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The purpose of the tutorials is twofold: First, they help you better understand the lecture ma-
terial. Secondly, they provide exam preparation material. You are not expected to complete all
questions before the tutorial sessions. Start early and do as many as you have time for.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian
model?

(b) What is the log-likelihood function `(θ)?

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are
the sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ20

exp

[
−(µ− µ0)2

2σ20

]
(3)

where σ2 is a fixed known quantity.

Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables x1, . . . , xd,

p(x;θ) =
d∏
i=1

p(xi|pai;θi) xi ∈ {0, 1} (4)

where the conditionals are represented by parametrised probability tables, For example, if pa3 =
{x1, x2}, p(x3|pa3;θ3) is represented as
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p(x3 = 1|x1, x2; θ13, . . . , θ43)) x1 x2

θ13 0 0
θ23 1 0
θ33 0 1
θ43 1 1

with θ3 = (θ13, θ
2
3, θ

3
3, θ

4
3), and where the superscripts j of θj3 enumerate the different states that

the parents can be in.

(a) Assuming that xi has mi parents, verify that the table parametrisation of p(xi|pai;θi) is
equivalent to writing p(xi|pai;θi) as

p(xi|pai;θi) =

Si∏
s=1

(θsi )
1(xi=1,pai=s)(1− θsi )1(xi=0,pai=s) (5)

where Si = 2mi is the total number of states/configurations that the parents can be in,
and 1(xi = 1,pai = s) is one if xi = 1 and pai = s, and zero otherwise.

(b) For iid data D = {x(1), . . . ,x(n)} show that

p(D;θ) =

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (6)

where nsxi=1 is the number of times the pattern (xi = 1,pai = s) occurs in the data D,
and equivalently for nsxi=0.

(c) Show that the log-likelihood decomposes into sums of terms that can be independently
optimised, and that each term corresponds to the log-likelihood for a Bernoulli model.

(d) Referring to the lecture material, conclude that the maximum likelihood estimates are
given by

θ̂si =
nsxi=1

nsxi=1 + nsxi=0

=

∑n
j=1 1(x

(j)
i = 1, pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

(7)

Exercise 4. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(x|θ) = θx(1− θ)1−x p(θ;α0) = B(θ;α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1],α0 = (α0, β0), and

B(θ;α, β) ∝ θα−1(1− θ)β−1 θ ∈ [0, 1] (8)

(a) Given iid data D = {x1, . . . , xn} show that the posterior of θ given D is

p(θ|D) = B(θ;αn, βn)

αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 denotes the number of ones and nx=0 the number of zeros in the data.
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(b) Compute the mean of a Beta random variable f ,

p(f ;α, β) = B(f ;α, β) f ∈ [0, 1], (9)

using that ∫ 1

0
fα−1(1− f)β−1df = B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
(10)

where B(α, β) denotes the Beta function and where the Gamma function Γ(t) is defined
as

Γ(t) =

∫ ∞
o

f t−1 exp(−f)df (11)

and satisfies Γ(t+ 1) = tΓ(t).

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed
data point x equals the posterior mean of p(θ|D), which in turn is given by

E(θ|D) =
α0 + nx=1

α0 + β0 + n
. (12)

Exercise 5. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider
the Bayesian model

p(x|θ) =
d∏
i=1

p(xi|pai,θi) xi ∈ {0, 1} (13)

p(θ;α0,β0) =
d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0, β

s
i,0) (14)

where p(xi|pai,θi) is defined via (5), α0 is a vector of hyperparameters containing all αsi,0, β0

the vector containing all βsi,0, and as before B denotes the Beta distribution. Under the prior,
all parameters are independent.

For iid data D = {x(1), . . . ,x(n)} show that

p(θ|D) =
d∏
i=1

Si∏
s=1

B(θsi , α
s
i,n, β

s
i,n) (15)

where

αsi,n = αsi,0 + nsxi=1 βsi,n = βsi,0 + nsxi=0 (16)

and that the parameters are also independent under the posterior.
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