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Recap

I The number of free parameters in probabilistic models
increases with the number of random variables involved.

I Making statistical independence assumptions reduces the
number of free parameters that need to be specified.

I Starting with the chain rule and an ordering of the random
variables, we used statistical independencies to simplify the
representation.

I We thus obtained a factorisation in terms of a product of
conditional pdfs that we visualised as a DAG.

I In turn, we used DAGs to define sets of distributions
(“directed graphical models”).

I We discussed independence properties satisfied by the
distributions, d-separation, and the equivalence to the
factorisation.
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The directionality in directed graphical models

I So far we mainly exploited the property

x ⊥⊥ y | z⇐⇒ p(y|x, z) = p(y|z)

I But when working with p(y|x, z) we impose an ordering or
directionality from x and z to y.

I Directionality matters in directed graphical models
x z y versus x z y

I In some cases, directionality is natural but in others we do not
want to choose one direction over another.

I We now discuss how to represent probability distributions and
independencies in a symmetric manner without assuming a
directionality or ordering of the variables.
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Program

1. Representing probability distributions without imposing a
directionality between the random variables

2. Separation in undirected graphs and statistical independencies
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Program

1. Representing probability distributions without imposing a
directionality between the random variables

Factorisation and statistical independence
Gibbs distributions
Visualising Gibbs distributions with undirected graphs
Conditioning corresponds to removing nodes and edges from

the graph

2. Separation in undirected graphs and statistical independencies
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Further characterisation of statistical independence

I From tutorials: For non-negative functions a(x, z), b(y, z):

x ⊥⊥ y | z⇐⇒ p(x, y, z) = a(x, z)b(y, z)

I More general version of p(x, y, z) = p(x|z)p(y|z)p(z)
I No directionality or ordering of the variables is imposed.
I Unconditional version: For non-negative functions a(x), b(y):

x ⊥⊥ y⇐⇒ p(x, y) = a(x)b(y)

I The important point is the factorisation of p(x, y, z) into two
factors:

I if the factors share a variable z, then we have conditional
independence,

I if not, we have unconditional independence.
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Further characterisation of statistical independence

I Since p(x, y, z) must sum (integrate) to one, we must have∑
x,y,z

a(x, z)b(y, z) = 1

I Normalisation condition often ensured by re-defining
a(x, z)b(y, z):

p(x, y, z) = 1
Z φA(x, z)φB(y, z) Z =

∑
x,y,z

φA(x, z)φB(y, z)

I Z: normalisation constant (related to partition function, see later)
I φi : factors (also called potential functions).

Do generally not correspond to (conditional) probabilities.
They measure “compatibility”, “agreement”, or “affinity”
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What does it mean?

x ⊥⊥ y | z⇐⇒ p(x, y, z) = 1
Z φA(x, z)φB(y, z)

“⇒” If we want our model to satisfy x ⊥⊥ y | z we should write the
pdf (pmf) as

p(x, y, z) ∝ φA(x, z)φB(y, z)

“⇐” If the pdf (pmf) can be written as
p(x, y, z) ∝ φA(x, z)φB(y, z) then we have x ⊥⊥ y | z

equivalent for unconditional version

Michael Gutmann Independencies and Undirected Graphs 8 / 31



Example

Consider p(x1, x2, x3, x4) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x4)

What independencies does p satisfy?
I We can write

p(x1, x2, x3, x4) ∝ [φ1(x1, x2)φ2(x2, x3)]︸ ︷︷ ︸
φ̃1(x1,x2,x3)

[φ3(x4)]

∝ φ̃1(x1, x2, x3)φ3(x4)

so that x4 ⊥⊥ x1, x2, x3.
I Integrating out x4 gives

p(x1, x2, x3) =
∫

p(x1, x2, x3, x4)dx4 ∝ φ1(x1, x2)φ2(x2, x3)

so that x1 ⊥⊥ x3 | x2
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Gibbs distributions

I Example is a special case of a class of pdfs/pmfs that
factorise as

p(x1, . . . , xd) = 1
Z

∏
c
φc(Xc)

I Xc ⊆ {x1, . . . , xd}
I φc are non-negative factors (potential functions)

Do generally not correspond to (conditional) probabilities.
They measure “compatibility”, “agreement”, or “affinity”

I Z is a normalising constant so that p(x1, . . . , xd) integrates
(sums) to one.

