mu_{\phi_{C} \rightarrow x_{2}}$
- $\mu_{\phi_{B} \rightarrow x_{2}}$ is known but $\mu_{\phi_{C} \rightarrow x_{2}}$ needs to be computed
- $\mu_{\phi_{C} \rightarrow x_{2}}$ corresponds to effective factor for x_{2} if all variables of the subtrees attached to ϕ_{c} are eliminated.
- Can be computed from previously computed factors:

$$
\mu_{\phi_{A} \rightarrow x_{1}} \quad \text { and } \quad \mu_{x_{3} \rightarrow \phi_{C}}
$$

Further marginals from messages

- By definition of the messages, and their correspondence to effective factors, we have

$$
p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)
$$

- Eliminating x_{1} and x_{3} gives

$$
\begin{aligned}
p\left(x_{2}\right) & \propto \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) \sum_{x_{1}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \\
& \propto \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) \mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)
\end{aligned}
$$

Further marginals from messages

We had

$$
\mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} \phi_{c}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right)
$$

Introducing variable to factor message $\mu_{x_{1} \rightarrow \phi_{c}}=\mu_{\phi_{A} \rightarrow x_{1}}=\phi_{A}$

$$
\mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} \phi_{c}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \mu_{x_{1} \rightarrow \phi_{c}}\left(x_{1}\right)
$$

Using arrows to indicate the messages

Less cluttered representation using arrows for the messages

All (univariate) marginals from messages

- We can use the messages to compute the marginals of all variables in the graph.
- For the marginal of a variable x we need to know the incoming messages $\mu_{\phi_{i} \rightarrow x}$ from all factor nodes ϕ_{i} connected to x.
- This means that if each edge has a message in both directions, we can compute the marginals of all variables in the graph.

Joint distributions from messages

- The correspondence between messages and effective factors allows us to find the joint distribution for variables connected to the same factor node (neighbours).
- For example, we can compute $p\left(x_{3}, x_{5}\right)$ from messages
- The messages $\mu_{x_{3} \rightarrow \phi_{E}}$ and $\mu_{x_{5} \rightarrow \phi_{E}}$ correspond to effective factors attached to x_{3} and x_{5}, respectively.

- Factor graph corresponds to

$$
p\left(x_{3}, x_{5}\right) \propto \phi_{E}\left(x_{3}, x_{5}\right) \mu_{x_{3} \rightarrow \phi_{E}}\left(x_{3}\right) \mu_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)
$$

"Rules" of message passing: factor to variable messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

$$
\mu_{\phi \rightarrow x}(x)=\sum_{x_{1}, \ldots, x_{j}} \phi\left(x_{1}, \ldots, x_{j}, x\right) \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)
$$

Rule corresponds to eliminating variables x_{1}, \ldots, x_{j}

"Rules" of message passing: variable to factor messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

$$
\mu_{x \rightarrow \phi}(x)=\prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x}(x)
$$

Rule corresponds to simplifying the factorisation by multiplying effective factors defined on the same domain.

"Rules" of message passing: univariate marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

$$
p(x) \propto \prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x}(x)
$$

"Rules" of message passing: joint marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

$$
p\left(x_{1}, \ldots, x_{j}\right) \propto \phi\left(x_{1}, \ldots, x_{j}\right) \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)
$$

A word about numerics

In practice, it is better to work with log-messages (see Barber's paragraph on "log messages", p86)

Other names for the sum-product algorithm

- Other names for the sum-product algorithm include
- sum-product message passing
- message passing
- belief propagation
- Whatever the name: it is variable elimination applied to factor trees

Key advantages of the sum-product algorithm

Assume $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right)$, with $\mathcal{X}_{i} \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$, can be represented as a factor tree.

