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Recap

I Need for efficient representation of probabilistic models
I Restrict the number of directly interacting variables by making

independence assumptions
I Restrict the form of interaction by making parametric family

assumptions.
I Directed and undirected graphs to represent independencies

(I-maps)
I Equivalences between independencies (Markov properties) and

factorisation
I Rules for reading independencies from the graph that hold for

all distributions that factorise over the graph.
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Program

1. Minimal independency maps

2. (Lossy) conversion between directed and undirected I-maps
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Program

1. Minimal independency maps
Definition of minimal I-maps, the goal of a perfect maps
Construction of undirected minimal I-maps and their

uniqueness
Construction of directed minimal I-maps and their

non-uniqueness
Equivalence of I-maps (I-equivalence)

2. (Lossy) conversion between directed and undirected I-maps
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I-maps

I A graph is an independency map (I-map) for a set of
independencies I if the independencies asserted by the graph
are part of I.

I Criterion for an I-map is that the independency assertions are
true.

I Is not concerned with the number of independency assertions.
I Drawback of I-maps: they may not be very useful because

they may“miss” many independencies of I.
I Full graph does not make any assertions. Empty set is trivially

a subset of I, so that the full graph is trivially an I-map.
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Minimal I-maps

I Minimal I-map : graph such that if you remove an edge (more
independencies), the graph is not an I-map any more.

I Intuitively, the point of minimal I-maps is to “sparsify” I-maps
so that they become more useful (note: while sparser, the
independence assertions must still be correct for a graph to be
an I-map)

I Generally, we want the graph to represent as many true
independencies as possible: graph is sparser, and thus more
informative, easier to understand, and facilitates learning and
inference.

I If the graph represents all independencies in I, the graph is
said to be a perfect map (P-map).
(May be hard to find and will not always exist!)
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Example

I Let p(x1, x2, x3, x4) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x4)
I Denote the set of independencies that hold for p by I(p)
I Minimal I-map for I(p):

x1 x2 x3 x4

I I-map because p factorises over the graph and hence all
independencies asserted by the graph must hold for p.

I Minimal I-map because removing an edge results in a graph
that makes wrong independency assertions.
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Example

I Let p(x1, x2, x3, x4) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x4)
I Minimal I-map for I(p):

x1 x2 x3 x4

I Not an I-map for I(p) (wrongly claims x1 ⊥⊥ {x2, x3}):

x1 x2 x3 x4

I (Non-minimal) I-map for I(p) (x1 − x3 edge could be removed):

x1 x2 x3 x4
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Example

I Let p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)
I Denote the set of independencies that hold for p by I(p)
I Minimal I-map for I(p):

x1 x2

x3

x4

x5

I I-map because p factorises over the graph and hence all
independencies asserted by the graph must hold for p.

I Minimal I-map because removing an edge results in a graph
that makes wrong independency assertions.
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Example
Let p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)
Minimal I-map for I(p):

x1 x2

x3

x4

x5

Not an I-map for I(p):
(wrongly claims x4 ⊥⊥ x3)

x1 x2

x3

x4

x5

(Non-minimal) I-map for I(p):
(x1 → x4 could be removed)

x1 x2

x3

x4

x5
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Constructing undirected minimal I-maps

Given random variables x = (x1, . . . , xd) with positive distribution
p > 0

I Approaches based on pairwise and local Markov property
I Both yield same (unique) graph.
I For local Markov property approach: For each node:

1. determine its Markov blanket MB(xi):
minimal set of nodes U such that

xi ⊥⊥ {all variables \ (xi ∪ U)} | U

with respect to p.
2. we know that xi and MB(xi) must be neighbours in the graph:

Connect xi to all nodes in MB(xi)
I We need p > 0 because otherwise local independencies may

not imply global ones (see slides on undirected graphical models).

Michael Gutmann Expressive Power of Graphical Models 11 / 28



Constructing directed minimal I-maps

Given a distribution p.
I We can use the ordered Markov property to derive a directed

graph that is a minimal I-map for I(p).

xi ⊥⊥ {prei \ pai} | pai

I Procedure is exactly the same as the one used to simplify the
factorisation obtained by the chain rule:
1. Assume an ordering of the variables. Denote the ordered

random variables by x1, . . . , xd .
2. For each i , find a minimal subset of variables πi ⊆ prei such

that
xi ⊥⊥ {prei \ πi} | πi

holds in I(p).
3. Construct a graph with parents pai = πi .
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Directed minimal I-maps are not unique
Consider p(a, z , q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)

For ordering (a, z , q, e, h)

a z

q

e

h

For ordering (e, h, q, z , a)

a z

q

e

h

I Directed (minimal) I-maps are not unique
I Different directed (minimal) I-maps for the same p may not

make the same independence assertions.
I Minimal I-maps of I(p) may not represent all independencies

that hold for p, but generally only a subset of them.
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I-equivalence for directed graphs

I How do we determine whether two directed graphs make the
same independence assertions (that they are “I-equivalent”)?

