From Independencies to Directed Graphs

Michael Gutmann
Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, University of Edinburgh

Spring semester 2019

Recap

- We talked about reasonably weak assumption to facilitate the efficient representation of a probabilistic model
- Independence assumptions reduce the number of interacting variables
- Parametric assumptions restrict the way the variables may interact.
- (Conditional) independence assumptions lead to a factorisation of the pdf/pmf, e.g.
- $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{x}) p(\mathbf{y}) p(\mathbf{z})$
- $p\left(x_{1}, \ldots, x_{d}\right)=p\left(x_{d} \mid x_{d-3}, x_{d-2}, x_{d-1}\right) p\left(x_{1}, \ldots, x_{d-1}\right)$

Program

1. Equivalence of factorisation and ordered Markov property
2. Understanding models from their factorisation

Program

1. Equivalence of factorisation and ordered Markov property

- Chain rule
- Ordered Markov property implies factorisation
- Factorisation implies ordered Markov property

2. Understanding models from their factorisation

Chain rule

Iteratively applying the product rule allows us to factorise any joint pdf (pmf) $p(\mathbf{x})=p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ into product of conditional pdfs.

$$
\begin{aligned}
p(\mathbf{x}) & =p\left(x_{1}\right) p\left(x_{2}, \ldots, x_{d} \mid x_{1}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3}, \ldots, x_{d} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4}, \ldots, x_{d} \mid x_{1}, x_{2}, x_{3}\right) \\
& \vdots \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{d} \mid x_{1}, \ldots x_{d-1}\right) \\
& =p\left(x_{1}\right) \prod_{i=2}^{d} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) \\
& =\prod_{i=1}^{d} p\left(x_{i} \mid \operatorname{pre}_{i}\right)
\end{aligned}
$$

with pre $_{i}=\operatorname{pre}\left(x_{i}\right)=\left\{x_{1}, \ldots, x_{i-1}\right\}, \operatorname{pre}_{1}=\varnothing$ and $p\left(x_{1} \mid \varnothing\right)=p\left(x_{1}\right)$
The chain rule can be applied to any ordering $x_{k_{1}}, \ldots x_{k_{d}}$. Different orderings give different factorisations.

From (conditional) independence to factorisation

$p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid \operatorname{pre}_{i}\right)$ for the ordering x_{1}, \ldots, x_{d}

- For each x_{i}, we condition on all previous variables in the ordering.
- Assume that, for each i, there is a minimal subset of variables $\pi_{i} \subseteq$ pre $_{i}$ such that $p(\mathbf{x})$ satisfies

$$
x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i}
$$

for all i.

- $p(\mathbf{x})$ is then said to satisfy the ordered Markov property .
- By definition of conditional independence: $p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid \operatorname{pre}_{i}\right)=p\left(x_{i} \mid \pi_{i}\right)$
- With the convention $\pi_{1}=\varnothing$, we obtain the factorisation

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)
$$

- See later: the π_{i} correspond to the parents of x_{i} in graphs.

From (conditional) independence to factorisation

- Assume the variables are ordered as x_{1}, \ldots, x_{d}, let $\operatorname{pre}_{i}=\left\{x_{1}, \ldots x_{i-1}\right\}$ and $\pi_{i} \subseteq \operatorname{pre}_{i}$.
- We have seen that

$$
\begin{array}{cc}
\text { if } & x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i} \text { for all } i \\
\text { then } & p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)
\end{array}
$$

- The chain rule corresponds to the case where $\pi_{i}=$ pre $_{i}$.
- Do we also have the reverse?

$$
\begin{array}{ll}
\text { if } & p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right) \quad \text { with } \pi_{i} \subseteq \operatorname{pre}_{i} \\
\text { then } & x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i} \text { for all } i \text { ? }
\end{array}
$$

From factorisation to (conditional) independence

- Let us first check whether $x_{d} \Perp\left(\operatorname{pre}_{d} \backslash \pi_{d}\right) \mid \pi_{d}$ holds.
- We do that by checking whether

$$
p(x_{d} \mid \overbrace{x_{1}, \ldots, x_{d-1}}^{\text {pre }_{d}})=p\left(x_{d} \mid \pi_{d}\right)
$$

holds.