- The sum-product algorithm allows us to compute
- all univariate marginals $p\left(x_{i}\right)$.
- all joint distributions $p\left(\mathcal{X}_{i}\right)$ for the variables \mathcal{X}_{i} that are part of the same factor ϕ_{i}.
- Cost: If variables can take maximally K values and there are maximally M elements in the $\mathcal{X}_{i}: O\left(2 d K^{M}\right)=O\left(d K^{M}\right)$

Applicability of the sum-product algorithm

- Factor graph must be a tree
- Can be used to compute conditionals (same argument as for variable elimination)
- May be used for continuous random variables (same caveats as for variable elimination)
- Same ideas can be used to compute $\operatorname{argmax}_{\mathrm{x}} p(\mathbf{x})$

If the factor graph is not a tree

- Use variable elimination
- Group variables together so that the factor graph becomes a tree (for details, see Chapter 6 in Barber, or Section V in Kschischang et al, Factor Graphs and the Sum-Product Algorithm, 2001; not examinable)
- Pretend the factor graph is a tree and use message passing (loopy belief propagation; not examinable)
- Can you condition on some variables so that the conditional is a tree? Message passing can then be used to solve part of the inference problem.
Example: $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is not a tree but $p\left(x_{1}, x_{2}, x_{3} \mid x_{4}\right)$ is. Use law of total probability

$$
p\left(x_{1}\right)=\sum_{x_{4}} \underbrace{\sum_{x_{2}, x_{3}} p\left(x_{1}, x_{2}, x_{3} \mid x_{4}\right)}_{\text {by message passing }} p\left(x_{4}\right)
$$

(see Barber Section 5.3.2, "Loop-cut conditioning")

Summary

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- Structural changes to the graph due to variable elimination
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)

- Factor trees
- Sum-product algorithm = variable elimination for factor trees
- Messages = effective factors
- The rules for sum-product message passing

Program

1. Marginal inference by variable elimination
2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states

- Maximisers of the marginals \neq maximiser of joint
- We can use the distributive law $\max (a b, a c)=a \max (b, c)$ to exploit the factorisation
- Max-product algorithm and back-tracking

Other inference tasks

- So far: given a joint distribution $p(\mathbf{x})$, find marginals or conditionals over variables
- Other common inference task:
- Find a setting of the variables that maximises $p(\mathbf{x})$, i.e.

$$
\underset{\mathrm{x}}{\operatorname{argmax}} p(\mathbf{x})
$$

- Find the corresponding value of $p(\mathbf{x})$, i.e.

$$
\max _{\mathrm{x}} p(\mathbf{x})
$$

- Note: the $\operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$ task here includes $\operatorname{argmax}_{\mathrm{x}} \tilde{p}\left(\mathbf{x} \mid \mathbf{y}_{0}\right)$, which is known as maximum a-posteriori (MAP) estimation or inference.

Maximisers of the marginals \neq maximiser of joint

- The sum-product algorithm gives us the univariate marginals $p\left(x_{i}\right)$ for all variables x_{1}, \ldots, x_{d}.
- But the vector with the $\operatorname{argmax}_{x_{i}} p\left(x_{i}\right), x_{1}, \ldots, x_{d}$, is not the same as $\operatorname{argmax}_{\mathrm{x}} p(\mathbf{x})$
- Example (Bishop Table 8.1):

Using the distributive law to exploit the factorisation

- For marginal inference, we relied on the distributive law

$$
\begin{aligned}
a b+a c & =a(b+c) \\
\operatorname{sum}(a b, a c) & =a \operatorname{sum}(b, c)
\end{aligned}
$$

- For finding the most probable state, use similarly

$$
\max (a b, a c)=a \max (b, c)
$$

Example (chain)

(Based on a slide courtesy of David Barber)

$$
p(a, b, c, d) \propto f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d)
$$

For marginal inference, we had

$$
\begin{aligned}
p(a) & \propto \sum_{b} \sum_{c} \sum_{d} f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d) \\
& \propto \underbrace{\sum_{b} f_{1}(a, b)[\underbrace{\left[\sum_{2} f_{2}(b, c)\right.}_{\mu_{f_{1} \rightarrow a}} \underbrace{\left[\sum_{d} f_{3}(c, d) f_{4}(d)\right]}_{\mu_{f_{2} \rightarrow b}=\mu_{b \rightarrow f_{1}}}]}_{b}
\end{aligned}
$$

Example (chain)

(Based on a slide courtesy of David Barber)

$$
p(a, b, c, d) \propto f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d)
$$

For finding $\max p(a, b, c, d)$:

$$
\begin{aligned}
\max _{a, b, c, d} p(a, b, c, d) & =\frac{1}{Z} \max _{a} \max _{b} \max _{c} \max _{d} f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d) \\
& =\frac{1}{Z} \max _{a} \max _{b} f_{1}(a, b) \underbrace{\max _{2}(b, c) \underbrace{\left[\max _{d} f_{3}(c, d) f_{4}(d)\right]}_{\gamma_{1}}]}_{\gamma_{c}}
\end{aligned}
$$