I From d-separation: what matters is
I which node is connected to which irrespective of direction

(skeleton)
I the set of collider (head-to-head) connections

Connection p(x , y) p(x , y |z)
x z y x 6⊥⊥ y x ⊥⊥ y | z
x z y x 6⊥⊥ y x ⊥⊥ y | z
x z y x ⊥⊥ y x 6⊥⊥ y | z
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I-equivalence for directed graphs

I The situation x ⊥⊥ y and x 6⊥⊥ y | z can only happen if we
have colliders without “covering edge” x → y or x ← y

I Colliders without covering edge are called “immoralities”
I Theorem: For two directed graphs G1 and G2:

G1 and G2 are I-equivalent ⇐⇒ G1 and G2 have the same
skeleton and the same set of immoralities.

x

z

y

x ⊥⊥ y and x 6⊥⊥ y | z
Collider w/o covering edge

x

z

y

x 6⊥⊥ y and x 6⊥⊥ y | z
Collider with covering edge
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Example

Not I-equivalent because of skeleton mismatch:

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

Not I-equivalent because of immoralities mismatch:

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

I-equivalent (same skeleton, same immoralities):

G1:
a z

q

e

h

G2:
a z

q

e

h
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I-equivalence for undirected graphs?

I For undirected graphs, minimal I-map is unique.
I Different graphs make different independence assertions.
I Equivalence question does not come up.
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Program

1. Minimal independency maps

2. (Lossy) conversion between directed and undirected I-maps
Moralisation for directed → undirected I-map
Example of non-existence of undirected perfect map
Triangulation for undirected → directed I-map
Example of non-existence of directed perfect map
Strengths and weaknesses of directed and undirected

graphical models
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Directed to undirected graphical model

Goal: undirected minimal I-Map. Assume directed I-map G given
I Probabilistic models factorises according to G as

p(x1, . . . , xd) =
d∏

i=1
p(xi |pai)

I Write each p(xi |pai) as factor φi(xi ,pai):

p(x1, . . . , xd) =
d∏

i=1
φi(xi , pai)

Gibbs distribution with normalisation constant equal to one
I Graph operation: Form cliques for (xi , pai)
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Directed to undirected graphical model

Goal: undirected minimal I-Map. Assume directed I-map G given

p(x1, . . . , xd) =
d∏

i=1
p(xi |pai) =

d∏
i=1

φi(xi , pai)

I Graph operation: Form cliques for (xi , pai)
I Remove arrows, and add edges between all parents of xi .
I Conversion from directed to undirected graphical model is

called “moralisation”. Obtained undirected graph is the
“moral graph” of G .

I Process above is equivalent to using the directed graph to
determine the Markov blanket for each xi .

Michael Gutmann Expressive Power of Graphical Models 22 / 28



Example

Goal: Undirected minimal I-map for
p(a, z , q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)

Given: directed I-map
a z

q

e

h

Moral graph:
a z

q

e

h

Note: In the undirected I-map, we do not have a ⊥⊥ z . We lost
that information.
Minimal I-maps of I(p) may not represent all independencies that
hold for p, but generally only a subset of them.
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Simpler example

Goal: Undirected minimal I-map for p(x , y , z) = p(x)p(y)p(z |x , y)

x y

z

Given: directed I-map

x y

z

Only possible undirected
I-map is full graph

There is no undirected I-map representing I = {x ⊥⊥ y , x 6⊥⊥ y | z}
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Undirected to directed graphical model

Goal: directed minimal I-Map. Assume undirected I-map H given
I We can use the approach based on the local Markov property
I Read required independencies from the undirected graph
I Typically results in directed graphs that are larger than the

undirected graph
I Directed graph will not have any immoralities

(for proof, see e.g. theorem 4.10 in Koller and Friedman’s book, not
examinable)

I Results in chordal/triangulated graphs (longest loop without
shortcuts is a triangle).
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Example

Goal: Directed minimal I-map for
p(x , y , z , u) ∝ φ1(x , y)φ2(y , z)φ3(z , u)φ4(u, x)

z

y

x

u

Given: undirected I-map

x ⊥⊥ z | u, y
u ⊥⊥ y | x , z

z

y

x

u

Directed minimal I-map
(with ordering: x , y , u, z)

x ⊥⊥ z | u, y
u 6⊥⊥ y | x , z

We lost information with the conversion. There is no directed
I-map representing I = {x ⊥⊥ z | u, y , u ⊥⊥ y | x , z}
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Strengths and weaknesses

I Both directed and undirected graphical models have strengths
and weaknesses

I Some independencies are more easily represented with
directed graphs, others with undirected graphs.

I Undirected graphs are suitable when interactions are
symmetrical and when there is no natural ordering of the
variables, but they cannot represent “explaining away”
scenario (colliders).

I Directed graphs are suitable when we have an idea of the data
generating process (e.g. what is “causing” what, ancestral
sampling), but they may force directionality where there is
none, yielding unintuitive graphs (see triangulation).

I It is possible to combine individual strengths with
mixed/partially directed graphs.
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Program recap

1. Minimal independency maps
Definition of minimal I-maps, the goal of a perfect maps
Construction of undirected minimal I-maps and their

uniqueness
Construction of directed minimal I-maps and their

non-uniqueness
Equivalence of I-maps (I-equivalence)

2. (Lossy) conversion between directed and undirected I-maps
Moralisation for directed → undirected I-map
Example of non-existence of undirected perfect map
Triangulation for undirected → directed I-map
Example of non-existence of directed perfect map
Strengths and weaknesses of directed and undirected

graphical models

Michael Gutmann Expressive Power of Graphical Models 28 / 28


	Minimal independency maps
	Definition of minimal I-maps, the goal of a perfect maps
	Construction of undirected minimal I-maps and their uniqueness
	Construction of directed minimal I-maps and their non-uniqueness
	Equivalence of I-maps (I-equivalence)

	(Lossy) conversion between directed and undirected I-maps
	Moralisation for directed  undirected I-map
	Example of non-existence of undirected perfect map
	Triangulation for undirected  directed I-map
	Example of non-existence of directed perfect map
	Strengths and weaknesses of directed and undirected graphical models