- Since

$$
p\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)=\frac{p\left(x_{1}, \ldots, x_{d}\right)}{p\left(x_{1}, \ldots, x_{d-1}\right)}
$$

we start with computing $p\left(x_{1}, \ldots, x_{d-1}\right)$.

From factorisation to (conditional) independence

Assume that the x_{i} are ordered as x_{1}, \ldots, x_{d} and that $p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)$ with $\pi_{i} \subseteq$ pre $_{i}$.
We compute $p\left(x_{1}, \ldots, x_{d-1}\right)$ using the sum rule:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{d-1}\right) & =\int p\left(x_{1}, \ldots, x_{d}\right) \mathrm{d} x_{d} \\
& =\int \prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right) \mathrm{d} x_{d} \\
& =\int \prod_{i=1}^{d-1} p\left(x_{i} \mid \pi_{i}\right) p\left(x_{d} \mid \pi_{d}\right) \mathrm{d} x_{d} \quad\left(x_{d} \notin \pi_{i}, i<d\right) \\
& =\prod_{i=1}^{d-1} p\left(x_{i} \mid \pi_{i}\right) \int p\left(x_{d} \mid \pi_{d}\right) \mathrm{d} x_{d} \\
& =\prod_{i=1}^{d-1} p\left(x_{i} \mid \pi_{i}\right)
\end{aligned}
$$

From factorisation to (conditional) independence

Hence:

$$
\begin{aligned}
p\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right) & =\frac{p\left(x_{1}, \ldots, x_{d}\right)}{p\left(x_{1}, \ldots, x_{d-1}\right)} \\
& =\frac{\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)}{\prod_{i=1}^{d-1} p\left(x_{i} \mid \pi_{i}\right)} \\
& =p\left(x_{d} \mid \pi_{d}\right)
\end{aligned}
$$

And $p\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)=p\left(x_{d} \mid \operatorname{pre}_{d}\right)=p\left(x_{d} \mid \pi_{d}\right)$ means that $x_{d} \Perp\left(\right.$ pre $\left._{d} \backslash \pi_{d}\right) \mid \pi_{d}$ as desired.
$p\left(x_{1}, \ldots, x_{d-1}\right)$ has the same form as $p\left(x_{1}, \ldots, x_{d}\right)$: apply same procedure to all $p\left(x_{1}, \ldots, x_{k}\right)$, for smaller and smaller $k \leq d-1$

Proves that
(1) $p\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} p\left(x_{i} \mid \pi_{i}\right)$ and that
(2) factorisation implies $x_{i} \Perp\left(\right.$ pre $\left._{i} \backslash \pi_{i}\right) \mid \pi_{i}$ for all i

Brief summary

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a d-dimensional random vector with pdf/pmf $p(\mathbf{x})$.
- Denote the predecessors of x_{i} in the ordering by $\operatorname{pre}\left(x_{i}\right)=\operatorname{pre}_{i}=\left\{x_{1}, \ldots, x_{i-1}\right\}$, and let $\pi_{i} \subseteq \operatorname{pre}_{i}$.

$$
p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right) \Longleftrightarrow x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i} \text { for all } i
$$

- Equivalence of factorisation and ordered Markov property of the pdf/pmf

Why does it matter?

