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Variability

» Variability is part of nature

» Human heights vary
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Variability

» Our handwriting is unique

» Variability leads to uncertainty: e.g. 1 vs 7 or 4 vs 9

Q—0ONMAXUW fryes
O—hmI v Moo
Q~@c> 0O\ —~0 o
Q- >N A~ <
V=N CFoe B o
QN OTWVWSI thee o
Q—xPYPLLWOWNJ T
C=NOTLW o
QA TWVSE rw J
O=—=CF m T NS INoo o
O~ T WO pno
O~V IT N 0™
Q- oINS oo oy
Q=mMm3>'\-S Moo
QD — (M Ad DD B O~
O —c M T \0Y %
D~ enFT oo NPT
O=cdN TN —og O~
O MmN e =
O~ T O NG &

3/23

PMR Introduction

Michael Gutmann



Variability

» Variability leads to uncertainty

» Reading handwritten text in a
foreign language
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Example: Screening and diagnostic tests

» Early warning test for Alzheimer's disease (Scharre, 2010, 2014)

» Detects “mild cognitive impairment”

7. Copy this picture:

» Takes 10—15 minutes

» Freely available

» Assume a 70 year old man
tests pOSitive. 8. Drawing test

- Draw a large face of a clock and place in the numbers

» Should he be concerned?

- Position the hands for 5 minutes after 11 o’clock

(Example from sagetest.osu.edu)
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Accuracy of the test

» Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)

» 80% correct for people with impairment

impairment
detected (y=1)
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Accuracy of the test

» Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)

» 95% correct for people w/o impairment

impairment
detected (y=1)

[ )
w/o impairment (x=0) w

T

no impairment
detected (y=0)
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Variability implies uncertainty

» People of the same group do not have the same test results

» Test outcome is subject to variability
» The data are noisy

» Variability leads to uncertainty

» Positive test = true positive ?
» Positive test = false positive ?

» What can we safely conclude from a positive test result?

» How should we analyse such kind of ambiguous data?
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Probabilistic approach

» The test outcomes y can be described with probabilities

sensitivity = 0.8 &
=

specificity = 0.95 <«
=

Pr(y =1|x=1)=10.8
Pr(y =0|x =1) =0.2
Pr(y =0|x =0) =0.95
Pr(y = 1|x =0) = 0.05

» Pr(y|x): model of the test specified in terms of (conditional)

probabilities

» x € {0,1}: quantity of interest (cognitive impairment or not)

Michael Gutmann
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Prior information

Among people like the patient, Pr(x = 1) =5/45 ~ 11% have a
cognitive impairment (plausible range: 3% — 22%, Geda, 2014)

With impairment
p(x=1)

Without impairment
p(x=0)
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Probabilistic model

> Reality:
» properties/characteristics of the group of people like the

patient
» properties/characteristics of the test

» Probabilistic model:
» Pr(x =1)
» Pr(y=1|x=1)or Pr(y =0|x=1)
Pr(y =1|x =0) or Pr(y =0|x =0)
Fully specified by three numbers.
» A probabilistic model is an abstraction of reality that uses
probability theory to quantify the chance of uncertain events.
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If we tested the whole population




If we tested the whole population

Fraction of people who are impaired and have positive tests:

Prix=1,y=1)=Pr(y=1|x =1)Pr(x =1) = 4/45 (product rule)

With impairment
p(x=1)

Without impairment
p(x=0)
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If we tested the whole population

Fraction of people who are not impaired but have positive tests:

Pr(x =0,y =1)=Pr(y =1|x =0)Pr(x =0) =2/45 (product rule)

With impairment
p(x=1)

Without impairment
p(x=0)
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If we tested the whole population

Fraction of people where the test is positive:

Pr(y=1)=Pr(x=1y=1)4Pr(x =0,y =1) =6/45 (sum rule)

With impairment
p(x=1)

Without impairment
p(x=0)
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Putting everything together

>

>

Among those with a positive test, fraction with impairment:
Prix =1y =1) =
Fraction without impairment:

Pr(x=0|y =1) =

Pr(y =1|x =1)Pr(x =1)

Pr(y =1)

Pr(y = 1|x = 0) Pr(x = 0)

Pr(y =1)

Equations are examples of “Bayes’ rule”.

