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The purpose of the tutorials is twofold: First, they help you better understand the lecture ma-
terial. Secondly, they provide exam preparation material. You are not expected to complete all
questions before the tutorial sessions. Start early and do as many as you have time for.

Exercise 1. Factor analysis

A friend proposes to improve the factor analysis model by working with correlated latent vari-
ables. The proposed model is

p(h; C) = N (h; 0,C) p(v|h; F,ΨΨΨ, c) = N (v; Fh + c,ΨΨΨ) (1)

where C is some covariance matrix, and the other variables are defined as in the lecture slides.
N (x;µµµ,ΣΣΣ) denotes the pdf of a Gaussian with mean µµµ and covariance matrix ΣΣΣ.

(a) What is marginal distribution of the visibles p(v;θ) where θ stands for the parameters
C,F, c,ΨΨΨ?

(b) Assume that the singular value decomposition of C is given by

C = EΛE> (2)

where Λ = diag(λ1, . . . , λH) is a diagonal matrix containing the eigenvalues, and E is a
orthonormal matrix containing the corresponding eigenvectors. The matrix square root of
C is the matrix M such that

MM = C, (3)

and we denote it by C1/2. Show that the matrix square root of C equals

C1/2 = Ediag(
√
λ1, . . . ,

√
λD)E>. (4)

(c) Show that the proposed factor analysis model is equivalent to the original factor analysis
model

p(h; I = N (h; 0, I) p(v|h; F̃,ΨΨΨ, c) = N (v; F̃h + c,ΨΨΨ) (5)

with F̃ = FC1/2, so that the extra parameters given by the covariance matrix C are
actually redundant and nothing is gained with the richer parametrisation.

Exercise 2. Independent component analysis

(a) Whitening corresponds to linearly transforming a random variable x (or the corresponding
data) so that the resulting random variable z has an identity covariance matrix, i.e.

z = Vx with V[x] = C and V[z] = I.

The matrix V is called the whitening matrix. Note we do not make a distributional
assumption on x, in particular x may or may not be Gaussian.

Given the eigenvalue decomposition C = EΛE>, show that

V = diag(λ
−1/2
1 , . . . , λ

−1/2
d )E> (6)

is a whitening matrix.
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(b) Consider the ICA model

v = Ah, h ∼ ph(h), ph(h) =
D∏
i=1

ph(hi), (7)

where the matrix A is invertible and the hi are independent random variables of mean
zero and variance one. Let V be a whitening matrix for v. Show that z = Vv follows the
ICA model

z = Ãh, h ∼ ph(h), ph(h) =
D∏
i=1

ph(hi), (8)

where Ã is an orthonormal matrix.

Exercise 3. Score matching for the exponential family

In the lecture, we have derived the objective function J(θ) for score matching,

J(θ) =
1

n

n∑
i=1

m∑
j=1

[
∂jψj(xi;θ) +

1

2
ψj(xi;θ)2

]
, (9)

where ψj is the partial derivative of the log model-pdf log p(x;θ) with respect to the j-th
coordinate (slope) and ∂jψj its second partial derivative (curvature). The observed data are
denoted by x1, . . . ,xn and x ∈ Rm.

The goal of this exercise is to show that for statistical models of the form

log p(x;θ) =
K∑
k=1

θkFk(x)− logZ(θ), x ∈ Rm, (10)

the score matching objective function becomes a quadratic form, which can be optimised effi-
ciently (see e.g. Barber Appendix A.5.3).

The set of models above are called the (continuous) exponential family, or also log-linear models
because the models are linear in the parameters θk. Since the exponential family generally
includes probability mass functions as well, the qualifier “continuous” may be used to highlight
that we are here considering continuous random variables only. The functions Fk(x) are assumed
to be known; they are the sufficient statistics (see e.g. Barber Section 8.5).

(a) Denote by K(x) the matrix with elements Kkj(x),

Kkj(x) =
∂Fk(x)

∂xj
, k = 1 . . .K, j = 1 . . .m, (11)

and by H(x) the matrix with elements Hkj(x),

Hkj(x) =
∂2Fk(x)

∂x2j
, k = 1 . . .K, j = 1 . . .m. (12)

Furthermore, let hj(x) = (H1j(x), . . . ,HKj(x))> be the j–th column vector of H(x).
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Show that for the continuous exponential family, the score matching objective in Equation
(9) becomes

J(θ) = θ>r +
1

2
θ>Mθ, (13)

where

r =
1

n

n∑
i=1

m∑
j=1

hj(xi), M =
1

n

n∑
i=1

K(xi)K(xi)
>. (14)

(b) The pdf of a zero mean Gaussian parametrised by the variance σ2 is

p(x;σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)
, x ∈ R. (15)

The (multivariate) Gaussian is a member of the exponential family. By comparison with
Equation (10), we can re-parametrise the statistical model {p(x;σ2)}σ2 and work with

p(x; θ) =
1

Z(θ)
exp

(
θx2
)
, θ < 0, x ∈ R, (16)

instead. The two parametrisations are related by θ = −1/(2σ2). Using the previous result
on the (continuous) exponential family, determine the score matching estimate θ̂, and show
that the corresponding σ̂2 is the same as the maximum likelihood estimate. This result
is noteworthy because unlike in maximum likelihood estimation, score matching does not
need the partition function Z(θ) for the estimation.

Exercise 4. Inverse transform sampling

The cumulative distribution function (cdf) Fx(α) of a (continuous or discrete) random variable
x indicates the probability that x takes on values smaller or equal to α,

Fx(α) = P(x ≤ α). (17)

For continuous random variables, the cdf is defined via the integral

Fx(α) =

∫ α

−∞
px(u)du, (18)

where px denotes the pdf of the random variable x (u is here a dummy variable). Note that Fx
maps the domain of x to the interval [0, 1]. For simplicity, we here assume that Fx is invertible.

(a) For a continuous random variable x with cdf Fx show that the random variable y = Fx(x)
is uniformly distributed on [0, 1].

Importantly, this implies that the random variable F−1x (y) has cdf Fx if y is uniformly
distributed on [0, 1], which gives rise to a method called “inverse transform sampling”: In
order to generate n iid samples of a random variable x with cdf Fx, we

• calculate the inverse F−1x

• sample n iid random variables uniformly distributed on [0, 1]: yi ∼ U(0, 1), i =
1, . . . , n.

• transform each sample by F−1x : xi = F−1x (yi), i = 1, . . . , n.
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By construction of the method, the xi are n iid samples of x.

(b) A Laplace random variable x of mean zero and variance one has the density p(x)

p(x) =
1√
2

exp
(
−
√

2|x|
)

x ∈ R. (19)

Use inverse transform sampling to generate n iid samples from x.
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