- Denote the predecessors of x_{i} in the ordering by

$$
\operatorname{pre}_{i}=\left\{x_{1}, \ldots, x_{i-1}\right\}, \text { and let } \pi_{i} \subseteq \operatorname{pre}_{i}
$$

$$
p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right) \Longleftrightarrow x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i} \text { for all } i
$$

- Why does it matter?
- Relatively strong result: It holds for sets of pdfs/pmfs and not only single instances
- For all members of the set: Fewer numbers are needed for their representation (computational advantage)
- Given the independencies, we know what form $p(\mathbf{x})$ must have (helpful for specifying models)
- Increased understanding of the properties of the model (independencies and data generation mechanism)
- Visualisation as a graph

Program

1. Equivalence of factorisation and ordered Markov property

- Chain rule
- Ordered Markov property implies factorisation
- Factorisation implies ordered Markov property

2. Understanding models from their factorisation

Program

1. Equivalence of factorisation and ordered Markov property
2. Understanding models from their factorisation

- Visualisation as a directed graph
- Description of directed graphs and topological orderings

Visualisation as a directed graph
If $p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)$ with $\pi_{i} \subseteq$ pre $_{i}$ we can visualise the model as a graph with the random variables x_{i} as nodes, and directed edges that point from the $x_{j} \in \pi_{i}$ to the x_{i}. This results in a directed acyclic graph (DAG).
Example:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{2}\right)
$$

Visualisation as a directed graph

Example:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

Factorisation obtained by chain rule \equiv fully connected directed acyclic graph.

Graph concepts

- Directed graph: graph where all edges are directed
- Directed acyclic graph (DAG): by following the direction of the arrows you will never visit a node more than once
- x_{i} is a parent of x_{j} if there is a (directed) edge from x_{i} to x_{j}. The set of parents of x_{i} in the graph is denoted by $\mathrm{pa}\left(x_{i}\right)=\mathrm{pa}_{i}$, e.g. pa $\left(x_{3}\right)=\mathrm{pa}_{3}=\left\{x_{1}, x_{2}\right\}$.
- x_{j} is a child of x_{i} if $x_{i} \in \mathrm{pa}\left(x_{j}\right)$, e.g. x_{3} and x_{5} are children of x_{2}.

Graph concepts

- A path or trail from x_{i} to x_{j} is a sequence of distinct connected nodes starting at x_{i} and ending at x_{j}. The direction of the arrows does not matter. For example: $x_{5}, x_{2}, x_{3}, x_{1}$ is a trail.
- A directed path is a sequence of connected nodes where we follow the direction of the arrows. For example: x_{1}, x_{3}, x_{4} is a directed path. But $x_{5}, x_{2}, x_{3}, x_{1}$ is not a directed path.

Graph concepts

- The ancestors anc $\left(x_{i}\right)$ of x_{i} are all the nodes where a directed path leads to x_{i}. For example, $\operatorname{anc}\left(x_{4}\right)=\left\{x_{1}, x_{3}, x_{2}\right\}$.
- The descendants $\operatorname{desc}\left(x_{i}\right)$ of x_{i} are all the nodes that can be reached on a directed path from x_{i}. For example, $\operatorname{desc}\left(x_{1}\right)=\left\{x_{3}, x_{4}\right\}$.
(Note: sometimes, x_{i} is included in the set of ancestors and descendants)
- The non-descendents of x_{i} are all the nodes in a graph without x_{i} and without the descendants of x_{i}. For example, $\operatorname{nondesc}\left(x_{3}\right)=\left\{x_{1}, x_{2}, x_{5}\right\}$

Graph concepts

- Topological ordering: an ordering $\left(x_{1}, \ldots, x_{d}\right)$ of some variables x_{i} is topological relative to a graph if parents come before their children in the ordering. (whenever there is a directed edge from x_{i} to x_{j}, x_{i} occurs prior to x_{j} in the ordering.)
- There is always at least one such ordering for DAGs.
- For a pdf $p(\mathbf{x})$, assume you order the random variables x_{i} in some manner and compute the corresponding factorisation, e.g. $p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{2}\right)$
- When you visualise the factorised pdf as a graph, the graph is always such that the ordering used for the factorisation is topological to it.
- The π_{i} in the factorisation are equal to the parents pa_{i} in the graph. We may
 call both sets the "parents" of x_{i}.

Program recap

1. Equivalence of factorisation and ordered Markov property

- Chain rule
- Ordered Markov property implies factorisation
- Factorisation implies ordered Markov property

2. Understanding models from their factorisation

- Visualisation as a directed graph
- Description of directed graphs and topological orderings