As before for the sum-product algorithm, the $\gamma \rightarrow$ denote messages

Example (chain)

$$
\max _{a, b, c, d} p(a, b, c, d)=\frac{1}{Z} \max _{a} \max _{b} f_{1}(a, b) \underbrace{\underbrace{\left[\begin{array}{l}
\gamma_{1} \\
\underbrace{}_{i}
\end{array}\right]}_{b \rightarrow f_{1}(b)}}_{\gamma_{f_{f_{1} \rightarrow a}(a)}^{\left[\max _{c} f_{2}(b, c)\right.} \underbrace{\left[\max _{d} f_{3}(c, d) f_{4}(d)\right]}_{\gamma_{f_{3} \rightarrow c}(c)=\mu_{c \rightarrow f_{2}}(c)}]}
$$

How to compute $\operatorname{argmax} p(a, b, c, d)$?

Example (chain)

$$
\max _{a, b, c, d} p(a, b, c, d)=\frac{1}{Z} \max _{a} \max _{b} f_{1}(a, b) \underbrace{[\max _{c} f_{2}(b, c) \underbrace{\left[\max _{d} f_{3}(c, d) f_{4}(d)\right]}_{\gamma_{f_{2} \rightarrow b}(b)=\gamma_{b \rightarrow f_{1}}(b)}]}_{\gamma_{f_{1} \rightarrow a}(a)}
$$

Consider $\max _{d} f_{3}(c, d) f_{4}(d)$:

- This is an optimisation problem that needs to be solved for all values of c.
- Maximiser $d^{*}=\operatorname{argmax}_{d} f_{3}(c, d) f_{4}(d)$ depends on c :

$$
d^{*}(c)=\underset{d}{\operatorname{argmax}} f_{3}(c, d) f_{4}(d)
$$

- $d^{*}(c)$ is a function (look-up table) that returns the optimal value for d for any value of c.

Example (chain)

$$
\underbrace{}_{a, b, c, d} p(a, b, c, d)=\frac{1}{Z} \max _{a} \max _{b} f_{1}(a, b) \underbrace{\max _{c} f_{2}(b, c) \underbrace{\left[\max _{d} f_{3}(c, d) f_{4}(d)\right]}_{\gamma_{f_{2} \rightarrow b}(b)=\gamma_{b \rightarrow f_{1}}(b)}]}_{\gamma_{f_{1} \rightarrow a}(a)}
$$

In addition to $d^{*}(c)=\operatorname{argmax}_{d} f_{3}(c, d) f_{4}(d)$, we further have:

$$
\begin{aligned}
c^{*}(b) & =\underset{c}{\operatorname{argmax}} f_{2}(b, c) \gamma_{c \rightarrow f_{2}}(c) \\
b^{*}(a) & =\underset{b}{\operatorname{argmax}} f_{1}(a, b) \gamma_{b \rightarrow f_{1}}(b) \\
\hat{a} & =\underset{a}{\operatorname{argmax}} \gamma_{f_{1} \rightarrow a}(a)
\end{aligned}
$$

After \hat{a} has been computed, we can compute $\operatorname{argmax} p(a, b, c, d)$ via $\hat{b}=b^{*}(\hat{a}), \hat{c}=c^{*}(\hat{b})$, and $\hat{d}=d^{*}(\hat{c})$ ("back-tracking")

Max-product algorithm

- The above example for a chain extends to general factor graphs (like in variable elimination)
- max takes the place of \sum
- For factor trees: sum-product algorithm becomes max-product algorithm with corresponding rules of how to compute the corresponding messages (see Barber, Section 5.2.1)
- Messages for the max-product algorithm are called max-product messages.
- For numerical stability, it is better to implement the algorithms using log messages: max-product algorithm becomes max-sum algorithm (see Bishop, 8.4.5)

Program recap

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- Structural changes to the graph due to variable elimination
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)

- Factor trees
- Sum-product algorithm = variable elimination for factor trees
- Messages = effective factors
- The rules for sum-product message passing

3. Inference of most probable states

- Maximisers of the marginals \neq maximiser of joint
- We can use the distributive law $\max (a b, a c)=a \max (b, c)$ to exploit the factorisation
- Max-product algorithm and back-tracking

