
Probabilistic Modelling and Reasoning

Solutions for Tutorial 8
Spring 2018

Michael Gutmann

Exercise 1. Factor analysis

A friend proposes to improve the factor analysis model by working with correlated latent variables. The
proposed model is

p(h; C) = N (h; 0,C) p(v|h; F,ΨΨΨ, c) = N (v; Fh + c,ΨΨΨ) (1)

where C is some covariance matrix, and the other variables are defined as in the lecture slides. N (x;µµµ,ΣΣΣ)
denotes the pdf of a Gaussian with mean µµµ and covariance matrix ΣΣΣ.

(a) What is marginal distribution of the visibles p(v;θ) where θ stands for the parameters C,F, c,ΨΨΨ?

Solution. The model specifications are equivalent to the following data generating pro-
cess:

h ∼ N (h; 0,C) ε ∼ N (ε; 0,ΨΨΨ) v = Fh + c + ε (S.1)

From the basic result on the distribution of linear transformations of Gaussians on FA and
ICA lecture slide 11 (Barber Result 8.3), it follows that v is Gaussian with mean µµµ and
covariance ΣΣΣ,

µµµ = FE[h]︸︷︷︸
0

+c + E[ε]︸︷︷︸
0

(S.2)

= c (S.3)

ΣΣΣ = FV[h]F> + V[ε] (S.4)

= FCF> + ΨΨΨ. (S.5)

(b) Assume that the singular value decomposition of C is given by

C = EΛE> (2)

where Λ = diag(λ1, . . . , λH) is a diagonal matrix containing the eigenvalues, and E is a orthonormal
matrix containing the corresponding eigenvectors. The matrix square root of C is the matrix M
such that

MM = C, (3)

and we denote it by C1/2. Show that the matrix square root of C equals

C1/2 = Ediag(
√
λ1, . . . ,

√
λD)E>. (4)

Solution. We verify that C1/2C1/2 = C:

C1/2C1/2 = Ediag(
√
λ1, . . . ,

√
λD)E>Ediag(

√
λ1, . . . ,

√
λD)E> (S.6)

= Ediag(
√
λ1, . . . ,

√
λD) I diag(

√
λ1, . . . ,

√
λD)E> (S.7)

= Ediag(
√
λ1, . . . ,

√
λD)diag(

√
λ1, . . . ,

√
λD)E> (S.8)

= Ediag(λ1, . . . , λD)E> (S.9)

= EΛE> (S.10)

= C (S.11)
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(c) Show that the proposed factor analysis model is equivalent to the original factor analysis model

p(h; I = N (h; 0, I) p(v|h; F̃,ΨΨΨ, c) = N (v; F̃h + c,ΨΨΨ) (5)

with F̃ = FC1/2, so that the extra parameters given by the covariance matrix C are actually
redundant and nothing is gained with the richer parametrisation.

Solution. We verify that the model has the same distribution for the visibles. As before
E[v] = c, and the covariance matrix is

V[v] = F̃IF̃> + ΨΨΨ (S.12)

= FC1/2C1/2F> + ΨΨΨ (S.13)

= FCF> + ΨΨΨ (S.14)

where we have used that C1/2 is a symmetric matrix. This means that the correlation
between the h can be absorbed into the factor matrix F and the set of pdfs defined by the
proposed model equals the set of pdfs of the original factor analysis model.

Another way to see the result is to consider the data generating process and noting that we
can sample h from N (h; 0,C) by first sampling h′ from N (h′; 0, I) and then transforming
the sample by C1/2,

h ∼ N (h; 0,C) ⇐⇒ h = C1/2h′ h′ ∼ N (h′; 0, I). (S.15)

This follows again from the basic properties of linear transformations of Gaussians, i.e.

V(C1/2h′) = C1/2V(h′)(C1/2)> = C1/2IC1/2 = C

and E(C1/2h′) = C1/2E(h′) = 0.

To generate samples from the proposed factor analysis model, we would thus proceed as
follows:

h′ ∼ N (h′; 0, I) ε ∼ N (ε; 0,ΨΨΨ) v = F(C1/2h′) + c + ε (S.16)

But the term
v = F(C1/2h′) + c + ε

can be written as
v = (FC1/2)h′ + c + ε = F̃h′ + c + ε

and since h′ follows N (h′; 0, I), we are back at the original factor analysis model.

