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Exercise 1. I-maps

(a) Which of three graphs represent the same set of independencies? Explain.
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Solution. To check whether the graphs are I-equivalent, we have to check the skeletons
and the immoralities. All have the same skeleton, but graph 1 and graph 2 also have the
same immorality. The answer is thus: graph 1 and 2 encode the same independencies.
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(b) For p(a, z, q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z), determine a minimal I-map for the orderings

• (a, z, q, e, h)

• (a, z, h, q, e)

• (e, h, q, z, a)

Are the I-maps I-equivalent?

Solution. To find a minimal I-map, we can use the same procedure we used to simplify
the factorisation obtained by the chain rule:

1. Assume an ordering of the variables. Denote the ordered random variables by x1, . . . , xd.

2. For each i, find a minimal subset of variables πi ⊆ prei such that

xi ⊥⊥ prei \ πi | πi

holds for p.

3. Construct a graph with parents pai = πi.

Checking whether the independencies hold can be difficult. But here, we are given a
factorisation for p from which we can construct the directed graph in Figure 1. We thus
can use graphical methods to check whether an independency holds (e.g. by d-separation).

Note: If the graph does not indicate that a certain independency holds, we had to generally
check, however, whether it indeed does not hold for a specific distribution. If we don’t, we
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won’t obtain a minimal I-map but just an I-map. This is because the graph may not be
a perfect map, and p may have independencies that are not encoded in the graph. Here,
this won’t be needed because we left the conditionals of p unspecified. In other words,
this means that we here construct minimal I-maps for the independencies that hold for all
p(a, z, q, e, h) that factorise as p(a, z, q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z).
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Figure 1: Exercise 1, question (b): I-map for the orderings (a, z, h, q, e) and (a, z, q, e, h).

The graph in Figure 1 is exactly the I-map for the ordering (a, z, q, e, h).

The ordering (a, z, h, q, e) gives rise to the same graph.

For the ordering (e, h, q, z, a), we build a graph where e is the root. From Figure 1, we see
that h ⊥⊥ e does not hold. We thus set e as parent of h, see first graph in Figure 2. Then:

• We consider q: preq = {e, h}. There is no subset πq of preq on which we could
condition to make q independent of preq \ πq, so that we set the parents of q in the
graph to paq = {e, h}. (Second graph in Figure 2.)

• We consider z: prez = {e, h, q}. From the graph in Figure 1, we see that for πz =
{q, h} we have z ⊥⊥ prez \πz|πz. Note that πz = {q} does not work because z ⊥⊥ e, h|q
does not hold. We thus set paz = {q, h}. (Third graph in Figure 2.)

• We consider a: prea = {e, h, q, z}. This is the last node in the ordering. To find
the minimal set πa for which a ⊥⊥ prea \ πa|πa, we can determine its Markov blanket
MB(a). The Markov blanket is the set of parents (none), children (q), and co-parents
of a (z) in Figure 1, so that MB(a) = {q, z}. We thus set paa = {q, z}.(Fourth graph
in Figure 2.)
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Figure 2: Exercise 1, Question (b):Construction of a minimal directed I-map for the ordering
(e, h, q, z, a).

We thus see that the orderings (a, z, q, e, h) and (a, z, h, q, e) give I-equivalent minimal I-
maps (Figure 1) while (e, h, q, z, a) yields a denser graph (Figure 2) that is not I-equivalent.
While a minimal I-map it does e.g. not show that a ⊥⊥ z.

(c) For the collection of random variables (a, z, h, q, e) you are given the following Markov blankets for
each variable:

• MB(a) = {q,z}
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• MB(z) = {a,q,h}
• MB(h) = {z}
• MB(q) = {a,z,e}
• MB(e) = {q}

(i) Draw the undirected minimal I-map.

(ii) Indicate a Gibbs distribution that satisfies the independence relations specified by the Markov
blankets.

