@ R — Probabilistic Modelling and Reasoning Spring 2018
‘& informatics Solutions for Tutorial 5 Michael Gutmann

Exercise 1. Sum-product message passing

We here re-consider the factor tree from the lecture on exact inference.
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Let all variables be binary, x; € {0,1}, and the factors be defined as follows:
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(a) Mark the graph with arrows indicating all messages that need to be computed for the computation

of p(w1).

Solution.

(b) Compute the messages that you have identified.

Assuming that the computation of the messages is scheduled according to a common clock, group
the messages together so that all messages in the same group can be computed in parallel during a
clock cycle.



Solution.

means that the message ji¢, 4, (z1) equals 2 for z1 =0, i.e. pgp, s, (0) = 2.

Since the variables are binary, each message can be represented as a two-
dimensional vector. We use the convention that the first element of the vector corresponds
to the message for x; = 0 and the second element to the message for x; = 1. For example,
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II'¢A—):1:1 = 4

(S.1)

The following figure shows a grouping (scheduling) of the computation of the messages.
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Clock cycle 1:

2 4 1
Hpp—zy = <4> Hop—x0 = <4> Hxys—¢pp = <1> Hop—zs = <

Clock cycle 2:

4
Hzo—sdc = Hop—sxa = <4> Hrs—¢p = Hop—as = (

Message i, -z, is defined as

so that

Hep—azs(T3) = Z D (T3, Ta) ey —op (T4)

T4

1
Hop—as (0) = Z Op(0, 24) oy~ (1)

x4=0
= ¢p(0, O)Nr4—>¢D (0) + ¢n(0, 1)M$4_>¢D(]‘)
=8-1+2-1
=10
1
Ip—as (1) = Z (1, x4) g~ (T4)

z4=0

= d)D(lv O)Mx4—>¢p (0) + ¢D(17 1)ﬂz4—>¢p(1)
=2.1+46-1
=38
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and thus

10

The above computations can be written more compactly in matrix notation. Let ¢p be
the matrix that contains the outputs of ¢p(zs3,z4)

_ (9p(as=0,24=0) ¢p(uz=0,2s=1)) _ (8 2
0= <¢>D(333 =1,24=0) ¢p(rg=1,24 = 1)) = (2 6> . (S.14)

We can then write pgp, 2, in terms of a matrix vector product,
Hop—z3 = ¢Dﬂz4—)¢p' (8'15)

Clock cycle 3:
Representing the factor ¢g as matrix ¢g,

[ dE(x3=0,25=0) ¢p(xs=0,25=1)\ (3 6
oE = <¢E(x3 =1,25=0) ¢p(xs=125= 1)) = <6 3> ) (S.16)

we can write

Hpp—as(T3) = Z¢E(UC3,$5)/¢L$5H¢E (z5) (S.17)
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as a matrix vector product,

Hép—zs = PEHzs—ép (5.18)
90
_ (gé) . (S.20)

Clock cycle 4:
Variable node 3 has received all incoming messages, and can thus output f,, 4.,

Haez—oc (‘753) = /’L¢D_>$3(x3)lu’¢E—>13(x3)‘ (8'21)

Using ® to denote element-wise multiplication of two vectors, we have

Mz3—soc = Bop—zs © Hop—as (8.22)
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Clock cycle 5:
Factor node ¢¢ has received all incoming messages, and can thus output g,z ,

Hocar (1) = D G0 (1,22, 23) 60 (22) Py 90 (¥3)- (5.25)
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Writing out the sum for z; = 0 and 1 = 1 gives

Ppo—ar(0) =Y 6c(0, 72, 73) oy (32) Hag—pc (€3)
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and hence

19920
Péc—z1 = | 95990

(S.46)

After step 5, variable node x1 has received all incoming messages and the marginal can be

computed.

In addition to the messages needed for computation of p(z1) one can compute all messages
in the graph in five clock cycles, see Figure 1. This means that all marginals, as well as
the joints of those variables sharing a factor node, are available after five clock cycles.

(¢) What is p(xy =1)?

Solution. We compute the marginal p(z1) as

P(21) O pg gy (T1) oy (1)

(S.47)
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Figure 1: Answer to Exercise 1 Question (b): Computing all messages in five clock cycles. If
we also computed the messages toward the leaf factor nodes, we needed six cycles, but they are
not necessary for computation of the marginals so they are omitted.

which is in vector notation

p(x1 =0)
2\ (/19920
x (4) © (25920) (S.49)
39840
x (103680) ' (8.50)
Normalisation gives
p(ry =0)\ 1 39840 (S.51)
plzr =1)) ~ 39840 + 103680 \ 103680 :
0.2776
- (0.7224) (8.52)

so that p(z; = 1) = 0.7224.

(d) Draw the factor graph corresponding to p(x1,xs, x4, zs|Te = 1) and provide the numerical values
for all factors.

Solution. The pmf represented by the original factor graph is

p(x1,. .., 75) X pa(21)dB(72)dc (21, 22, 73) D (73, T4)PE(T3, T5) PR (25)
The conditional p(x1,x3, x4, x5|x2 = 1) is proportional to p(z1,...,x5) with xs fixed to

To = 1, ie.

p(x1, 3, T4, 5|20 = 1) X p(x1,29 = 1,23, T4, T5) (S.53)

X pa(x1)pB(x2 = 1) (21,22 = 1,23)pp (23, 24)PE (23, T5)PF(25)
(S.54)
)

o< pa(w1)9¢ (21, 23)Pp (23, ¥4)PE(T3, T5) b (75) (S.55



where ¢77 (21, 23) = ¢c(x1,22 = 1,23). The numerical values of ¢¢7?(z1,23) can be read
from the table defining ¢c(z1, z2, z3), extracting those rows where zo = 1,

Ty T2 T3 ¢C
0 0 0 4
1 0 0 2
— 0 1 0 2
— 1 1 0 6
0 0 1 2
1 0 1 6
—- 0 1 1 6
— 1 1 1 4

so that

T w3 PF
0 O 2
1 0 6
0 1 6
1 1 4

The factor graph for p(z1, 3, x4, z5|z2 = 1) is shown below. Factor ¢p has disappeared
since it only depended on x2 and thus became a constant. Factor ¢¢ is replaced by ¢¢7

defined above. The remaining factors are the same as in the original factor graph.

3

(e) Compute p(xq = 1l]za = 1), re-using messages that you have already computed for the evaluation

of par = 1).

Solution. The message ji4, 4, is the same as in the original factor graph and Py sg22 =

Has—po- This is because the outgoing message from x3 corresponds to the effective factor
obtained by summing out all variables in the sub-trees attached to x3 (without the ¢7?

branch), and these sub-trees do not depend on z5.

The message p 622 sy needs to be newly computed. We have

or in vector notation

Bz, (11) = D G (@1, 23y g2
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We thus obtain for the marginal posterior of x1 given xo = 1:

(p(ﬂ«"l = 0lzg = 1)

p(gjl = ]_|gj2 = 1)) X Mo g—z1 ®“¢Z2—):Dl

2) (2460
%4 4020
4920
*\16080)
Normalisation gives

p(x1 =0jza =1)\  [0.2343
plxy =1z =1))  \0.7657

(S.61)
(S.62)

(S.63)

(S.64)

and thus p(x; = 1|zg = 1) = 0.7657. The posterior probability is slightly larger than the

prior probability, p(x; = 1) = 0.7224.