Positive test increased probability of cognitive impairment
from 11% (prior belief) to 67%, or from 6% to 51%.

51% =~ coin flip
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Probabilistic reasoning

» Probabilistic reasoning = probabilistic inference:
Computing the probability of an event that we have not or
cannot observe from an event that we can observe

» Unobserved/uncertain event, e.g. cognitive impairment x =1
» Observed event = evidence = data, e.g. test result y =1

» “The prior”: probability for the uncertain event before having
seen evidence, e.g. Pr(x = 1)

» “The posterior”: probability for the uncertain event after
having seen evidence, e.g. Pr(x = 1|y = 1)

» The posterior is computed from the prior and the evidence via
Bayes' rule.
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Key rules of probability
(1) Product rule:

Pr(x=1,y =1) =Pr(y = 1|x = 1) Pr(x
=Pr(x =1y = 1) Pr(y

1)
1)

(2) Sum rule:
Pr(y=1)=Pr(x=1,y=1)+Pr(x=0,y =1)

Bayes’ rule (conditioning) as consequence of the product rule

B . Prix=1y=1) Pr(y=1x=1)Pr(x =1)
(7= ) E 7 (=)

Denominator from sum rule, or sum rule and product rule

Pr(y=1)=Pr(y =1|x =1)Pr(x =1) 4+ Pr(y = 1|x = 0) Pr(x = 0)
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Key rules or probability

» The rules generalise to the case of multivariate random
variables (discrete or continuous)

» Consider the conditional joint probability density function
(pdf) or probability mass function (pmf) of x,y: p(x,y)

(1) Product rule:

p(x,y) = p(x]y)p(y)
= p(y|x)p(x)

(2) Sum rule:

( )_ D x P(ny) for discrete r.v.
P [ p(x,y)dx for continuous r.v.
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Probabilistic modelling and reasoning

» Probabilistic modelling:

» |dentify the quantities that relate to the aspects of reality that
you wish to capture with your model.
» Consider them to be random variables, e.g. x,y,z, with a joint

pdf (pmf) p(x,y,z).
» Probabilistic reasoning:

» Assume you know that y € £ (measurement, evidence)
» Probabilistic reasoning about x then consists in computing

p(xly € €)

or related quantities like argmax, p(x|]y € £) or posterior
expectations of some function g of x, e.g.

Elg(x) |y € €] = / g(u)p(uly € £)du
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Solution via product and sum rule

Assume that all variables are discrete valued, that £ = {y,}, and
that we know p(x,y,z). We would like to know p(x|y,).

» Product rule: p(x|y,) = pé@fi)

> Sum rule: p(x,¥0) = >, p(X, Yo, 2)

> Sum rule: p(yo) = >« P(X,¥o) = >« P(X; Yo, Z)
» Result:

2 P(x,¥0,2)
plxly) = >z P(X; Yo, 2)
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What we do in PMR

p(X,¥o,2)
plxlyo) = g2

Assume that x,y,z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

> Issue 1: To specify p(x,y,z), we need to specify
K394 — 1 =10%°00 _ 1 non-negative numbers, which is

impossible.

Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x,y,z)?
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What we do in PMR
Zzp(x,yo,Z)

p(x|yo) = ~
LX 7 p(X,yO,Z)

» |ssue 2: The sum in the numerator goes over the order of
K9 = 10°% non-negative numbers and the sum in the
denominator over the order of K29 = 101900 \which is
impossible to compute.

Topic 2: Exact inference Can we further exploit the
assumptions on p(x,y, z) to efficiently compute the posterior
probability or derived quantities?

> Issue 3: Where do the non-negative numbers p(x,y,z) come
from?

Topic 3: Learning How can we learn the numbers from data?

» |ssue 4: For some models, exact inference and learning is too
costly even after fully exploiting the assumptions made.

Topic 4: Approximate inference and learning
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