Independencies and Undirected Graphs

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring semester 2019

Recap

- The number of free parameters in probabilistic models increases with the number of random variables involved.
- Making statistical independence assumptions reduces the number of free parameters that need to be specified.
- Starting with the chain rule and an ordering of the random variables, we used statistical independencies to simplify the representation.
- We thus obtained a factorisation in terms of a product of conditional pdfs that we visualised as a DAG.
- In turn, we used DAGs to define sets of distributions ("directed graphical models").
- We discussed independence properties satisfied by the distributions, d-separation, and the equivalence to the factorisation.

The directionality in directed graphical models

So far we mainly exploited the property

$$\mathbf{x} \perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow \rho(\mathbf{y} | \mathbf{x}, \mathbf{z}) = \rho(\mathbf{y} | \mathbf{z})$$

- But when working with p(y|x, z) we impose an ordering or directionality from x and z to y.
- Directionality matters in directed graphical models

- In some cases, directionality is natural but in others we do not want to choose one direction over another.
- We now discuss how to represent probability distributions and independencies in a symmetric manner without assuming a directionality or ordering of the variables.

1. Representing probability distributions without imposing a directionality between the random variables

2. Separation in undirected graphs and statistical independencies

1. Representing probability distributions without imposing a directionality between the random variables

- Factorisation and statistical independence
- Gibbs distributions
- Visualising Gibbs distributions with undirected graphs
- Conditioning corresponds to removing nodes and edges from the graph

2. Separation in undirected graphs and statistical independencies

Further characterisation of statistical independence

From tutorials: For non-negative functions $a(\mathbf{x}, \mathbf{z}), b(\mathbf{y}, \mathbf{z})$:

$$\mathbf{x} \perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = a(\mathbf{x}, \mathbf{z})b(\mathbf{y}, \mathbf{z})$$

- More general version of $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{y}|\mathbf{z})p(\mathbf{z})$
- No directionality or ordering of the variables is imposed.
- Unconditional version: For non-negative functions $a(\mathbf{x}), b(\mathbf{y})$:

$$\mathbf{x} \perp \mathbf{y} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}) = a(\mathbf{x})b(\mathbf{y})$$

- The important point is the factorisation of p(x, y, z) into two factors:
 - if the factors share a variable z, then we have conditional independence,
 - ► if not, we have unconditional independence.

Further characterisation of statistical independence

Since $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ must sum (integrate) to one, we must have

$$\sum_{\mathbf{x},\mathbf{y},\mathbf{z}} a(\mathbf{x},\mathbf{z}) b(\mathbf{y},\mathbf{z}) = 1$$

Normalisation condition often ensured by re-defining a(x, z)b(y, z):

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{Z} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z}) \qquad Z = \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

- Z: normalisation constant (related to partition function, see later)
- \$\phi_i\$: factors (also called potential functions).
 Do generally not correspond to (conditional) probabilities.
 They measure "compatibility", "agreement", or "affinity"

$$\mathbf{x} \perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{Z} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

" \Rightarrow " If we want our model to satisfy $\mathbf{x} \perp \mathbf{y} \mid \mathbf{z}$ we should write the pdf (pmf) as

$$ho(\mathbf{x},\mathbf{y},\mathbf{z}) \propto \phi_{\mathcal{A}}(\mathbf{x},\mathbf{z})\phi_{\mathcal{B}}(\mathbf{y},\mathbf{z})$$

"
—" If the pdf (pmf) can be written as $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$ then we have $\mathbf{x} \perp \mathbf{y} \mid \mathbf{z}$

equivalent for unconditional version

Example

Consider $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_4)$

What independencies does *p* satisfy?

► We can write

$$p(x_1, x_2, x_3, x_4) \propto \underbrace{[\phi_1(x_1, x_2)\phi_2(x_2, x_3)]}_{\tilde{\phi}_1(x_1, x_2, x_3)} [\phi_3(x_4)]$$

 $\propto \tilde{\phi}_1(x_1, x_2, x_3)\phi_3(x_4)$

so that $x_4 \perp \perp x_1, x_2, x_3$.

Integrating out x₄ gives

$$p(x_1, x_2, x_3) = \int p(x_1, x_2, x_3, x_4) dx_4 \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3)$$

so that $x_1 \perp \!\!\!\perp x_3 \mid x_2$

Gibbs distributions

Example is a special case of a class of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d) = \frac{1}{Z}\prod_c \phi_c(\mathcal{X}_c)$$

- $\mathcal{X}_c \subseteq \{x_1, \ldots, x_d\}$
- \$\phi_c\$ are non-negative factors (potential functions)
 Do generally not correspond to (conditional) probabilities.
 They measure "compatibility", "agreement", or "affinity"
- Z is a normalising constant so that p(x₁,...,x_d) integrates (sums) to one.
- Known as Gibbs (or Boltzmann) distributions
- p̃(x₁,...,x_d) = ∏_c φ_c(X_c) is an example of an unnormalised model: p̃ ≥ 0 but does not necessarily integrate (sum) to one.

• With $\phi_c(\mathcal{X}_c) = \exp(-E_c(\mathcal{X}_c))$, we have equivalently

$$p(x_1,\ldots,x_d) = \frac{1}{Z} \exp \left[-\sum_c E_c(\mathcal{X}_c)\right]$$

• $\sum_{c} E_{c}(\mathcal{X}_{c})$ is the energy of the configuration (x_{1}, \ldots, x_{d}) . low energy \iff high probability

Example

Other examples of Gibbs distributions:

$$p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

$$p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_2, x_5) \phi_4(x_1, x_4) \phi_5(x_4, x_5)$$

$$\phi_6(x_5, x_6) \phi_7(x_3, x_6)?$$

Independencies?

► In principle, the independencies follow from

$$\mathbf{x} \perp\!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

with appropriately defined factors ϕ_A and ϕ_B .

But the mathematical manipulations of grouping together factors and integrating variables out become unwieldy.

Let us use graphs to better see what's going on.

Visualising Gibbs distributions with undirected graphs

$p(x_1,\ldots,x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$

- ► Node for each *x_i*
- ► For all factors φ_c: draw an undirected edge between all x_i and x_j that belong to X_c
- Results in a fully-connected subgraph for all x_i that are part of the same factor (this subgraph is called a clique).

Example:

Graph for $p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$

Effect of conditioning

Let $p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$.

- What is $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$?
- By definition $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$

$$= \frac{p(x_1, x_2, x_3 = \alpha, x_4, x_5, x_6)}{\int p(x_1, x_2, x_3 = \alpha, x_4, x_5, x_6) dx_1 dx_2 dx_4 dx_5 dx_6}$$

= $\frac{\phi_1(x_1, x_2, x_4) \phi_2(x_2, \alpha, x_4) \phi_3(\alpha, x_5) \phi_4(\alpha, x_6)}{\int \phi_1(x_1, x_2, x_4) \phi_2(x_2, \alpha, x_4) \phi_3(\alpha, x_5) \phi_4(\alpha, x_6) dx_1 dx_2 dx_4 dx_5 dx_6}$
= $\frac{1}{Z(\alpha)} \phi_1(x_1, x_2, x_4) \phi_2^{\alpha}(x_2, x_4) \phi_3^{\alpha}(x_5) \phi_4^{\alpha}(x_6)$

- Gibbs distribution with derived factors ϕ_i^{α} of reduced domain and new normalisation "constant" $Z(\alpha)$
- Note that $Z(\alpha)$ depends on the conditioning value α .

14 / 31

Effect of conditioning

Let $p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$.

• Conditional $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$ is

$$\frac{1}{Z(\alpha)}\phi_1(x_1, x_2, x_4)\phi_2^{\alpha}(x_2, x_4)\phi_3^{\alpha}(x_5)\phi_4^{\alpha}(x_6)$$

Conditioning on variables removes the corresponding nodes and connecting edges from the undirected graph

1. Representing probability distributions without imposing a directionality between the random variables

- Factorisation and statistical independence
- Gibbs distributions
- Visualising Gibbs distributions with undirected graphs
- Conditioning corresponds to removing nodes and edges from the graph

2. Separation in undirected graphs and statistical independencies

1. Representing probability distributions without imposing a directionality between the random variables

- 2. Separation in undirected graphs and statistical independencies
 - Separation in undirected graphs
 - Statistical independencies from graph separation
 - Global Markov property

Relating graph properties to independencies

- Consider $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_4)$ from before
- ► We have seen:
 - $\blacktriangleright x_4 \perp x_1, x_2, x_3$
 - $\blacktriangleright x_1 \perp x_3 \mid x_2$

► Graph:

▶ In the graph, x_4 is separated from x_1, x_2, x_3 .

Starting at x_4 , we cannot reach x_1, x_2 , or x_3 (and vice versa). In other words, all trails from x_4 to x_1, x_2, x_3 are "blocked".

In the graph, x₁ and x₃ are separated by x₂. In other words, all trails from x₁ to x₃ are blocked by x₂ (when removing x₂ from the graph, we cannot reach x₃ from x₁ and vice versa)

Relating graph properties to independencies

• Example:

 $p(x_1,\ldots,x_6) \propto \phi_1(x_1,x_2,x_4)\phi_2(x_2,x_3,x_4)\phi_3(x_3,x_5)\phi_4(x_3,x_6)$

► Graph:

x₃ separates {x₁, x₂, x₄} and {x₅, x₆}
In other words, x₃ blocks all trails from {x₁, x₂, x₄} to {x₅, x₆}
Do we have x₁, x₂, x₄ ⊥⊥ x₅, x₆ | x₃?