Exercise 2. Independent component analysis

(a) Whitening corresponds to linearly transforming a random variable x (or the corresponding data)
so that the resulting random variable z has an identity covariance matrix, i.e.

z = Vx with V[x] = C and V[z] = I.

The matrix V is called the whitening matrix. Note we do not make a distributional assumption on
x, in particular x may or may not be Gaussian.

Given the eigenvalue decomposition C = EΛE>, show that

V = diag(λ
−1/2
1 , . . . , λ

−1/2
d )E> (6)

is a whitening matrix.
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Solution. From V[z] = V[Vx] = VV[x]V>, it follows that

V[z] = VV[x]V> (S.17)

= VCV> (S.18)

= VEΛE>V> (S.19)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )E>EΛE>V> (S.20)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )ΛE>V> (S.21)

where we have used that E>E = I. Since

V> =
[
diag(λ

−1/2
1 , . . . , λ

−1/2
d )E>

]>
= Ediag(λ

−1/2
1 , . . . , λ

−1/2
d )

we further have

V[z] = diag(λ
−1/2
1 , . . . , λ

−1/2
d )ΛE>Ediag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.22)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )Λdiag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.23)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )diag(λ1, . . . , λd)diag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.24)

= I, (S.25)

so that V is indeed a valid whitening matrix. Note that whitening matrices are not unique.
For example,

Ṽ = Ediag(λ
−1/2
1 , . . . , λ

−1/2
d )E>

is also a valid whitening matrix. More generally, if V is a whitening matrix, then is also
RV a whitening matrix, where R is an orthonormal matrix. This is because

V[RVx] = RV[Vx]R> = RIR> = I

where we have used that V is a whitening matrix so that Vx has identity covariance
matrix.

(b) Consider the ICA model

v = Ah, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (7)

where the matrix A is invertible and the hi are independent random variables of mean zero and
variance one. Let V be a whitening matrix for v. Show that z = Vv follows the ICA model

z = Ãh, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (8)

where Ã is an orthonormal matrix.

Solution. If v follows the ICA model, we have

z = Vv (S.26)

= VAh (S.27)

= Ãh (S.28)
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with Ã = VA. By the whitening operation, the covariance matrix of z is identity, so that

I = V(z) = ÃV(h)Ã>. (S.29)

By the ICA model, V(h) = I, so that Ã must satisfy

I = ÃÃ>, (S.30)

which means that Ã is orthonormal.

In the original ICA model, the number of parameters is given by the number of elements
of the matrix A, which is D2 if v is D-dimensional. An orthogonal matrix contains D(D−
1)/2 degrees of freedom (see e.g. https://en.wikipedia.org/wiki/Orthogonal_matrix), so
that we can think that whitening “solves half of the ICA problem”. Since whitening
is a relatively simple standard operation, many algorithms, e.g. “fastICA”, first reduce
the complexity of the estimation problem by whitening the data. Moreover, due to the
properties of the orthogonal matrix, the log-likelihood, see e.g. the slides on “Factor and
Independent Component Analysis”, also simplifies for whitened data because the inverse
of an orthonormal matrix is its transpose and because the determinant of an orthonormal
matrix equals one.

Exercise 3. Score matching for the exponential family

In the lecture, we have derived the objective function J(θ) for score matching,

J(θ) =
1

n

n∑
i=1

m∑
j=1

[
∂jψj(xi;θ) +

1

2
ψj(xi;θ)2

]
, (9)

where ψj is the partial derivative of the log model-pdf log p(x;θ) with respect to the j-th coordinate (slope)
and ∂jψj its second partial derivative (curvature). The observed data are denoted by x1, . . . ,xn and
x ∈ Rm.

The goal of this exercise is to show that for statistical models of the form

log p(x;θ) =

K∑
k=1

θkFk(x)− logZ(θ), x ∈ Rm, (10)

the score matching objective function becomes a quadratic form, which can be optimised efficiently (see
e.g. Barber Appendix A.5.3).

The set of models above are called the (continuous) exponential family, or also log-linear models because
the models are linear in the parameters θk. Since the exponential family generally includes probability
mass functions as well, the qualifier “continuous” may be used to highlight that we are here considering
continuous random variables only. The functions Fk(x) are assumed to be known; they are the sufficient
statistics (see e.g. Barber Section 8.5).

(a) Denote by K(x) the matrix with elements Kkj(x),

Kkj(x) =
∂Fk(x)

∂xj
, k = 1 . . .K, j = 1 . . .m, (11)

and by H(x) the matrix with elements Hkj(x),

Hkj(x) =
∂2Fk(x)

∂x2j
, k = 1 . . .K, j = 1 . . .m. (12)
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Furthermore, let hj(x) = (H1j(x), . . . ,HKj(x))> be the j–th column vector of H(x).

Show that for the continuous exponential family, the score matching objective in Equation (9)
becomes

J(θ) = θ>r +
1

2
θ>Mθ, (13)

where

r =
1

n

n∑
i=1

m∑
j=1

hj(xi), M =
1

n

n∑
i=1

K(xi)K(xi)
>. (14)

Solution. For

log p(x;θ) =

K∑
k=1

θkFk(x)− logZ(θ) (S.31)

the first derivative with respect to xj , the j-th element of x, is

ψj(x;θ) =
∂ log p(x;θ)

∂xj
(S.32)

=

K∑
k=1

θk
∂Fk(x)

∂xj
(S.33)

=
K∑
k=1

θkKkj(x). (S.34)

The second derivative is

∂jψj(x;θ) =
∂2 log p(x;θ)

∂x2j
(S.35)

=
K∑
k=1

θk
∂2Fk(x)

∂x2j
(S.36)

=

K∑
k=1

θkHkj(x), (S.37)

which we can write more compactly as

∂jψj(x;θ) = θ>hj(x). (S.38)

The score matching objective in Equation (9) features the sum
∑

j ψj(x;θ)2. The term

ψj(x;θ)2 equals

ψj(x;θ)2 =

[
K∑
k=1

θkKkj(x)

]2
(S.39)

=
K∑
k=1

K∑
k′=1

Kkj(x)Kk′j(x)θkθk′ , (S.40)
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so that

m∑
j=1

ψj(x;θ)2 =
m∑
j=1

K∑
k=1

K∑
k′=1

Kkj(x)Kk′j(x)θkθk′ (S.41)

=

K∑
k=1

K∑
k′=1

θkθk′

 m∑
j=1

Kkj(x)Kk′j(x)

 , (S.42)

which can be more compactly expressed using matrix notation. Noting that

m∑
j=1

Kkj(xi)Kk′j(xi)

equals the (k, k′) element of the matrix-matrix product K(xi)K(xi)
>,

m∑
j=1

Kkj(xi)Kk′j(xi) =
[
K(xi)K(xi)

>
]
k,k′

, (S.43)

we can write

m∑
j=1

ψj(x;θ)2 =
K∑
k=1

K∑
k′=1

θkθk′
[
K(xi)K(xi)

>
]
k,k′

(S.44)

= θ>K(xi)K(xi)
>θ (S.45)

where we have used that for some matrix A

θ>Aθ =
∑
k,k′

θkθk′ [A]k,k′ (S.46)

where [A]k,k′ is the (k, k′) element of the matrix A.

Inserting the expressions into Equation (9) gives

J(θ) =
1

n

n∑
i=1

m∑
j=1

[
∂jψj(xi;θ) +

1

2
ψj(xi;θ)2

]
(S.47)

=
1

n

n∑
i=1

m∑
j=1

∂jψj(xi;θ) +
1

2

1

n

n∑
i=1

m∑
j=1

ψj(xi;θ)2 (S.48)

=
1

n

n∑
i=1

m∑
j=1

θ>hj(xi) +
1

2

1

n

n∑
i=1

θ>K(xi)K(xi)
>θ (S.49)

= θ>

 1

n

n∑
i=1

m∑
j=1

hj(xi)

+
1

2
θ>

[
1

n

n∑
i=1

K(xi)K(xi)
>

]
θ (S.50)

= θ>r +
1

2
θ>Mθ, (S.51)

which is the desired result.