Solution. Connecting each variable to all variables in its Markov blanket yields the
desired undirected minimal I-map (see lecture slides). Note that the Markov blankets are
not mutually disjoint.
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For positive distributions, the set of distributions that satisfy the local Markov property
relative to a graph (as given by the Markov blankets) is the same as the set of Gibbs
distributions that factorise according to the graph. Given the I-map, we can now easily
find the Gibbs distribution

p(a, z, h, q, e) = φ1(a, z, q)φ2(q, e)φ3(z, h)

Note that we used the maximal clique (a, z, q).

Exercise 2. Conversion between graphs

(a) For distributions that factorises over the graph below, find the minimal undirected I-map.

x2x1 x3

x4 x5

x6 x7
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Solution. To derive an undirected minimal I-map from a directed one, we have to con-
struct the moralised graph where the “unmarried” parents are connected by a covering
edge. This is because each conditional p(xi|pai) corresponds to a factor φi(xi, pai) and we
need to connect all variables that are arguments of the same factor with edges.

Statistically, the reason for marrying the parents is as follows: An independency x ⊥⊥
y|{child, other nodes} does not hold in the directed graph in case of collider connections
but would hold in the undirected graph if we didn’t marry the parents. Hence links between
the parents must be added.

It is important to add edges between all parents of a node. Here, p(x4|x1, x2, x3) corre-
sponds to a factor φ(x4, x1, x2, x3) so that all four variables need to be connected. Just
adding edges x1 − x2 and x2 − x3 is not enough.

The moral graph, which is the requested minimal undirected I-map, is shown below.

x2x1 x3

x4 x5

x6 x7

(b) The graph below is a directed minimal I-map for the hidden Markov model. Find the corresponding
undirected minimal I-map.

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The graph does not contain any head-head connections. The undirected min-
imal I-map is thus obtained by removing all arrows from the graph.

y1 y2 y3 y4

x1 x2 x3 x4

(c) For the undirected I-map below, what is a corresponding directed minimal I-map?

x1 x2

x3 x4

x5
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Solution. We use the ordering x1, x2, x3, x4, x5 and follow the general procedure to con-
struct the directed minimal I-map while reading the independencies from the undirected
graph:

• x2 is not independent from x1 so that we set pa2 = {x1}. See first graph in Figure 3.

• Since x3 is connected to both x1 and x2, we generally don’t have x3 ⊥⊥ x2, x1. We
cannot make x3 independent from x2 by conditioning on x1 because there are two
paths from x3 to x2 and x1 only blocks the upper one. Moreover, x1 is a neighbour
of x3 so that conditioning on x2 does make them independent. Hence we must set
pa3 = {x1, x2}. See second graph in Figure 3.

• For x4, we see from the undirected graph, that x4 ⊥⊥ x1 | x3, x2. The graph further
shows that removing either x3 or x2 from the conditioning set is not possible and
conditioning on x1 won’t make x4 independent from x2 or x3. We thus have pa4 =
{x2, x3}. See fourth graph in Figure 3.

• The same reasoning shows that pa5 = {x3, x4}. See last graph in Figure 3.

This results in the triangulated directed graph in Figure 3 on the right.

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

Figure 3: . Answer to Exercise 2, Question (c).

To see why triangulation is necessary consider the case where we didn’t have the edge
between x2 and x3 as in Figure 4. The directed graph would then imply that x3 ⊥⊥ x2 | x1
(check!). But this independency assertion does not hold in the undirected graph so that
the graph in Figure 4 is not an I-map.

x1 x2

x3 x4

x5

Figure 4: Not a directed I-map for the undirected graphical model defined by the graph in
Question(c) of Exercise 2.

(d) Draw an undirected graph and an undirected factor graph for p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2)

Solution.
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x1 x2

x3

x1 x2

p(x3|x1 x2)

x3

p(x1) p(x2)

(e) Draw an undirected factor graph for the directed graphical model defined by the graph below.