I Known as Gibbs (or Boltzmann) distributions
I p̃(x1, . . . , xd) =

∏
c φc(Xc) is an example of an unnormalised

model: p̃ ≥ 0 but does not necessarily integrate (sum) to one.
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Energy-based model

I With φc(Xc) = exp (−Ec(Xc)), we have equivalently

p(x1, . . . , xd) = 1
Z exp

[
−

∑
c

Ec(Xc)
]

I
∑

c Ec(Xc) is the energy of the configuration (x1, . . . , xd).
low energy ⇐⇒ high probability
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Example

Other examples of Gibbs distributions:

p(x1, . . . , x6) ∝φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
p(x1, . . . , x6) ∝φ1(x1, x2)φ2(x2, x3)φ3(x2, x5)φ4(x1, x4)φ5(x4, x5)

φ6(x5, x6)φ7(x3, x6)?

Independencies?
I In principle, the independencies follow from

x ⊥⊥ y | z⇐⇒ p(x, y, z) ∝ φA(x, z)φB(y, z)

with appropriately defined factors φA and φB.
I But the mathematical manipulations of grouping together

factors and integrating variables out become unwieldy.

Let us use graphs to better see what’s going on.
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Visualising Gibbs distributions with undirected graphs
p(x1, . . . , xd) ∝

∏
c φc(Xc)

I Node for each xi
I For all factors φc : draw an undirected edge between all xi and

xj that belong to Xc
I Results in a fully-connected subgraph for all xi that are part of

the same factor (this subgraph is called a clique).

Example:
Graph for p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

x1

x2

x3

x4

x5

x6
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Effect of conditioning

Let p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6).
I What is p(x1, x2, x4, x5, x6|x3 = α)?
I By definition p(x1, x2, x4, x5, x6|x3 = α)

= p(x1, x2, x3 = α, x4, x5, x6)∫
p(x1, x2, x3 = α, x4, x5, x6)dx1dx2dx4dx5dx6

= φ1(x1, x2, x4)φ2(x2, α, x4)φ3(α, x5)φ4(α, x6)∫
φ1(x1, x2, x4)φ2(x2, α, x4)φ3(α, x5)φ4(α, x6)dx1dx2dx4dx5dx6

= 1
Z (α)φ1(x1, x2, x4)φα2 (x2, x4)φα3 (x5)φα4 (x6)

I Gibbs distribution with derived factors φαi of reduced domain
and new normalisation “constant” Z (α)

I Note that Z (α) depends on the conditioning value α.
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Effect of conditioning

Let p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6).
I Conditional p(x1, x2, x4, x5, x6|x3 = α) is

1
Z (α)φ1(x1, x2, x4)φα2 (x2, x4)φα3 (x5)φα4 (x6)

I Conditioning on variables removes the corresponding nodes
and connecting edges from the undirected graph

x1

x2

x4

x5

x6

x3
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Program

1. Representing probability distributions without imposing a
directionality between the random variables

Factorisation and statistical independence
Gibbs distributions
Visualising Gibbs distributions with undirected graphs
Conditioning corresponds to removing nodes and edges from

the graph

2. Separation in undirected graphs and statistical independencies
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Program

1. Representing probability distributions without imposing a
directionality between the random variables

2. Separation in undirected graphs and statistical independencies
Separation in undirected graphs
Statistical independencies from graph separation
Global Markov property
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Relating graph properties to independencies

I Consider p(x1, x2, x3, x4) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x4) from
before

I We have seen:
I x4 ⊥⊥ x1, x2, x3
I x1 ⊥⊥ x3 | x2

I Graph:
x1 x3 x4x2

I In the graph, x4 is separated from x1, x2, x3.
Starting at x4, we cannot reach x1, x2, or x3 (and vice versa).
In other words, all trails from x4 to x1, x2, x3 are “blocked”.

I In the graph, x1 and x3 are separated by x2. In other words,
all trails from x1 to x3 are blocked by x2
(when removing x2 from the graph, we cannot reach x3 from x1 and
vice versa)
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Relating graph properties to independencies

I Example:
p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

I Graph:

x1

x2

x4

x5

x6

x3

I x3 separates {x1, x2, x4} and {x5, x6}
In other words, x3 blocks all trails from {x1, x2, x4} to {x5, x6}

I Do we have x1, x2, x4 ⊥⊥ x5, x6 | x3?
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Relating graph properties to independencies

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
I Do we have x1, x2, x4 ⊥⊥ x5, x6 | x3?
I Group the factors

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)︸ ︷︷ ︸
φA(x1,x2,x4,x3)

φ3(x3, x5)φ4(x3, x6)︸ ︷︷ ︸
φB(x5,x6,x3)

I Takes the form

p(x, y, z) ∝ φA(x, z)φB(y, z)

with x = (x1, x2, x4), y = (x5, x6), z = x3
I Hence: x1, x2, x4 ⊥⊥ x5, x6 | x3 holds indeed.
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Separation in undirected graphs

Let X ,Y ,Z be three disjoint set of nodes in an undirected graph.