(b) The pdf of a zero mean Gaussian parametrised by the variance σ2 is

p(x;σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)
, x ∈ R. (15)
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The (multivariate) Gaussian is a member of the exponential family. By comparison with Equation
(10), we can re-parametrise the statistical model {p(x;σ2)}σ2 and work with

p(x; θ) =
1

Z(θ)
exp

(
θx2
)
, θ < 0, x ∈ R, (16)

instead. The two parametrisations are related by θ = −1/(2σ2). Using the previous result on

the (continuous) exponential family, determine the score matching estimate θ̂, and show that the
corresponding σ̂2 is the same as the maximum likelihood estimate. This result is noteworthy because
unlike in maximum likelihood estimation, score matching does not need the partition function Z(θ)
for the estimation.

Solution. By comparison with Equation (10), the sufficient statistics F (x) is x2.

We first determine the score matching objective function. For that, we need to determine
the quantities r and M in Equation (14). Here, both r and M are scalars, and so are the
matrices K and H that define r and M. By their definitions, we obtain

K(x) =
∂F (x)

∂x
= 2x (S.52)

H(x) =
∂2F (x)

∂x2
= 2 (S.53)

r = 2 (S.54)

M =
1

n

n∑
i=1

K(xi)
2 (S.55)

= 4m2 (S.56)

where m2 denotes the second empirical moment,

m2 =
1

n

n∑
i=1

x2i . (S.57)

With Equation (9), the score matching objective thus is

J(θ) = 2θ +
1

2
4m2θ

2 (S.58)

= 2θ + 2m2θ
2 (S.59)

A necessary condition for the minimiser to satisfy is

∂J(θ)

∂θ
= 2 + 4θm2 (S.60)

= 0 (S.61)

The only parameter value that satisfies the condition is

θ̂ = − 1

2m2
. (S.62)

The second derivative of J(θ) is

∂2J(θ)

θ2
= m2, (S.63)

which is positive (as long as all data points are non-zero). Hence θ̂ is a minimiser.
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From the relation θ = −1/(2σ2), we obtain that the score matching estimate of the variance
σ2 is

σ̂2 = − 1

2θ̂
= m2. (S.64)

We can obtain the score matching estimate σ̂2 from θ̂ in this manner for the same reason
that we were able to work with transformed parameters in maximum likelihood estimation.

For zero mean Gaussians, the second moment m2 is the maximum likelihood estimate
of the variance, which shows that the score matching and maximum likelihood estimate
are here the same. While the two methods generally yield different estimates, the result
also holds for multivariate Gaussians where the score matching estimates also equal the
maximum likelihood estimates (see the original article on score matching http://jmlr.org/

papers/volume6/hyvarinen05a/hyvarinen05a.pdf ).

Exercise 4. Inverse transform sampling

The cumulative distribution function (cdf) Fx(α) of a (continuous or discrete) random variable x indicates
the probability that x takes on values smaller or equal to α,

Fx(α) = P(x ≤ α). (17)

For continuous random variables, the cdf is defined via the integral

Fx(α) =

∫ α

−∞
px(u)du, (18)

where px denotes the pdf of the random variable x (u is here a dummy variable). Note that Fx maps the
domain of x to the interval [0, 1]. For simplicity, we here assume that Fx is invertible.

(a) For a continuous random variable x with cdf Fx show that the random variable y = Fx(x) is
uniformly distributed on [0, 1].

Importantly, this implies that the random variable F−1x (y) has cdf Fx if y is uniformly distributed
on [0, 1], which gives rise to a method called “inverse transform sampling”: In order to generate n
iid samples of a random variable x with cdf Fx, we

• calculate the inverse F−1x

• sample n iid random variables uniformly distributed on [0, 1]: yi ∼ U(0, 1), i = 1, . . . , n.

• transform each sample by F−1x : xi = F−1x (yi), i = 1, . . . , n.

By construction of the method, the xi are n iid samples of x.

Solution. We start with the cumulative distribution function (cdf) Fy for y,

Fy(β) = P(y ≤ β). (S.65)

Since Fx(x) maps x to [0, 1], Fy(β) is zero for β < 0 and one for β > 1. We next consider
β ∈ [0, 1].

