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Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

I Issue 1: To specify p(x, y, z), we need to specify
K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?
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Two fundamental assumptions

Consider two assumptions:
1. only a limited number of variables may directly interact with

each other (independence assumptions)
2. for any number of interacting variables, the form of interaction

is limited or restricted (often: parametric family assumptions)
The two assumptions can be used together or separately.
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Program

1. Independence assumptions

2. Assumptions on form of interaction
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Program

1. Independence assumptions
Definition and properties of statistical independence
Factorisation of the pdf and reduction in the number of

directly interacting variables

2. Assumptions on form of interaction
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Statistical independence

I Let x and y be two disjoint subsets of random variables. Then x and
y are independent of each other if and only if (iff)

p(x, y) = p(x)p(y)
for all possible values of x and y; otherwise they are said to be
dependent.

I We say that the joint factorises into a product of p(x) and p(y).
I Equivalent definition by the product rule (or by definition of

conditional probability)
p(x|y) = p(x)

for all values of x and y where p(y) > 0.
I Notation: x ⊥⊥ y
I Variables x1, . . . , xn are independent iff

p(x1, . . . , xn) =
n∏

i=1
p(xi)
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Conditional statistical independence

I The characterisation of statistical independence extends to
conditional pdfs (pmfs) p(x, y|z).

I The condition p(x, y) = p(x)p(y) becomes
p(x, y|z) = p(x|z)p(y|z)

I The equivalent condition p(x|y) = p(x) becomes
p(x|y, z) = p(x|z)

I We say that x and y are conditionally independent given z iff,
for all possible values of x, y, and z with p(z) > 0:

p(x, y|z) = p(x|z)p(y|z) or

p(x|y, z) = p(x|z) (for p(y, z) > 0)
I Notation: x ⊥⊥ y | z
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The impact of independence assumptions

I The key is that the independence assumption leads to a
partial factorisation of the pdf (pmf).

I For example, if x, y, z are independent of each other, then

p(x, y, z) = p(x)p(y)p(z)

I Independence assumption forces p(x, y, z) to take on a
particular form.
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The impact of independence assumptions

Assume p(x, y, z) = p(x)p(y)p(z)

I If dim(x) = dim(y) = dim(z) = d , and each element of the
vectors can take K values, factorisation reduces the numbers
that need to be specified (“parameters”) from K 3d − 1 to
3(Kd − 1).

I If all variables were independent: 3d(K − 1) numbers needed.

For example: 101500 − 1 vs. 3(10500 − 1) vs 1500(10− 1) = 13500

I But full independence (factorisation) assumption is often too
strong and does not hold.
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The impact of independence assumptions

I Conditional independence assumptions are a powerful
middle-ground.

I For p(x) = p(x1, . . . , xd), we have by the product rule:

p(x) = p(xd |x1, . . . xd−1)p(x1, . . . , xd−1)

I If, for example, xd ⊥⊥ x1, . . . , xd−4 | xd−3, xd−2, xd−1, we have

p(xd |x1, . . . , xd−1) = p(xd |xd−3, xd−2, xd−1)

I If the xi can take K different values:
p(xd |x1, . . . , xd−1) specified by Kd−1 · (K − 1) numbers
p(xd |xd−3, xd−2, xd−1) specified by K 3 · (K − 1) numbers

For d = 500, K = 10: 10499 · 9 ≈ 10500 vs 9000 ≈ 104.
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Program

1. Independence assumptions

2. Assumptions on form of interaction
Parametric model to restrict how a given number of variables

may interact
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Assumption 2: limiting the form of the interaction

I The (conditional) independence assumption limits the number
of variables that may directly interact with each other, e.g.
xd only directly interacted with xd−3, xd−2, xd−1.

I How xd interacts with the three variables, however, was not
restricted.

I Assumption 2: We restrict how a given number of variables
may interact with each other.

I For example, for xi ∈ {0, 1}, we may assume that
p(xd |x1, . . . , xd−1) is specified as

p(xd = 1|x1, . . . , xd−1) = 1
1 + exp

(
−w0 −

∑d−1
i=1 wixi

)
with d free numbers (“parameters”) w0, . . . , wd−1.

I d vs 2d−1 numbers
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Program recap

We asked: What reasonably weak assumptions can we make to
efficiently represent a probabilistic model?

1. Independence assumptions
Definition and properties of statistical independence
Factorisation of the pdf and reduction in the number of

directly interacting variables

2. Assumptions on form of interaction
Parametric model to restrict how a given number of variables

may interact
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