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Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian model?

Solution. For iid data, the likelihood function is

L(θ) =

n∏
i

p(xi;θ) (S.1)

=

n∏
i

1√
2πσ2

exp

[
−(xi − µ)2

2σ2

]
(S.2)

=
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
. (S.3)

(b) What is the log-likelihood function `(θ)?

Solution. Taking the log of the likelihood function gives

`(θ) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2 (S.4)

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are the
sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Solution. Since the logarithm is strictly monotonically increasing, the maximiser of the
log-likelihood equals the maximiser of the likelihood. It is easier to take derivatives for the
log-likelihood function than for the likelihood function so that the maximum likelihood
estimate is typically determined using the log-likelihood.

Given the algebraic expression of `(θ), it is simpler to work with the variance v = σ2 rather
than the standard deviation. (In the lecture notes, we used the variable η to denote the
transformed parameters. We could have written η = σ2, but v is a more natural notation
for the variance.) Since σ > 0 the function v = g(σ) = σ2 is invertible, and the invariance
of the MLE to re-parametrisation guarantees that

σ̂ =
√
v̂.
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We now thus maximise the function J(µ, v),

J(µ, v) = −n
2

log(2πv)− 1

2v

n∑
i=1

(xi − µ)2 (S.5)

with respect to µ and v.

Taking partial derivatives gives

∂J

∂µ
=

1

v

n∑
i=1

(xi − µ) (S.6)

=
1

v

n∑
i=1

xi −
n

v
µ (S.7)

∂J

∂v
= −n

2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 (S.8)

A necessary condition for optimality is that the partial derivatives are zero. We thus
obtain the conditions

1

v

n∑
i=1

(xi − µ) = 0 (S.9)

−n
2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 = 0 (S.10)

From the first condition it follows that

µ̂ =
1

n

n∑
i=1

xi (S.11)

The second condition thus becomes

−n
2

1

v
+

1

2v2

n∑
i=1

(xi − µ̂)2 = 0 (multiply with v2 and rearrange) (S.12)

1

2

n∑
i=1

(xi − µ̂)2 =
n

2
v, (S.13)

and hence

v̂ =
1

n

n∑
i=1

(xi − µ̂)2, (S.14)

We now check that this solution corresponds to a maximum by computing the Hessian
matrix

H(µ, v) =

(
∂2J
∂µ2

∂2J
∂µ∂v

∂2J
∂µ∂v

∂2J
∂v2

)
(S.15)

If the Hessian negative definite at (µ̂, v̂), the point is a (local) maximum. Since we only
have one critical point, (µ̂, v̂), the local maximum is also a global maximum. Taking second
derivatives gives

H(µ, v) =

(
−n
v − 1

v2
∑n

i=1(xi − µ)
− 1
v2
∑n

i=1(xi − µ) n
2

1
v2
− 1

v3
∑n

i=1(xi − µ)2

)
. (S.16)
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Substituting the values for (µ̂, v̂) gives

H(µ̂, v̂) =

(
−n
v̂ 0

0 −n
2

1
v̂2

)
, (S.17)

which is negative definite. Note that the the (negative) curvature increases with n, which
means that J(µ, v), and hence the log-likelihood becomes more and more peaked as the
number of data points n increases.

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ2

0

exp

[
− (µ− µ0)2

2σ2
0

]
(3)

where σ2 is a fixed known quantity.

Solution. Recall the following result from Tutorial 6:

N (x;m1, σ
2
1)N (x;m2, σ

2
2) ∝ N (x;m3, σ

2
3) (S.18)

where

N (x;µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(S.19)

σ23 =

(
1

σ21
+

1

σ22

)−1
=

σ21σ
2
2

σ21 + σ22
(S.20)

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (S.21)

We can further re-use the expression for the likelihood L(µ) from the previous exercise,

L(µ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
, (S.22)

which we can write as

L(µ) ∝ exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
(S.23)

∝ exp

[
− 1

2σ2

n∑
i=1

(x2i − 2µxi + µ2)

]
(S.24)

∝ exp

[
− 1

2σ2

(
−2µ

n∑
i=1

xi + nµ2

)]
(S.25)

∝ exp

[
− 1

2σ2
(
−2nµx̄+ nµ2

)]
(S.26)

∝ exp
[
− n

2σ2
(µ− x̄)2

]
(S.27)

∝ N (µ; x̄, σ2/n). (S.28)
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The posterior is

p(µ|D) ∝ L(θ)p(µ;µ0, σ
2
0) (S.29)

