# Expressive Power of Graphical Models - Supplement 

Michael Gutmann<br>Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring Semester 2019

## Example

Goal: Given undirected I-map $H$, find directed minimal I-map $G$ for $\mathcal{I}(H)$. In other words, find a DAG $G$ such that $\mathcal{I}(G) \subseteq \mathcal{I}(H)$.


Given: undirected I-map H

$$
\begin{array}{l|l}
x \Perp z & u, y \\
u \Perp y & x, z
\end{array}
$$



Solution: directed minimal I-map $G$ (with ordering: $x, y, u, z$ )

$$
x \Perp z \mid u, y
$$

$$
u \not \Perp y \mid x, z
$$

Note: We lost information with the conversion. There is no DAG $G$ with $\mathcal{I}(G)=\{x \Perp z|u, y \quad u \Perp y| x, z\}$

## Procedure

- In order to construct the directed minimal l-map, we proceed as in slide 12 of the"Expressive Power of Graphical Models" slides with the small modification that we check whether $x_{i} \Perp\left\{\right.$ pre $\left._{i} \backslash \pi_{i}\right\} \mid \pi_{i}$ is included in $\mathcal{I}(H)$ rather than in $\mathcal{I}(p)$. That is:

1. Assume an ordering of the variables. Denote the ordered random variables by $x_{1}, \ldots, x_{d}$.
2. For each $i$, find a minimal subset of variables $\pi_{i} \subseteq \operatorname{pre}_{i}$ such that

$$
x_{i} \Perp\left\{\operatorname{pre}_{i} \backslash \pi_{i}\right\} \mid \pi_{i}
$$

is an element of $\mathcal{I}(H)$ (i.e. the independency is asserted by $H$ ).
3. Construct a graph with parents $\mathrm{pa}_{i}=\pi_{i}$.

- We next derive the solution for the example with the indicated ordering $x, y, u, z$

Step 1: variable $x$ is the root; consider 2 nd variable $y$

- $\operatorname{pre}(y)=\{x\}$.

- Since $x$ and $y$ are connected in the undirected graph, there must also be an edge in the directed graph; otherwise the directed graph would make a wrong independence assertion.
- (In more detail, if we didn't have an edge in $G$, the graph would assert that $x$ and $y$ are independent. But since this independency is not included in $\mathcal{I}(H)$, we must have an edge $x \rightarrow y$ in $G$ in order for $G$ to be an I-map.)
- We thus obtain:



## Step 2: consider u next

- $\operatorname{pre}(u)=\{x, y\}$.

- Since we want a minimal subset $\pi_{u}$ of $\operatorname{pre}(u)$, let us first try $\pi_{u}=\varnothing$. If $\pi_{u}=\varnothing$ held, the directed graph would assert $u \Perp\{x, y\}$ (by the ordered Markov property). We thus have to check whether the undirected graph $H$ makes this assertion too. Since $x$ and $u$ are connected in the undirected graph, $u \Perp\{x, y\} \notin \mathcal{I}(H)$, and we thus cannot set $\mathrm{pa}_{u}=\varnothing$.
- We next try out singleton sets: if $\pi_{u}=\{x\}$, $\operatorname{pre}(u) \backslash \pi_{u}=\{y\}$, and the directed graph would assert $u \Perp y \mid x$. But since this independency is not asserted by $h,\{x\}$ is not the desired subset. The same reasoning shows that $\pi_{u}=\{y\}$ does not work either.
- We thus have to set $\pi_{u}=\operatorname{pre}(u)=\{x, y\}$ and obtain

(z)

Step 3: consider z next (last variable in the ordering)

- $\operatorname{pre}(z)=\{x, y, u\}$.

- We could proceed as in step 2 to find the minimal subset $\pi_{z} \subseteq \operatorname{pre}(z)$ such that $z \Perp\left\{\operatorname{pre}(z) \backslash \pi_{z}\right\} \mid \pi_{z}$. However, since pre $(z)$ corresponds to all nodes in the graph (without $z$ ), the desired $\pi_{z}$ is exactly the Markov blanket of $z$.
- We can thus use the rules to determine the Markov blanket to determine $\pi_{z}$ (which is faster than proceeding as in step 2).
- From $H$, we find that $\operatorname{MB}(z)=\operatorname{ne}(z)=\{u, y\}$. Hence: $\pi_{z}=\{u, y\}$ and we obtain:


