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Recap

Statistical independence assumptions facilitate the efficient
representation of probabilistic models by limiting the number
of variables that are allowed to directly interact with each
other.

Statistical independencies lead to a (partial) factorisation of
pdfs/pmfs

Equivalence between factorisation and ordered Markov
property
Visualisation of pdfs/pmfs as directed graph
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Program

1. Definition of directed graphical models
2. Three canonical connections in a DAG and their properties

3. Independencies in directed graphical models
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Program

1. Definition of directed graphical models
o Definition via factorisation according to the graph
o Definition via ordered Markov property
e Derive independencies from the ordered Markov property
with different topological orderings
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Directed graphical model

» We started with a pdf/pmf, wrote it in factorised form
according to some ordering, and associated a DAG with it.

» We can also go the other way around and start with a DAG.

» Definition (via factorisation property) A directed graphical
model based on a DAG with d nodes and associated random
variables x; is the set of pdfs/pmfs that factorise as

d
p(X17 e >Xd) — H p(x,-|pa,-),
i=1

where pa; denotes the parents of x; in the graph.

» Other names for directed graphical models: belief network,
Bayesian network, Bayes network.
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Example

DAG:

Random variables: a, z, g, e, h

Parent sets: pa, = pa, = &,pa, = {a,z},pa, = {q},pPa, = {z}.

All models defined by the DAG factorise as:

p(a, z,q,e,h) = p(a)p(z)p(ql|a, z)p(e|q)p(h|z)
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Alternative definition of directed graphical models

» For any DAG with d nodes we can always find an ordering of
the associated random variables that is topological to the
DAG. Re-label the nodes accordingly as xq,. .., x4.

» In all topological orderings the parents come before the
children.

» Hence: pa; C pre; (recall: pre; = {xq,...,xj-1})
» Previous result on equivalence of factorisation and ordered
Markov property gives

d

p(x) = H p(xilpa;) <= x; 1L (pre; \ pa;) | pa; for all i
i=1

» Provides an alternative definition of directed graphical models
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Directed graphical model

» Definition (via ordered Markov property) A directed graphical
model based on a DAG with d nodes and associated random
variables x; is the set of pdfs/pmfs that satisfy the ordered
Markov property

x;j AL (pre; \ pa;) |pa; for all i

for any ordering x1,...,xq4 of the x; that is topological to the
DAG.

» Remark: the notation is as before:
pre; are the predecessors of x; in the topological ordering
pa; are the parents of x; in the graph
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Example

DAG:

Random variables: a, z, g, e, h
Ordering: (a,z,q, e, h) (meaning: x1 = a,x = z,x3 = q,xa = €,x5 = h)

Predecessor sets for the ordering:
pre, = J,pre, = {a},pre, = {a, z}, pre, = {a,z,q},pre, = {a, z,q, e}

Parent sets: as before

pa, = pa, = &,pag = 13,2}, = {q}, P2y = 12}

All models in the set defined by the DAG satisfy x; 1L (pre; \ pa;) | pa;:
z 1 a el {a,z} | q hl{aq,e}|z
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Example (different topological ordering)

DAG:

Predecessor sets for the ordering:

pre, = J,pre, = {a},pre, = {a, z},pre, = {a, z, h},pre, = {a,z, h,q}
Parent sets: as before

pa, = pa, = &,pa, = {z},pa, = {a,z},pa, = {q}

All models in the set defined by the DAG satisfy x; 1L (pre; \ pa;) | pa;:

Ordering: (a, z, h, q, €)

z 1 a hl alz gl h|az ell {a,z,h}]|q
Note: the models also satisfy those obtained with the previous ordering:
z 1l a el {a,z}|q hll {aqg,e}|z
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Remarks

» Missing edges in a DAG cause the pa; to be smaller than the pre;,
and thus lead to the independencies.

» The directed graphical model corresponds to a set of probability
distributions . Two views according to the two definitions: The set
includes all those distributions that you get

» by looping over all possible conditionals p(x;|pa;),

» by retaining, from all possible joint distributions over the x;,
those that satisfy the independencies given by the ordered
Markov property

» A directed graphical model with specified conditionals is typically
also called a directed graphical model.

» By using different topological orderings you can generate possibly
different independence relations satisfied by the model.
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Example: Markov model

DAG:

All models in the set factorise as
p(x) = p(x1)p(x2|x1)p(x3|x2) p(xa|x3)p(x5|xa)

There is only one topological ordering: (x1,x2, ..., X5)

By ordered Markov property: all models in the set satisfy:
Xip1 AL X1, ..o, Xi—1 | X
(future independent of the past given the present)
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Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)

DAG:

Explains properties of (observed) y; through fewer (unobserved) x;.
Different further assumptions lead to different methods (more

later).

All models in the set factorise as p(x1, X2, X3, V1,...,V¥5) =
p(x1)p(x2)p(x3)P(y1lx1, X2, x3)p(y2|x1, X2, X3) - - - P(¥5]X1, X2, X3)
With the ordering (x1, X2, X3, V1, V2, ¥3, Ya, y5): All satisfy:
xid xi  y2dlyi|x,xe,x3  y3 AL y1,y2 | X1, X2, X3

ya L yi,ya,ys | xi, %2, ys AL ya, ya, y3, yalx1, x2, X3

Michael Gutmann Directed Graphical Models 13 /47



Program

1. Definition of directed graphical models
o Definition via factorisation according to the graph
o Definition via ordered Markov property
e Derive independencies from the ordered Markov property
with different topological orderings
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Further independence properties?

» Parent-child links in the graph encode (conditional)
independence properties.

» Ordered Markov property yields sets of independence
assertions.
» Questions:

» For any triple of random variables (x, y, z), can we determine
whether x 1L y | z holds?
» Does the graph induce or impose additional independencies on
any probability distribution that factorises over the graph?
» |mportant because

» it yields increased understanding of the properties of the model
» we can exploit the independencies e.g. for inference and
learning

» Approach: Investigate how probabilistic evidence that
becomes available at a node can “flow"” through the DAG and
influence our belief about another node.
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Program

2. Three canonical connections in a DAG and their properties
o Serial connection
e Diverging connection
e Converging connection
o |-equivalence
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Three canonical connections in a DAG

In a DAG, two nodes x, y can be connected via a third node z in
three ways:

1. Serial connection (chain, head-tail or tail-head)

—E—®

2. Diverging connection (fork, tail-tail)

——O

3. Converging connection (collider, head-head, v-structure)

O—E—

Note: in any case, the sequence x, z, y forms a trail

Michael Gutmann Directed Graphical Models 17 / 47



Serial connection &—E—®)

>

>

Markov model is made up of serial connections

Graph: x influences z, which in turn influences y but no direct
influence from x to y.

Factorisation: p(x, z,y) = p(x)p(z|x)p(y|z)

Ordered Markov property: y 1L x|z

If the state or value of z is known (i.e. if the random variable
z is “instantiated”), evidence about x will not change our
belief about y, and vice versa.

We say that the z node is “closed” and that the trail between
x and y is "blocked” by the instantiated z. In other words,
knowing the value of z blocks the flow of evidence between x
and y.
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Serial connection &—E—®)

» What can we say about the marginal distribution of (x, y)?
» By sum rule, joint probability distribution of (x,y) is

px.y) = [ p)p(zlx)p(yIz)dz

= p(x) [ p(zlx)plylz)dz
# p(x)p(y)

» In a serial connection, if the state of z is unknown, then
evidence or information about x will influence our belief about
y, and the other way around. Evidence can flow through z

between x and y.
» \We say that the z node is “open” and the trail between x and
y is “active”.
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(2)

Diverging connection &—&®—®

» Graph for probabilistic PCA, factor analysis, ICA has such
connections (z correspond to the latents, x and y to the
observed)

» Graph: z influences both x and y. No directed connection
between x and y.

» Factorisation: p(x,y,z) = p(z)p(x|z)p(y|z)

» Ordered Markov property (with ordering z,x,y): v 1L x| z
If the state or value z is known, evidence about x will not
change our belief about y, and vice versa.

» As in serial connection, knowing z closes the z node, which
blocks the trail between x and y.
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(2)

Diverging connection &—&®—®

» What can we say about the marginal distribution of (x, y)?
» By sum rule, joint probability distribution of (x,y) is

px.y) = [ p2)p(x|2)p(yIz)dz
# p(x)p(y)

» |n a diverging connection, as in the serial connection, if the
state of z is unknown, then evidence or information about x
will influence our belief about y, and the other way around.
Evidence can flow through z between x and y.

» The z node is open and the trail between x and z is active.
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(2)

Converging connection &—&—X

» Graph for probabilistic PCA, factor analysis, ICA has such
connections (z corresponds to an observed, x and y to two
latents)

» Graph: x and y influence z. No direction connection between
x and y.

» Factorisation: p(x,y,z) = p(x)p(y)p(z|x,y)

» Ordered Markov property: x 1L y
If nothing is known about z, except what might follow from
knowledge of x and y, then evidence about x will not change
our belief about y, and vice versa.

If no evidence about z is available, the z node is closed, which
blocks the trail between x and y.
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Converging connection &—&—X

» This means that the marginal distribution of (x, y) factorises:

p(x,y) = p(x)p(y)
» Conditional distribution of (x, y) given z7

p(x,y,z) _ p(x)p(y)p(z|x,y)
p(z) J p(x)p(y)p(z|x, y)dxdy
# p(x|z)p(y|z)

This means that x J y | z.

» |f evidence or information about z is available, evidence about
x will influence the belief about y, and vice versa.

» Information about z opens the z-node, and evidence can flow
between x and y.

» Note: information about z means that z or one of its
descendents is observed (see tutorials).
(A node w is a descendant of z if there is a directed path from z to

p(x,y|z) =

w.)
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Explaining away

Example: @ @

» One day your computer does not start and you bring it to a
repair shop. You think the issue could be the power unit or
the cpu.

» |nvestigating the power unit shows that it is damaged. Is the
cpu fine?

» Without further information, finding out that the power unit is
damaged typically reduces our belief that the cpu is damaged

power U cpu | pc

» Finding out about the damage to the power unit explains
away the observed start-issues of the computer.
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Summary

Connection  z node p(x,y) p(x,y|z)
C—G—()  default: open xUy xldy|z

instantiated: closed

O—>—()  default: open xUy xldy|z

instantiated: closed

CO—@—®)  default: closed x1ly xUyl|z

with evidence: opens

Think of the z node as a valve or gate through which evidence
(probability mass) can flow. Depending on the type of the connection,
it's default state is either open or closed. Instantiation/evidence acts as a
switch on the valve.



l-equivalence

» Same independence assertions for

O—O—0 O O—E—0

» The graphs have different causal interpretations
Consider e.g. x = rain; z = street wet; y = car accident

» This means that based on statistical dependencies
(observational data) alone, we cannot select among the
graphs and thus determine what causes what.

» The three directed graphs are said to be
independence-equivalent (l-equivalent).
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Program

2. Three canonical connections in a DAG and their properties
o Serial connection
e Diverging connection
e Converging connection
o |-equivalence
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Program

3. Independencies in directed graphical models
o D-separation and I-map
o Directed local Markov property
o Equivalences of the different Markov properties and the
factorisation
e Markov blanket

Michael Gutmann Directed Graphical Models 28 /47



Program

3. Independencies in directed graphical models
o D-separation and I-map
o Directed local Markov property
o Equivalences of the different Markov properties and the
factorisation
e Markov blanket
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Further independence relations

» Given the DAG below, what can we say about the
independencies for the set of probability distributions that
factorise over the graph?

> Is x1 1L xo7 x1 AL xo | X7 xp AL x3 | {x1,xa}7?
» Ordered Markov properties give some independencies.
» Limitation: only allows us to condition on parent sets.

» Directed separation (d-separation) gives further
independencies.

e X4 7 X6
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D-separation

Let X ={x1,....,x,}, Y =Av1,-...ym},and Z ={=z,..., 2z} be
three disjoint sets of nodes in the graph. Assume all z; are
observed (instantiated).

» Two nodes x; and y; are said to be d-separated by Z if all
trails between them are blocked by Z.

» Thesets X and Y are said to be d-separated by Z if every trail
from any variable in X to any variable in Y is blocked by Z.
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D-separation

A trail between nodes x and y is blocked by Z if there is a node b
on the trail such that

1. either b is part of a head-tail or tail-tail connection along the
trail and b is in Z,

2. or b is part of a head-head (collider) connection along the
trail and neither b nor any of its descendants are in Z.
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D-separation and conditional independence

Theorem: If X and Y are d-separated by Z

then X 1L Y | Z for all probability distributions that factorise over
the DAG.

For those interested: A proof can be found in Section 2.8 of Bayesian Networks

— An Introduction by Koski and Noble (not examinable)

Important because:

1. the theorem allows us to read out (conditional)
independencies from the graph

2. no restriction on the sets X, Y.,/

3. the theorem shows that d-separation does not indicate false
independence relations. It's independence assertions are sound
(“soundness of d-separation”).
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D-separation and conditional independence

Theorem: If X and Y are not d-separated by Z

then X )L Y | Z in some probability distributions that factorise
over the DAG.

For those interested: A proof sketch can be found in Section 3.3.1 of

Probabilistic Graphical Models by Koller and Friedman (not examinable).

“not d-separated” is also called “d-connected”

M means statistically dependent
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D-separation and conditional independence

» |t can also be that d-connected variables are independent for
some distributions.

» Example (Koller, Example 3.3): p(x,y) with x,y € {0,1} and

p(y =0x=0)=a p(y=0x=1)=a

for a > 0 and some non-zero p(x = 0).

» Graph has arrow from x to y. Variables are not d-separated.

O—O

> ply =0)=ap(x =0)+ap(x =1) = a,
which is p(y = 0|x) for all x.

> ply=1)=(1-a)p(x=0)+(1-a)p(x=1)=1-a,
which is p(y = 1|x) for all x.

» Hence: p(y|x) = p(y) so that x 1L y.
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D-separation and conditional independence

» This means that d-separation does generally not reveal all

independencies in all probability distributions that factorise
over the graph.

» In other words, individual probability distributions that
factorise over the graph may have further independencies not
included in the set obtained by d-separation.

» \We say that d-separation is not “complete”.
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l-map

» A graph is said to be an independency map (I-map) for a set
of independencies Z if the independencies asserted by the
graph are part of 7.

» For a directed graph G, let Z(G) be all the independencies
that we can derive via d-separation.

» Denote the independencies that a specific distribution p
satisfies by Z(p).

» The previous results on d-separation can thus be written as
Z(G) C Z(p) for all p that factorise over G

» As we have seen, we generally do not have Z(G) = Z(p). If
we have equality, the graph is said to be a perfect map
(P-map) for Z(p).
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Recipe to determine whether two nodes are d-separated

1. Determine all trails between x and y (note: direction of the
arrows does here not matter).
2. For each trail:

I Determine the default state of all nodes on the trail.

> open if part of a head-tail or a tail-tail connection
> closed if part of a head-head connection

ii Check whether the set of observed nodes Z switches the state of
the nodes on the trail.
il The trail is blocked if it contains a closed node.

3. The nodes x and y are d-separated if all trails between them
are closed.

Michael Gutmann Directed Graphical Models
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Example: Are x; and x» d-separated?

Follows from ordered Markov property, but let us answer it with d-separation.

1. Determine all trails between x3
and x»

2. For trail x1, x4, x0 @ @

I default state

il conditioning set is empty @
i = Trail is blocked

. |
For trail x1, x3, X5, X4, X2 @ & @

i default state

il conditioning set is empty

i = Trail is blocked x1 A xp for all probabil-
Trail x1, x3, X5, X6, X4, X2 iS ity distributions that factor-
blocked too (same arguments). ise over the graph.

