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Recap

I Undirected and directed graphical models have
complementary properties

I Both encode and (visually) represent statistical
independencies (I-maps)

I Graphs tell us how probability density/mass functions factorise
I For directed graphs with parent sets pai

p(x1, . . . , xd) =
d∏

i=1
p(xi |pai)

I For undirected graphs with maximal clique sets Xc

p(x1, . . . , xd) = 1
Z
∏
c
φc(Xc)
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Program

1. What are factor graphs?

2. Advantages over directed or undirected graphs?
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Program

1. What are factor graphs?
Definition
Visualising Gibbs distributions as factor graphs
Visualising factors that are conditionals

2. Advantages over directed or undirected graphs?
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Definition of factor graphs

I A factor graph represents the factorisation of an arbitrary
function (not necessarily related to pdfs/pmfs)

I Example: h(x1, x2, x3, x4) = fA(x1, x2, x3)fB(x3, x4)fC (x4)

Factor graph (FG):

x1
fA

x2

x3
fB

x4
fC

I Two types of nodes: factor and variable nodes
I Convention: squares for factors, circles for variables

(other conventions are used too)
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Definition of factor graphs

I Example: h(x1, x2, x3, x4) = fA(x1, x2, x3)fB(x3, x4)fC (x4)

Factor graph (FG):

x1
fA

x2

x3
fB

x4
fC

I Edge between variable x and factor f ⇔ x is an argument of f
I Variable nodes are always connected to factor nodes; no direct

links between factor or variable nodes (FGs are bipartite graphs)
I We can also use directed edges (to indicate conditionals)
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Visualising Gibbs distributions as factor graphs

I Example: p(x1, x2, x3, x4) = 1
Z φ1(x1, x2, x3)φ2(x3, x4)φ3(x4)

x1
φ1

x2

x3
φ2

x4
φ3

I General case: p(x1, . . . , xd) ∝
∏

c φc(Xc)
I Factor node for all φc
I For all factors φc :

draw an undirected edge between φc and all xi ∈ Xc .
I Can visualise any undirected graphical model as a factor

graph.
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Visualising Gibbs distributions as factor graphs

Some differences to visualisation with undirected graph

I Factors φc are shown; makes the graphs more informative (see
next slide)

I Variables xi are neighbours if they are connected to the same
factor.

p(x1, x2, x3, x4) = 1
Z φ1(x1, x2, x3)φ2(x3, x4)φ3(x4)

x1
φ1

x2

x3
φ2

x4
φ3

x1

x2

x3 x4
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More informative than undirected graphs

I Mapping from Gibbs distribution to undirected graph is many
to one but one-to-one for factor graphs.

I Example

pA(x1, x2, x3) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x3, x1)
pB(x1, x2, x3) ∝ φ(x1, x2, x3)

x1

x2x3

UG for pA and pB

x1

x2x3

φ1φ3

φ2

FG for pA

x1

x2x3
φ

FG for pB
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Visualising factors that are conditionals

I For p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2), we may want to
include the information that x3 is conditioned on x1, x2

I Use arrows as in directed graphs.

x1 x2

p(x3|x1 x2)

x3

p(x1) p(x2)

I Can visualise any directed graphical model as a factor graph.
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Mixed graphs

I Let p(x1, x2, x3) = p(x1, x2)p(x3|x1, x2).
I Directed graphs forces ordering of the random variables;

undirected graph does not show conditioning on x1, x2

x1 x2

x3

x1 x2

x3

x1 x2

x3

I Mixed FG to visualise the conditioning for p(x3|x1, x2) without
imposing an ordering on x1 and x2

x1 x2

p(x3|x1 x2)

x3

p(x1 x2)
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Program

1. What are factor graphs?

2. Advantages over directed or undirected graphs?
Computational advantages
Statistical advantages
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Importance of factorisation

I Factorisation was central in the development so far
I But directed and undirected graphs are not able to fully

represent arbitrary factorisations of pdfs/pmfs.
For example, same graph for

p(x1, x2, x3) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x3, x1)
p(x1, x2, x3) ∝ φ(x1, x2, x3)

x1

x2x3

I We should expect that being able to better represent the
factorisation has advantages.
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Example of computational advantages
Assume binary random variables xi .

I Same undirected graph but
p(x1, . . . , xd) ∝ φ(x1, . . . , xd) has 2d free parameters,
p(x1, . . . , xd) ∝

∏
i<j φij(xi , xj) has

(d
2
)
22 free parameters

parameters ≡ entries to specify in a table representation
I The difference matters for learning and inference when the

number of variables is large.
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Example of statistical advantages

I Let x1 and x2 be two inputs
I x1 controls variable y1

x2 controls y2
I Variables y1 and y2 influence

each other
some interaction

x1 x2

y1 y2

I Model: p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2)
(probabilistic modelling: pdf/pmf p(y1, y2|x1, x2) captures uncertainty about
how the xi affect the yi and about how the yi interact)

I Choose p(y1, y2|x1, x2) such that p(y1, y2, x1, x2) satisfies
I x1 ⊥⊥ x2 (independence between control variables)
I x1 ⊥⊥ y2 | y1, x2 (y2 is only directly influenced by y1 and x2)
I x2 ⊥⊥ y1 | y2, x1 (y1 is only directly influenced by y2 and x1)
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Example of statistical advantages

I Three independencies are satisfied if p(y1, y2|x1, x2) factorises
as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)

where n(x1, x2) ensures normalisation of p(y1, y2|x1, x2)

n(x1, x2) = (
∫

p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2)−1

(see tutorials)
I Directed and undirected graphs cannot represent the

independencies induced by factorisation of p(y1, y2|x1, x2)
(see tutorials).

I Factor graphs and chain graphs (see Barber, Section 4.3, not
covered in lecture) can represent them.

I Factor graphs can represent independencies that DAGs or UGs
cannot or do not represent.
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Example of statistical advantages
(not examinable)

I Overall model:
p(y1, y2, x1, x2) =

p(y1,y2|x1,x2)︷ ︸︸ ︷
p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) p(x1)p(x2)

I Factor graph (Note: directed edges to y1, y2 for all factors involved in the conditional)

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1, y2)

I Independencies can be found from separation rules for factor
graphs (see Barber, Section 4.4.1, and original paper “Extending Factor Graphs so as to Unify

Directed and Undirected Graphical Models” by B. Frey, UAI 2003).
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Program recap

1. What are factor graphs?
Definition
Visualising Gibbs distributions as factor graphs
Visualising factors that are conditionals

2. Advantages over directed or undirected graphs?
Computational advantages
Statistical advantages
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