I X and Y are separated by Z if every trail from any node in X
to any node in Y passes through at least one node of Z .

I In other words:
I all trails from X to Y are blocked by Z
I removing Z from the graph leaves X and Y disconnected.
I Nodes are valves; open by default but closed when part of Z .

X Y

Z
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Statistical independencies from graph separation
Assume p(x1, . . . , xd) ∝

∏
c φc(Xc), with Xc ⊂ {x1, . . . , xd} can

be visualised as the graph below.

Do we have x1, x2 ⊥⊥ y1, y2 | z1, z2, z3?

z1

z2

z3

x1 x2 y1

y2
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Statistical independencies from graph separation
Assume p(x1, . . . , xd) ∝

∏
c φc(Xc), with Xc ⊂ {x1, . . . , xd} can

be visualised as the graph below.

Do we have x ⊥⊥ y | z1, z2, z3?

u

x1 x2 z1

z2

z3

y1

y2

x

y
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Statistical independencies from graph separation

I With z = (z1, z2, z3), all xi belong to one of the x, y, z, or u.
I We thus have p(x1, . . . , xd) = p(x, y, z,u) and we can group

the factors φc together so that

p(x, y, z,u) ∝ φ1(x, z)φ2(y, z)φ3(u, z)

u

x1 x2 z1

z2

z3

y1

y2

x

y
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Statistical independencies from graph separation

I Integrating (summing) out u gives

p(x, y, z) =
∑

u
p(x, y, z,u) (1)

∝
∑

u
φ1(x, z)φ2(y, z)φ3(u, z) (2)

(distributive law) ∝ φ1(x, z)φ2(y, z)
∑

u
φ3(u, z) (3)

∝ φ1(x, z)φ2(y, z)φ̃(z) (4)
∝ φA(x, z)φB(y, z) (5)

I And p(x, y, z) ∝ φA(x, z)φB(y, z) means x ⊥⊥ y | z
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Statistical independencies from graph separation
Assume p(x1, . . . , xd) ∝

∏
c φc(Xc), with Xc ⊂ {x1, . . . , xd} can

be visualised as the graph below.

We have shown that if x and y are separated by z, then x ⊥⊥ y | z.

x1 x2 z1

z2

z3

y1

y2

x

y
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Statistical independencies from graph separation
Assume p(x1, . . . , xd) ∝

∏
c φc(Xc), with Xc ⊂ {x1, . . . , xd} can

be visualised as the graph below.

So do we have x1, x2 ⊥⊥ y1, y2 | z1, z2, z3?

x1 x2 z1

z2

z3

y1

y2

x

y
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Statistical independencies from graph separation

I From tutorial: x ⊥⊥ {y ,w} | z implies x ⊥⊥ y | z
I Hence x ⊥⊥ y | z1, z2, z3 implies x1, x2 ⊥⊥ y1, y2 | z1, z2, z3.

x1 x2 z1

z2

z3

y1

y2

x

y
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Summary

Theorem:
Let G be the undirected graph for p(x1, . . . , xd) ∝

∏
c φc(Xc), and

X ,Y ,Z three disjoint subsets of {x1, . . . , xd}. If X and Y are
separated by Z in G , then p is such that X ⊥⊥ Y | Z .

I Important because:
1. the theorem allows us to read out (conditional) independencies

from the undirected graph
2. the theorem shows that graph separation does not indicate

false independence relations. (“Soundness” of the
independence assertions.)

I We say that p(x1, . . . , xd) satisfies the global Markov property
relative to G .
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Example

I p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
I Graph

x1

x2

x3

x4

x5

x6

x1 x3

x5

x6

x2

x4

x3

x6

x2

x3

x5

x6

I Example independencies:
x1 ⊥⊥ {x3, x5, x6} | x2, x4 x2 ⊥⊥ x6 | x3 x5 ⊥⊥ x6 | x3
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Program recap

1. Representing probability distributions without imposing a
directionality between the random variables

Factorisation and statistical independence
Gibbs distributions
Visualising Gibbs distributions with undirected graphs
Conditioning corresponds to removing nodes and edges from

the graph

2. Separation in undirected graphs and statistical independencies
Separation in undirected graphs
Statistical independencies from graph separation
Global Markov property
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