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The graph specifies probabilistic models that factorise as

p(x1, . . . , x4, y1, . . . , y4) = p(x1)p(y1|x1)
4∏

i=2

p(yi|xi)p(xi|xi−1)

It is the graph for a Hidden Markov model. The corresponding factor graph is shown
below.

y1

p(y1|x1)

y2

p(y2|x2)

y3

p(y3|x3)

y4

p(y4|x4)

p(x1) x1

p(x2|x1)
x2

p(x3|x2)
x3

p(x4|x3)
x4

(f) Draw the moralised graph and an undirected factor graph for directed graphical models defined by
the graph below (this kind of graph is called a polytree: there are no loops but a node may have
more than one parent).

x1 x2

x3 x4

x5 x6

Solution. The moral graph is obtained by connecting the parents of the collider node
x4. See the graph on the left in the figure below.

For the factor graph, we note that the directed graph defines the following class of proba-
bilistic models

p(x1, . . . x6) = p(x1)p(x2)p(x3|x1)p(x4|x1, x2)p(x5|x4)p(x6|x4)

This gives the factor graph on right in the figure below.
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x1 x2

x3 x4

x5 x6

p(x1) x1 p(x2)x2

p(x3|x1)

x3

p(x4|x1 x2)

x4

p(x5|x4)

x5

p(x6|x4)

x6

Note:

• The moral graph contains a loop while the factor graph does not. The factor graph
is still a polytree. This can be exploited for inference.

• One may choose to group some factors together in order to obtain a factor graph with
a particular structure (see factor graph below)

x1 x2

p(x3|x2)

x3

p(x4|x1 x2)p(x1)p(x2)

x4

p(x5|x4)p(x6|x4)

x5 x6

Exercise 3. Limits of directed and undirected graphical models

We here consider the probabilistic model p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) where p(y1, y2|x1, x2)
factorises as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) (1)

with n(x1, x2) equal to

n(x1, x2) =

(∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2

)−1

. (2)

In the lecture, we used the model to illustrate the setup where x1 and x2 are two independent inputs that
each control the interacting variables y1 and y2 (see graph below).

some interaction

x1 x2

y1 y2

(a) Use the basic characterisations of statistical independence

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = p(u|z)p(v|z) (3)

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = a(u, z)b(v, z) (a(u, z) ≥ 0, b(v, z) ≥ 0) (4)

to show that p(y1, y2, x1, x2) satisfies the following independencies
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• x1 ⊥⊥ x2 (independence between control variables)

• x1 ⊥⊥ y2 | y1, x2 (y2 is only influenced by y1 and x2)

• x2 ⊥⊥ y1 | y2, x1 (y1 is only influenced by y2 and x1)

Solution. The pdf/pmf is

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)

For x1 ⊥⊥ x2

We compute p(x1, x2) as

p(x1, x2) =

∫
p(y1, y2, x1, x2)dy1dy2 (S.1)

=

∫
p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)dy1dy2 (S.2)

= n(x1, x2)p(x1)p(x2)

∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2 (S.3)

(2)
= n(x1, x2)p(x1)p(x2)

1

n(x1, x2)
(S.4)

= p(x1)p(x2). (S.5)

Since p(x1) and p(x2) are the univariate marginals of x1 and x2, respectively, it follows
from (3) that x1 ⊥⊥ x2.

For x1 ⊥⊥ y2 | y1,x2

We rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.6)

= [p(y1|x1)p(x1)n(x1, x2)] [p(y2|x2)φ(y1, y2)p(x2)] (S.7)

= φA(x1, y1, x2)φB(y2, y1, x2) (S.8)

With (4), we have that x1 ⊥⊥ y2 | y1, x2. Note that p(x2) can be associated either with φA
or with φB.

For x2 ⊥⊥ y1 | y2,x1

We use here the same approach as for x1 ⊥⊥ y2 | y1, x2. (By symmetry considerations,
we could immediately see that the relation holds but let us write it out for clarity). We
rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.9)

= [p(y2|x2)n(x1, x2)p(x2)p(x1))] [p(y1|x1)φ(y1, y2)]) (S.10)

= φ̃A(x2, x1, y2)φ̃B(y1, y2, x1) (S.11)

With (4), we have that x2 ⊥⊥ y1 | y2, x1.

(b) Draw the undirected graph for p(y1, y2, x1, x2) and check whether graph separation allows us to see
all independencies listed above.
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Solution. We write

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)

as

p(y1, y2, x1, x2) = φ1(y1, x1)φ2(y2, x2)φ3(y1, y2)φ4(x1, x2) with (S.12)

φ1(y1, x1) = p(y1|x1)p(x1) (S.13)

φ2(y2, x2) = p(y2|x2)p(x2) (S.14)

φ3(y1, y2) = φ(y1, y2) (S.15)

φ4(x1, x2) = n(x1, x2) (S.16)

The corresponding undirected graph is as follows.

x1 x2

y1 y2

While the graph implies x1 ⊥⊥ y2 | y1, x2 and x2 ⊥⊥ y1 | y2, x1, the independency x1 ⊥⊥ x2
is not represented.

(c) Draw the directed graph for p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) and check whether graph
separation allows us to see all independencies listed above.

Solution. If we use the ordering x1, x2, y1, y2, we obtain the graph on the left. If we use
the ordering x1, x2, y2, y1, we obtain the graph on the right.

x1 x2

y1 y2

x1 x2

y1 y2

The graphs do represent x1 ⊥⊥ x2 but not x1 ⊥⊥ y2 | y1, x2 and x2 ⊥⊥ y1 | y2, x1. Moreover,
the graphs imply a directionality between y1 and y2, and a direct influence of x1 on y2,
and of x2 on y1, in contrast to the original modelling goals.

(d) (optional, not examinable) In the lecture, we have the following factor graph for p(y1, y2, x1, x2)

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)
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Use the separation rules for factor graphs to verify that we can find all independence relations.
The separation rules are (see Barber, section 4.4.1, or the original paper by Brendan Frey: https:

// arxiv. org/ abs/ 1212. 2486 ):

“If all paths are blocked, the variables are conditionally independent. A path is blocked if one or
more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.

2. One of the variables or factors in the path has two incoming edges that are part of the path
(variable or factor collider), and neither the variable or factor nor any of its descendants are
in the conditioning set.”

Remarks:

• “one or more of the following” should best be read as “one of the following”.

• “incoming edges” means directed incoming edges

• the descendants of a variable of factor node are all the variables that you can reach by following
a path (containing directed or directed edges, but for directed edges, all directions have to be
consistent)

• In the graph we have dashed directed edges: they do count when you determine the descendants
but they do not contribute to paths. For example, y1 is a descendant of the n(x1, x2) factor
node but x1 − n− y2 is not a path.

Solution. x1 ⊥⊥ x2

There are two paths from x1 to x2 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Both the blue and red path are blocked by condition 2.

x1 ⊥⊥ y2 | y1,x2

There are two paths from x1 to y2 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

The observed variables are marked in blue. For the red path, the observed x2 blocks the
path (condition 1). Note that the n(x1, x2) node would be open by condition 2. The blue
path is blocked by condition 1 too. In directed graphical models, the y1 node would be
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open, but here while condition 2 does not apply, condition 1 still applies (note the one or
more of ... in the separation rules), so that the path is blocked.

x2 ⊥⊥ y1 | y2,x1

There are two paths from x2 to y1 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(x1 x2)

The same reasoning as before yields the result.

Finally note that x1 and x2 are not independent given y1 or y2 because the upper path
through n(x1, x2) is not blocked whenever y1 or y2 are observed (condition 2).

Credit: this example is discussed in the original paper by B. Frey (Figure 6).
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