∝ N (µ; x̄, σ2/n)N (µ;µ0, σ
2
0) (S.30)

so that with (S.18), we have

p(µ|D) ∝ N (µ;µn, σ
2
n) (S.31)

σ2n =

(
1

σ2/n
+

1

σ20

)−1
(S.32)

=
σ20σ

2/n

σ20 + σ2/n
(S.33)

µn = σ2n

(
x̄

σ2/n
+
µ0
σ20

)
(S.34)

=
1

σ20 + σ2/n

(
σ20x̄+ (σ2/n)µ0

)
(S.35)

=
σ20

σ20 + σ2/n
x̄+

σ2/n

σ20 + σ2/n
µ0 (S.36)

which are the expressions given in the lecture slides. As n increases, σ2/n goes to zero so that
σ2n → 0 and µn → x̄. This means that with an increasing amount of data, the posterior of the
mean tends to be concentrated around the maximum likelihood estimate x̄.

From (S.21), we also have that

µn = µ0 +
σ20

σ2/n+ σ20
(x̄− µ0), (S.37)

which shows more clearly that the value of µn lies on a line with end-points µ0 (for n = 0) and
x̄ (for n→∞). As the amount of data increases, µn moves form the mean under the prior, µ0,
to the average of the observed sample, that is the MLE x̄.

Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables x1, . . . , xd,

p(x;θ) =

d∏
i=1

p(xi|pai;θi) xi ∈ {0, 1} (4)

where the conditionals are represented by parametrised probability tables, For example, if pa3 = {x1, x2},
p(x3|pa3;θ3) is represented as

p(x3 = 1|x1, x2; θ13, . . . , θ
4
3)) x1 x2

θ13 0 0
θ23 1 0
θ33 0 1
θ43 1 1

with θ3 = (θ13, θ
2
3, θ

3
3, θ

4
3), and where the superscripts j of θj3 enumerate the different states that the parents

can be in.
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(a) Assuming that xi has mi parents, verify that the table parametrisation of p(xi|pai;θi) is equivalent
to writing p(xi|pai;θi) as

p(xi|pai;θi) =

Si∏
s=1

(θsi )
1(xi=1,pai=s)(1− θsi )1(xi=0,pai=s) (5)

where Si = 2mi is the total number of states/configurations that the parents can be in, and 1(xi =
1,pai = s) is one if xi = 1 and pai = s, and zero otherwise.

Solution. The number of configurations that m binary parents can be in is given by Si.
The questions thus boils down to showing that p(xi = 1|pai = k;θi) = θki for any state
k ∈ {1, . . . , Si} of the parents of xi. Since 1(xi = 1,pai = s) = 0 unless s = k, we have
indeed that

p(xi = 1|pai = k;θi) =

∏
s 6=k

(θsi )
0(1− θsi )0

 (θki )1(xi=1,pai=k)(1− θki )1(xi=0,pai=k) (S.38)

= 1 · (θki )1(xi=1,pai=k)(1− θki )0 (S.39)

= θki . (S.40)

(b) For iid data D = {x(1), . . . ,x(n)} show that

p(D;θ) =

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (6)

where nsxi=1 is the number of times the pattern (xi = 1,pai = s) occurs in the data D, and
equivalently for nsxi=0.

Solution. Since the data are iid, we have

p(D;θ) =
n∏
j=1

p(x(j);θ) (S.41)

(S.42)

where each term p(x(j);θ) factorises as in (4),

p(x(j);θ) =

d∏
i=1

p(x
(j)
i |pa

(j)
i ;θi) (S.43)

with x
(j)
i denoting the i-th element of x(j) and pa

(j)
i the corresponding parents. The

conditionals p(x
(j)
i |pa

(j)
i ;θi) factorise further according to (5),

p(x
(j)
i |pa

(j)
i ;θi) =

Si∏
s=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s), (S.44)

so that

p(D;θ) =
n∏
j=1

d∏
i=1

p(x
(j)
i |pa

(j)
i ;θi) (S.45)

=

d∏
i=1

Si∏
s=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s) (S.46)
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Swapping the order of the products so that the product over the data points comes first,
we obtain

p(D;θ) =

d∏
i=1

Si∏
s=1

n∏
j=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s) (S.47)