Relating graph properties to independencies

 $p(x_1,\ldots,x_6) \propto \phi_1(x_1,x_2,x_4)\phi_2(x_2,x_3,x_4)\phi_3(x_3,x_5)\phi_4(x_3,x_6)$

- Do we have $x_1, x_2, x_4 \perp x_5, x_6 \mid x_3$?
- Group the factors

$$p(x_1,\ldots,x_6) \propto \underbrace{\phi_1(x_1,x_2,x_4)\phi_2(x_2,x_3,x_4)}_{\phi_A(x_1,x_2,x_4,x_3)} \underbrace{\phi_3(x_3,x_5)\phi_4(x_3,x_6)}_{\phi_B(x_5,x_6,x_3)}$$

Takes the form

$$ho(\mathbf{x},\mathbf{y},\mathbf{z}) \propto \phi_A(\mathbf{x},\mathbf{z})\phi_B(\mathbf{y},\mathbf{z})$$

with $\mathbf{x} = (x_1, x_2, x_4)$, $\mathbf{y} = (x_5, x_6)$, $\mathbf{z} = x_3$ • Hence: $x_1, x_2, x_4 \perp x_5, x_6 \mid x_3$ holds indeed.

Separation in undirected graphs

Let X, Y, Z be three disjoint set of nodes in an undirected graph.

- X and Y are separated by Z if every trail from any node in X to any node in Y passes through at least one node of Z.
- In other words:
 - all trails from X to Y are blocked by Z
 - removing Z from the graph leaves X and Y disconnected.
 - Nodes are values; open by default but closed when part of Z.

Assume $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, \ldots, x_d\}$ can be visualised as the graph below.

Do we have $x_1, x_2 \perp y_1, y_2 \mid z_1, z_2, z_3$?

Assume $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, \ldots, x_d\}$ can be visualised as the graph below.

Do we have $\mathbf{x} \perp \mathbf{y} \mid z_1, z_2, z_3$?

- With $\mathbf{z} = (z_1, z_2, z_3)$, all x_i belong to one of the $\mathbf{x}, \mathbf{y}, \mathbf{z}$, or \mathbf{u} .
- We thus have p(x₁,...,x_d) = p(x, y, z, u) and we can group the factors φ_c together so that

 $p(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u}) \propto \phi_1(\mathbf{x},\mathbf{z})\phi_2(\mathbf{y},\mathbf{z})\phi_3(\mathbf{u},\mathbf{z})$

Integrating (summing) out u gives

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{\mathbf{u}} p(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u})$$
(1)

$$\propto \sum_{\mathbf{u}} \phi_1(\mathbf{x}, \mathbf{z}) \phi_2(\mathbf{y}, \mathbf{z}) \phi_3(\mathbf{u}, \mathbf{z})$$
 (2)

(distributive law)
$$\propto \phi_1(\mathbf{x}, \mathbf{z})\phi_2(\mathbf{y}, \mathbf{z})\sum_{\mathbf{u}}\phi_3(\mathbf{u}, \mathbf{z})$$
 (3)

$$\propto \phi_1(\mathbf{x}, \mathbf{z}) \phi_2(\mathbf{y}, \mathbf{z}) \tilde{\phi}(\mathbf{z})$$
 (4)

$$\propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$
 (5)

► And $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$ means $\mathbf{x} \perp\!\!\!\perp \mathbf{y} \mid \mathbf{z}$

Assume $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, \ldots, x_d\}$ can be visualised as the graph below.

We have shown that if **x** and **y** are separated by **z**, then $\mathbf{x} \perp \mathbf{y} \mid \mathbf{z}$.

Assume $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, \ldots, x_d\}$ can be visualised as the graph below.

So do we have $x_1, x_2 \perp \!\!\!\!\perp y_1, y_2 \mid z_1, z_2, z_3$?

- From tutorial: $x \perp \{y, w\} \mid z \text{ implies } x \perp y \mid z$
- Hence $\mathbf{x} \perp \mathbf{y} \mid z_1, z_2, z_3$ implies $x_1, x_2 \perp y_1, y_2 \mid z_1, z_2, z_3$.

28 / 31

Theorem:

Let G be the undirected graph for $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, and X, Y, Z three disjoint subsets of $\{x_1, \ldots, x_d\}$. If X and Y are separated by Z in G, then p is such that $X \perp Y \mid Z$.

- Important because:
 - 1. the theorem allows us to read out (conditional) independencies from the undirected graph
 - 2. the theorem shows that graph separation does not indicate false independence relations. ("Soundness" of the independence assertions.)
- We say that p(x₁,...,x_d) satisfies the global Markov property relative to G.

Example

 $p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$

► Graph

Example independencies: $x_1 \perp \{x_3, x_5, x_6\} \mid x_2, x_4$ $x_2 \perp x_6 \mid x_3$ $x_5 \perp x_6 \mid x_3$

1. Representing probability distributions without imposing a directionality between the random variables

- Factorisation and statistical independence
- Gibbs distributions
- Visualising Gibbs distributions with undirected graphs
- Conditioning corresponds to removing nodes and edges from the graph
- 2. Separation in undirected graphs and statistical independencies
 - Separation in undirected graphs
 - Statistical independencies from graph separation
 - Global Markov property