3. = x1 and x» are d-separated.
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Example: Are x; and x; d-separated by x5?

1. Determine all trails between x; ° @

and x» @
2. For trail x1,xa, x0
i default state @ & '@
i influence of xg
iii = Trail not blocked

No need to check the other x1 AL xo | xg does generally

trails: x; and x» are not not hold for probability dis-

d-separated by xg tributions that factorise over
the graph.

Michael Gutmann Directed Graphical Models 40 / 47



Example: Are x» and x3 d-separated by x; and x;?

1. Determine all trails between x»
and X3

2. For trail x3, x1, X3, X2

I default state ° @

i influence of {x1,xs}
i = Trail blocked @
For trail x3, x5, X4, Xo @ X4 S X6
i default state
i influence of {xy, x4}
iii = Trail blocked

xo A x3 | {x1,x4} for all
probability distributions that
factorise over the graph.

Trail x3, x5, X, X4, X2 is blocked
too (same arguments).

3. = xp and x3 are d-separated by
x1 and xg.

Michael Gutmann Directed Graphical Models
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Directed local Markov property

» The independencies from the ordered Markov property depend
on the topological ordering chosen.

» We now use d-separation to derive a similarly local Markov
property that does not depend on the ordering, and show the
equivalence for any topological ordering:

x; AL (pre; \ pa;) |pa; <= x; 1L (nondesc(x;) \ pa;) |pa;

where nondesc(x;) denotes the non-descendants of x;.

Xi = Xy
pa7 = {X47X57X6}
pre; = {x1,X2,...,Xp}

nondesc(x7) in blue
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Directed local Markov property

x; AL pre; \ pa;|pa; < x; 1L nondesc(x;) \ pa,|pa; follows because
{x1,...,x—1} € nondesc(x;) for all topological orderings

For = consider all trails from x; to {nondesc(x;) \ pa;}.

Two cases: move against or with the arrows:

(1) upward trails are blocked by the parents

(2) downward trails must contain a head-
head (collider) connection because the x; €
{nondesc(x;) \ pa;} is a non-descendant.
These paths are blocked because the collider
node or its descendants are never part of pa;.

The result now follows because all paths from

x; to all elements in {nondesc(x;) \ pa;} are
blocked.
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Remarks

» The local Markov independencies do not depend on a
topological ordering. They can be directly read from the

graph.

» The direction “local Markov property = ordered Markov
property” implies that models that satisfy one ordered Markov
property also have to satisfy all other ordered Markov
properties obtained with different topological orderings.

» This means that a directed graphical model can be specified
via the directed Markov properties for one topological ordering
only.
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Summary of the equivalences

Factorisation p(x) = H7:1 p(xi|pa;)
ordered Markov property ! x; A pre; \ pa; | pa;
local directed Markov property ! x; 1L nondesc(x;) \ pa; | pa;
global directed Markov property ! all independencies by d-separation

Broadly speaking, the graph serves two related purposes:
1. it tells us how distributions factorise

2. it represents the independence assumptions made
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Markov blanket

What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From d-separation:

» |solate x from its
ancestors

= condition on parents

» |solate x from its
descendants

= condition on children

» Deal with collider

connection In a directed graphical model, the par-
ents, children, and co-parents of x are
called its Markov blanket, denoted by

= condition on

co-parents MB(x). We have
(other parents of the x AL {all variables \ x \ MB(x)} |
children of x) MB(x).
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Program recap

1. Definition of directed graphical models
@ Definition via factorisation according to the graph
@ Definition via ordered Markov property
@ Derive independencies from the ordered Markov property with different
topological orderings

2. Three canonical connections in a DAG and their properties
@ Serial connection
@ Diverging connection
@ Converging connection
@ |-equivalence

3. Independencies in directed graphical models
@ D-separation and I-map
@ Directed local Markov property
@ Equivalences of the different Markov properties and the factorisation
@ Markov blanket
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