We next split the product over j into two products, one for all j where x
(j)
i = 1, and one

for all j where x
(j)
i = 0

p(D;θ) =
d∏
i=1

Si∏
s=1

∏
j:

x
(j)
i =1

∏
j:

x
(j)
i =0

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s) (S.48)

=
d∏
i=1

Si∏
s=1

∏
j:

x
(j)
i =1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)

∏
j:

x
(j)
i =0

(1− θsi )1(x
(j)
i =0,pa

(j)
i =s) (S.49)

=

d∏
i=1

Si∏
s=1

(θsi )
∑n

j=1 1(x
(j)
i =1,pa

(j)
i =s)(1− θsi )

∑n
j=1 1(x

(j)
i =0,pa

(j)
i =s) (S.50)

=

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (S.51)

where

nsxi=1 =
n∑
j=1

1(x
(j)
i = 1,pa

(j)
i = s) nsxi=0 =

n∑
j=1

1(x
(j)
i = 0,pa

(j)
i = s) (S.52)

is the number of times xi = 1 and xi = 0, respectively, with its parents being in state s.

(c) Show that the log-likelihood decomposes into sums of terms that can be independently optimised,
and that each term corresponds to the log-likelihood for a Bernoulli model.

Solution. The log-likelihood `(θ) equals

`(θ) = log p(D;θ) (S.53)

= log
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (S.54)

=
d∑
i=1

Si∑
s=1

log
[
(θsi )

ns
xi=1(1− θsi )

ns
xi=0

]
(S.55)

=
d∑
i=1

Si∑
s=1

nsxi=1 log(θsi ) + nsxi=0 log(1− θsi ) (S.56)

Since the parameters θsi are not coupled in any way, maximising `(θ) can be achieved by
maximising each term `is(θ

s
i ) individually,

`is(θ
s
i ) = nsxi=1 log(θsi ) + nsxi=0 log(1− θsi ). (S.57)

Moreover, `is(θ
s
i ) corresponds to the log-likelihood for a Bernoulli model with success

probability θsi and data with nsxi=1 number of ones and nsxi=0 number of zeros.
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(d) Referring to the lecture material, conclude that the maximum likelihood estimates are given by

θ̂si =
nsxi=1

nsxi=1 + nsxi=0

=

∑n
j=1 1(x

(j)
i = 1,pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

(7)

Solution. Given the result from the previous question, we can optimise each term `is(θ
s
i )

separately. Furthermore, each term formally corresponds to a log-likelihood for a Bernoulli
model, so that we can immediately use the results derived in the lecture, which gives

θ̂si =
nsxi=1

nsxi=1 + nsxi=0

(S.58)

Since nsxi=1 =
∑n

j=1 1(x
(j)
i = 1, pa

(j)
i = s) and

nsxi=1 + nsxi=0 =

n∑
j=1

1(x
(j)
i = 1, pa

(j)
i = s) +

n∑
j=1

1(x
(j)
i = 0,pa

(j)
i = s) (S.59)

=

n∑
j=1

1(pa
(j)
i = s), (S.60)

which gives

θ̂si =

∑n
j=1 1(x

(j)
i = 1,pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

. (S.61)

Hence, to determine θ̂si , we first count the number of times the parents of xi are in state
s, which gives the denominator, and then among them, count the number of times xi = 1,
which gives the numerator.

Exercise 4. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(x|θ) = θx(1− θ)1−x p(θ;α0) = B(θ;α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1],α0 = (α0, β0), and

B(θ;α, β) ∝ θα−1(1− θ)β−1 θ ∈ [0, 1] (8)

(a) Given iid data D = {x1, . . . , xn} show that the posterior of θ given D is

p(θ|D) = B(θ;αn, βn)

αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 denotes the number of ones and nx=0 the number of zeros in the data.

Solution. This follows immediately from

p(θ|D) ∝ L(θ)p(θ;α0) (S.62)
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and from the expression for the likelihood function of the Bernoulli model (see above or
the lecture slides)

L(θ) = θnx=1(1− θ)nx=0 . (S.63)

Inserting all expressions into (S.62) gives

p(θ|D) ∝ θnx=1(1− θ)nx=0θα0−1(1− θ)β0−1 (S.64)

∝ θα0+nx=1−1(1− θ)β0+nx=0−1 (S.65)

∝ B(θ, α0 + nx=1, β0 + nx=0), (S.66)

which is the desired result. Since α0 and β0 are updated by the counts of ones and zeros
in the data, these hyperparameters are also referred to as “pseudo-counts”. Alternatively,
one can think that they are the counts that are observed in another iid data set which has
been previously analysed and used to determine the prior.

(b) Compute the mean of a Beta random variable f ,

p(f ;α, β) = B(f ;α, β) f ∈ [0, 1], (9)

using that ∫ 1

0

fα−1(1− f)β−1df = B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(10)

where B(α, β) denotes the Beta function and where the Gamma function Γ(t) is defined as

Γ(t) =

∫ ∞
o

f t−1 exp(−f)df (11)

and satisfies Γ(t+ 1) = tΓ(t).

Solution. We first write the partition function of p(f ;α, β) in terms of the Beta function

Z(α, β) =

∫ 1

0
fα−1(1− f)β−1 (S.67)

= B(α, β). (S.68)

We then have that the mean E[f ] is given by

E[f ] =

∫ 1

0
fp(f ;α, β)df (S.69)

=
1

B(α, β)

∫ 1

0
ffα−1(1− f)β−1 (S.70)

=
1

B(α, β)

∫ 1

0
fα+1−1(1− f)β−1 (S.71)

=
B(α+ 1, β)

B(α, β)
(S.72)

=
Γ(α+ 1)Γ(β)

Γ(α+ 1 + β)

Γ(α+ β)

Γ(α)Γ(β)
(S.73)

=
αΓ(α)Γ(β)

(α+ β)Γ(α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(S.74)

=
α

α+ β
(S.75)

where we have used the definition of the Beta function in terms of the Gamma function
and the property Γ(t+ 1) = tΓ(t).
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(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed data
point x equals the posterior mean of p(θ|D), which in turn is given by

E(θ|D) =
α0 + nx=1

α0 + β0 + n
. (12)

Solution. We obtain

p(x = 1|D) =

∫ 1

0
p(x = 1, θ|D)dθ (sum rule) (S.76)

=

∫ 1

0
p(x = 1|θ,D)p(θ|D) (product rule) (S.77)

=

∫ 1

0
p(x = 1|θ)p(θ|D) (x ⊥⊥ D|θ) (S.78)

=

∫ 1

0
θp(θ|D) (S.79)

= E[θ|D] (S.80)

From the previous question we know the mean of a Beta random variable. Since θ ∼
B(θ;αn, βn), we obtain

p(x = 1|D) = E[θ|D] (S.81)

=
αn

αn + βn
(S.82)

=
α0 + nx=1

α0 + nx=1 + β0 + nx=0
(S.83)

=
α0 + nx=1

α0 + β0 + n
(S.84)

where the last equation follows from the fact that n = nx=0 +nx=1. Note that for n→∞,
the posterior mean tends to the MLE nx=1/n.

Exercise 5. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider the
Bayesian model

p(x|θ) =

d∏
i=1

p(xi|pai,θi) xi ∈ {0, 1} (13)

p(θ;α0,β0) =

d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0, β

s
i,0) (14)

where p(xi|pai,θi) is defined via (5), α0 is a vector of hyperparameters containing all αsi,0, β0 the vector
containing all βsi,0, and as before B denotes the Beta distribution. Under the prior, all parameters are
independent.

For iid data D = {x(1), . . . ,x(n)} show that

p(θ|D) =

d∏
i=1

Si∏
s=1

B(θsi , α
s
i,n, β

s
i,n) (15)
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where

αsi,n = αsi,0 + nsxi=1 βsi,n = βsi,0 + nsxi=0 (16)

and that the parameters are also independent under the posterior.

Solution. We start with
p(θ|D) ∝ p(D|θ)p(θ;α0,β0). (S.85)

Inserting the expression for p(D|θ) given in (6) and the assumed form of the prior gives

p(θ|D) ∝
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0

d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0, β

s
i,0) (S.86)

∝
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0B(θsi ;α

s
i,0, β

s
i,0) (S.87)

∝
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0(θsi )

αs
i,0−1(1− θsi )

βs
i,0−1 (S.88)

∝
d∏
i=1

Si∏
s=1

(θsi )
αs
i,0+n

s
xi=1−1(1− θsi )

βs
i,0+n

s
xi=0−1 (S.89)

∝
d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0 + nsxi=1, β

s
i,0 + nsxi=0) (S.90)

It can be immediately verified that B(θsi ;α
s
i,0+nsxi=1, β

s
i,0+nsxi=0) is proportional to the marginal

p(θsi |D) so that the parameters are independent under the posterior too.
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