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The purpose of the tutorials is twofold: First, they help you better understand the lecture ma-
terial. Secondly, they provide exam preparation material. You are not expected to complete all
questions before the tutorial sessions. Start early and do as many as you have time for.

Exercise 1. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission
distributions. For simplicity, we assume one-dimensional hidden variables and observables. We
denote the probability density function of a Gaussian random variable x with mean µ and
variance σ2 by N (x|µ, σ2),

N (x|µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
. (1)

The transition and emission distributions are assumed to be

p(hs|hs−1) = N (hs|Ashs−1, B2
s ) (2)

p(vs|hs) = N (vs|Cshs, D2
s). (3)

The transition and emission distributions correspond to the following update and observation
equations

hs = Ashs−1 +Bsξs, (4)

vs = Cshs +Dsηs, (5)

where ξs and ηs are independent standard normal random variables, e.g. ξs ∼ N (ξs|0, 1) —
independent from each other and from the hs and vs. The equations mean that hs is obtained
by scaling hs−1 and by adding noise with variance B2

s . The observed value vs is obtained by
scaling the hidden hs and by corrupting it with Gaussian observation noise of variance D2

s .

The distribution p(h1) is assumed Gaussian with known parameters. The As, Bs, Cs, Ds are also
assumed known.

(a) Show that ∫
N (x|µ, σ2)N (y|Ax,B2)dx ∝ N (y|Aµ,A2σ2 +B2) (6)

[While this result can be obtained by direct integration, an approach that avoids this is as
follows: First note that N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and y.
We can thus consider the integral to correspond to the computation of the marginal of y
from the joint. Using the equivalence of Equations (2)-(3) and (4)-(5), and the fact that
the weighted sum of two Gaussian random variables is a Gaussian random variable then
allows one to obtain the result.]

(b) Show that
N (x|m1, σ

2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3) (7)

where

σ23 =

(
1

σ21
+

1

σ22

)−1
=

σ21σ
2
2

σ21 + σ22
(8)

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (9)
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(c) In the lecture, we showed that p(ht|v1:t) ∝ α(ht) where α(ht) can be computed recursively
via the “alpha-recursion”

α(h1) = p(h1) · p(v1|h1) α(hs) = p(vs|hs)
∑
hs−1

p(hs|hs−1)α(hs−1). (10)

We have also seen that the alpha-recursion corresponds to sum-product message passing
with

µhs→φs+1(hs) = α(hs) µφs→hs(hs) =
∑
hs−1

p(hs|hs−1)α(hs−1) (11)

and that µφs→hs(hs) ∝ p(hs|v1:s−1). For continuous random variables, the sum above
becomes an integral so that

α(hs) = p(vs|hs)µφs→hs(hs) µφs→hs(hs) =

∫
p(hs|hs−1)α(hs−1)dhs−1. (12)

For a Gaussian prior distribution for h1 and Gaussian emission probability p(v1|h1),
α(h1) = p(h1) · p(v1|h1) ∝ p(h1|v1) is proportional to a Gaussian. We denote its mean by
µ1 and its variance by σ21 so that

α(h1) ∝ N (h1|µ1, σ21). (13)

Assuming α(hs−1) ∝ N (hs−1|µs−1, σ2s−1) (which holds for s = 2), use Equation (6) to show
that

µφs→hs(hs) ∝ N (hs|Asµs−1, Ps) (14)

where

Ps = A2
sσ

2
s−1 +B2

s . (15)

(d) Use Equation (7) to show that

α(hs) ∝ N
(
hs|µs, σ2s

)
(16)

where

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (17)

σ2s =
PsD

2
s

PsC2
s +D2

s

(18)

(e) Show that α(hs) can be re-written as

α(hs) ∝ N
(
hs|µs, σ2s

)
(19)

where

µs = Asµs−1 +Ks (vs − CsAsµs−1) (20)

σ2s = (1−KsCs)Ps (21)

Ks =
PsCs

C2
sPs +D2

s

(22)

These are the Kalman filter equations and Ks is called the Kalman filter gain.

(f) Explain Equation (20) in non-technical terms. What happens if the variance D2
s of the

observation noise goes to zero?
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Exercise 2. Hidden Markov model – beta-recursion

We consider the following factor graph from the lecture on hidden Markov models.
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The factor graph corresponds to the conditional pmf

p(h1, . . . , h6, v5, v6 | v1:4)

and the factors are defined as

ft(ht) = p(vt|ht) (t ≤ 4) ft(vt, ht) = p(vt|ht) (t > 4) (23)

φ1(h1) = p(h1) φt(ht, ht−1) = p(ht|ht−1) (t > 1) (24)

We define β(hs) = µφs+1→hs(hs), which is the message from a factor node “back” to a variable
node.

(a) Show that β(h4) = µφ5→h4(h4) = 1.

(b) Use sum-product message passing to show that the beta-recursion holds

β(h4) = 1 (25)

β(hs) =
∑
hs+1

p(hs+1|hs)p(vs+1|hs+1)β(hs+1) (s < 4) (26)
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