Denote the inverse of β by α, F−1x (β) = α. Since Fx is a non-decreasing function, we have

P(y ≤ β) = P(Fx(x) ≤ β) = P(x ≤ F−1x (β)) = P(x ≤ α) = Fx(α). (S.66)

Since P(x ≤ α) = Fx(α), we obtain

Fy(β) = P(y ≤ β) = Fx(α) = Fx(F−1x (β)) = β (S.67)
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The cdf Fy

Fy(β) =


0 if β < 0

β if β ∈ [0, 1]

1 if β > 1

(S.68)

is the cdf of a uniform random variable on [0, 1], so that y = Fx(x) is uniformly distributed
on [0, 1].

(b) A Laplace random variable x of mean zero and variance one has the density p(x)

p(x) =
1√
2

exp
(
−
√

2|x|
)

x ∈ R. (19)

Use inverse transform sampling to generate n iid samples from x.

Solution. The main task is to compute the cumulative distribution function (cdf) Fx of
x and its inverse. The cdf is by definition

Fx(α) =

∫ α

−∞

1√
2

exp
(
−
√

2|u|
)

du. (S.69)

We first consider the case where α ≤ 0. Since −|u| = u for u ≤ 0, we have

Fx(α) =

∫ α

−∞

1√
2

exp
(√

2u
)

du (S.70)

=
1

2
exp

(√
2u
) ∣∣∣∣α
−∞

(S.71)

=
1

2
exp

(√
2α
)
. (S.72)

For α > 0, we have

Fx(α) =

∫ α

−∞

1√
2

exp
(
−
√

2|u|
)

du (S.73)

= 1−
∫ ∞
α

1√
2

exp
(
−
√

2|u|
)

du (S.74)

where we have used the fact that the pdf has to integrate to one. For values of u > 0,
−|u| = −u, so that

Fx(α) = 1−
∫ ∞
α

1√
2

exp
(
−
√

2u
)

du (S.75)

= 1 +
1

2
exp

(
−
√

2u
) ∣∣∣∣∞

α

(S.76)

= 1− 1

2
exp

(
−
√

2α
)
. (S.77)

In total, for α ∈ R, we thus have

Fx(α) =

{
1
2 exp

(√
2α
)

if α ≤ 0

1− 1
2 exp

(
−
√

2α
)

if α > 0
(S.78)

Figure 1 visualises Fx(α).
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Figure 1: The cumulative distribution function Fx(α) for a Laplace distributed random variable.

As the figure suggests, there is a unique inverse to y = Fx(α). For y ≤ 1/2, we have

y =
1

2
exp

(√
2α
)

(S.79)

log(2y) =
√

2α (S.80)

α =
1√
2

log(2y) (S.81)

For y > 1/2, we have

y = 1− 1

2
exp

(
−
√

2α
)

(S.82)

−y = −1 +
1

2
exp

(
−
√

2α
)

(S.83)

1− y =
1

2
exp

(
−
√

2α
)

(S.84)

log(2− 2y) = −
√

2α (S.85)

α = − 1√
2

log(2− 2y) (S.86)

The function y 7→ g(y) that occurs in the log

g(y) =

{
2y if y ≤ 1

2

2− 2y if y > 1
2

(S.87)

is shown below and can be written as g(y) = 1− 2|y − 1/2|.
We thus can write the inverse F−1x (y) of the cdf y = Fx(α) as

F−1x (y) = −sign

(
y − 1

2

)
1√
2

log

[
1− 2

∣∣y − 1

2

∣∣] . (S.88)

To generate n iid samples from x, we first generate n iid samples yi that are uniformly dis-
tributed on [0, 1], and then compute for each F−1x (yi). The properties of inverse transform
sampling guarantee that the xi,

xi = F−1x (yi) (S.89)
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are independent and Laplace distributed.

Inverse transform sampling can be used to generate samples from many standard distri-
butions. For example, it allows one to generate Gaussian random variables from uni-
formly distributed random variables. The method is called the Box-Muller transform, see
e.g. https://en.wikipedia.org/wiki/Box-Muller_transform. How to generate the re-
quired samples from the uniform distribution is a research field on its own, see e.g. https:
//en.wikipedia.org/wiki/Random_number_generation and http://statweb.stanford.

edu/~owen/mc/Ch-unifrng.pdf.
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