Expressive Power of Graphical Models — Supplement —

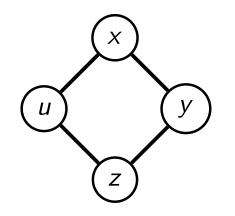
Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring Semester 2019

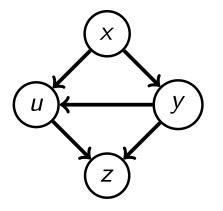
Example

Goal: Given undirected I-map H, find directed minimal I-map G for $\mathcal{I}(H)$. In other words, find a DAG G such that $\mathcal{I}(G) \subseteq \mathcal{I}(H)$.



Given: undirected I-map H

X	Ш <i>z</i>	<i>u</i> , <i>y</i>
U	Ш у	x, z



Solution: directed minimal I-map G(with ordering: x, y, u, z) $x \perp \!\!\!\!\perp z \mid u, y$ $u \not \!\!\!\perp y \mid x, z$

Note: We lost information with the conversion. There is no DAG *G* with $\mathcal{I}(G) = \{x \perp \!\!\!\perp z \mid u, y \mid u \perp \!\!\!\perp y \mid x, z\}$

Procedure

- In order to construct the directed minimal I-map, we proceed as in slide 12 of the"Expressive Power of Graphical Models" slides with the small modification that we check whether x_i ⊥⊥ {pre_i \ π_i} | π_i is included in I(H) rather than in I(p). That is:
 - 1. Assume an ordering of the variables. Denote the ordered random variables by x_1, \ldots, x_d .
 - 2. For each *i*, find a minimal subset of variables $\pi_i \subseteq \text{pre}_i$ such that

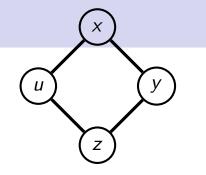
 $x_i \perp \{ \operatorname{pre}_i \setminus \pi_i \} \mid \pi_i$

is an element of $\mathcal{I}(H)$ (i.e. the independency is asserted by H).

- 3. Construct a graph with parents $pa_i = \pi_i$.
- We next derive the solution for the example with the indicated ordering x, y, u, z

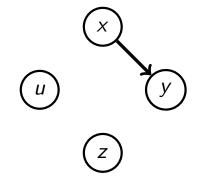
3/6

Step 1: variable x is the root; consider 2nd variable y



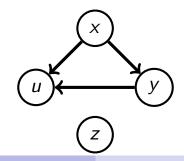
4/6

- ▶ $\operatorname{pre}(y) = \{x\}.$
- Since x and y are connected in the undirected graph, there must also be an edge in the directed graph; otherwise the directed graph would make a wrong independence assertion.
- In more detail, if we didn't have an edge in G, the graph would assert that x and y are independent. But since this independency is not included in I(H), we must have an edge x → y in G in order for G to be an I-map.)
- We thus obtain:



Step 2: consider *u* next

- ▶ $\operatorname{pre}(u) = \{x, y\}.$
- Since we want a *minimal* subset π_u of pre(u), let us first try π_u = Ø. If π_u = Ø held, the directed graph would assert u ⊥⊥ {x, y} (by the ordered Markov property). We thus have to check whether the undirected graph H makes this assertion too. Since x and u are connected in the undirected graph, u ⊥⊥ {x, y} ∉ I(H), and we thus cannot set pa_u = Ø.
- We next try out singleton sets: if π_u = {x}, pre(u) \ π_u = {y}, and the directed graph would assert u ⊥⊥ y | x. But since this independency is not asserted by h, {x} is not the desired subset. The same reasoning shows that π_u = {y} does not work either.
- We thus have to set $\pi_u = \operatorname{pre}(u) = \{x, y\}$ and obtain



и

Ζ

Step 3: consider z next (last variable in the ordering) $pre(z) = \{x, y, u\}.$

- We could proceed as in step 2 to find the minimal subset π_z ⊆ pre(z) such that z ⊥⊥ {pre(z) \ π_z} | π_z. However, since pre(z) corresponds to all nodes in the graph (without z), the desired π_z is exactly the Markov blanket of z.
- We can thus use the rules to determine the Markov blanket to determine π_z (which is faster than proceeding as in step 2).
- From *H*, we find that $MB(z) = ne(z) = \{u, y\}$. Hence: $\pi_z = \{u, y\}$ and we obtain:

