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Recap

We can decompose the log marginal of any joint distribution
into a sum of two terms:

» the free energy and
» the KL divergence between the variational and the conditional
distribution

Variational principle: Maximising the free energy with respect
to the variational distribution allows us to (approximately)
compute the (log) marginal and the conditional from the joint.

We applied the variational principle to inference and learning
problems.

For parameter estimation in presence of unobserved variables:
Coordinate ascent on the free energy leads to the (variational)
EM algorithm.

Michael Gutmann Learning for Hidden Markov Models

2/28



Program

1. EM algorithm to learn the parameters of HMMs

2. Course recap
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Program

1. EM algorithm to learn the parameters of HMMs
o Problem statement
o Learning by gradient ascent on the log-likelihood or by EM
o EM update equations
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Hidden Markov model

Specified by

» DAG (representing the independence assumptions)

» Transition distribution p(h;j|h;i_1)
» Emission distribution p(v;|h;)

» |nitial state distribution p(h;)
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The classical inference problems

» Classical inference problems:

» Filtering: p(h¢|vyi.t)
» Smoothing: p(h:|vi.,) where t < u
» Prediction: p(h:|vi.,) and/or p(v¢|vi.,) where t > u
» Most likely hidden path (Viterbi alignment):
argmax, p(h1.¢|vi.e)
» Inference problems can be solved by message passing.

» Requires that the transition, emission, and initial state
distributions are known.
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Learning problem

» Data: D ={D1,...,Dp}, where each D; is a sequence of
visibles of length d, i.e.

Dj = (Vl(J), v oey V((j.’l))
» Assumptions:

» All variables are discrete: h; € {1,... K}, v; € {1,..., M}.
» Stationarity

» Parametrisation:
» Transition distribution is parametrised by the matrix A

p(h;i = k|lhi_1 = k'; A) = A
» Emission distribution is parametrised by the matrix B
p(vi = m|h; = k;B) = B, «
» Initial state distribution is parametrised by the vector a
p(h1 = k;a) = a
» Task: Use the data D to learn A, B, and a
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Learning problem

» Since A, B, and a represent (conditional) distributions, the
parameters are constrained to be non-negative and to satisfy

K K
Y plhi=klhiii=K)=> A =1
k=1 k=1
M M
Y plvi=mlhi=k) =Y Bmi=
m=1 m=1
k K
Y p(h=k) =) ax=
k=1 k=1

» Note: Much of what follows holds more generally for HMMs
and does not use the stationarity assumption or that the h;
and v; are discrete random variables.

» The parameters together will be denoted by 6.
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Options for learning the parameters

» The model p(h,v;8) is normalised but we have unobserved
variables.
Hold]

» Option 1: Simple gradient ascent on the log-likelihood

Hnew — Hold + € Z IEj’p(h|Dj;¢9o|G|) [V@ |Og p(h, Dj; 9)
j=1

see slides Intractable Likelihood Functions
» Option 2: EM algorithm

Hnew — arglgnax Z IIE4:{’[)(h|'Dj;90|O|) [log p(h7 D, 6)]
j=1

see slides Variational Inference and Learning

» For HMMs, both are possible thanks to sum-product message
passing.
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Options for learning the parameters

Option 1: Onew = Oqig + € Z;:l ]Ep(h|Dj;00|d) [Ve log p(h, Dj; 0)

90|d]
Option 2: Opew = argmaxy ZJ’.;I Ep(h’Dj;gold) [log p(h, Dj; 0)]
» Similarities:

» Both require computation of the posterior expectation.
» Assume the “M" step is performed by gradient ascent,

)

where 0 is initialised with 0.4, and the final 8’ gives O, .
If only one gradient step is taken, option 2 becomes option 1.

0 =6+ GZEP(MDj;Qold) [Vg log p(h, D;; 6)

Jj=1

» Differences:

» Unlike option 2, option 1 requires re-computation of the
posterior after each ¢ update of @, which may be costly.

> In some cases (including HMMs), the “M" /argmax step can be
performed analytically in closed form.
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Expected complete data log-likelihood

» Denote the objective in the EM algorithm by J(8,0,4),
J(0,801d) = Y Epnip;:0,4) [log p(h, Dj; 0)]
j=1

» We show on the next slide that in general for the HMM
model, the full posteriors p(h|Dj; 8,14) are not needed but just

p(hilhi—1,Dj; Boid) p(hi|Dj; Ooid)-

They can be obtained by the alpha-beta recursion
(sum-product algorithm).

» Posteriors need to be computed for each observed sequence
D;, and need to be re-computed after updating 6.
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Expected complete data log-likelihood

» The HMM model factorises as
d
p(h,v; 8) = p(hi;a)p(va|h1; B) | | p(hilhi—1; A)p(vilhi; B)
=2
> For sequence D;, we have

log p(h, Dj; 8) = log p(h1; a) + log p(v{ | hr; B)+

d
S "log p(hilhi—1; A) + log p(v”|h;; B)
=2

> Since
Ep(hD;;004) [108 P(1; @)] = By, Dj;0,4) [log p(h1; a)]
Ep(h|D;:604) [108 P(hilhi—1; A)] = Ep(h, b1 1D;:004) [108 P(hilhim1; A)]
Ep(hD;040) ['0{% p(v?|h; B)} = Ep(hi|D;j1000) [Iog p(v?|h; B)}

we do not need the full posterior but only the marginal posteriors
and the joint of the neighbouring variables.
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Expected complete data log-likelihood

With the factorisation (independencies) in the HMM model, the
objective function thus becomes

J(0,001d) =D Ephp;:0,4) [log p(h, Dj; 0)]
=1

— Z IE‘ﬁj’P(hl|Dj:49o|o|) [|Og p(hl; a)]"‘
j=1

n

=

p(hi,hi—1|Dj;0.14) [|Og p(h"‘h"_l; A)]—l_

S

Ep(h,"Dj;90|d) |:|Og p(V/(J)’hh B):|
1

|
(Y

'ﬂ'
—t

.M Q ||.M Q
N

1

J
In the derivation so far we have not yet used the assumed
parametrisation of the model. We insert these assumptions next.
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The term for the initial state distribution

» We have assumed that
p(hlzk;a):ak k:].,...,K

which we can write as

. 1(h1=k)
p(hi;a)=]]a,
k
(like for the Bernoulli model, see slides Basics of Model-Based Learning and

Tutorial 7)
» The log pmf is thus

log p(h1;a) = Y  1(h = k) log ax
k

» Hence

B (b D054 [108 P(P1:@)] = D Ep(y|y:64) [L(1 = k)] log a
k

= Z p(hl — k‘Dj; Hold) log ak
k
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The term for the transition distribution

» We have assumed that
p(hi = klhi—1 = k'; A) = Ak ks k.k=1,...K
which we can write as
p(hilhi—1; A) =] A,]i(:f:k’h"_lzk/)

k,k’
(see slides Basics of Model-Based Learning and Tutorial 7)
> Further:
, _ !
log p(hilhi—1; A) = > 1(hi = k, hi—1 = k') log Ay i

K,k
> Hence E,p, h,_1|D;:604) [108 P(hilhi-1; A)] equals
Y Eophihi1|Dyi04g) [L(hi = k, hi_1 = K')] log Ay s
K,k

= p(hi = k. hi1 = K'|Ds; ola) log A
k, k'
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The term for the emission distribution

We can do the same for the emission distribution.
With

p(vi|hi; B) H Bll(v, m,hi=k) H BIL(V, m)1(hi=k)
we have

B p(hiD;ji001a) ['Og p(v)|h; B)} = 1(v?) = m)p(h; = k|Dj, Ooid) 10g Bm

m, k
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E-step for discrete-valued HMM

» Putting all together, we obtain the complete data log
likelihood for the HMM with discrete visibles and hiddens.

J(0,004) =D > p(h1 = k|Dj; Ooq) log ax+
=1 k

n d
S:S:S:P(hl — k) hi—l — k/‘D_/v Hold) |OgAk,k/—|_

j=1i=2 kK’

S5 19 = mip(h = KD, 6u) log B

j=1i=1 m,k

» The objectives for a, and the columns of A and B decouple.

» Does not completely decouple because of the constraint that
the elements of a have to sum to one, and that the columns
of A and B have to sum to one.
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M-step

We discuss the details for the maximisation with respect to a.
The other cases are done equivalently.

Optimisation problem:

mz?xz; zk: p(h1 = k|Dj; O414) log ay
J:

subject to a, > 0 Zak =1
k

The non-negativity constraint could be handled by
re-parametrisation, but the constraint is here not active (the
objective is not defined for ax < 0) and can be dropped.

The normalisation constraint can be handled by using the
methods of Lagrange multipliers (see e.g. Barber Appendix A.6).
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M-step

> Lagrangian: > 77, >, p(h1 = k|Dj; Ocia) log ax — A(>_, ak — 1)
» The derivative with respect to a specific a; is

1
dj

> p(h1 = i|Dj; Ooia) A

j=1

» Gives the necessary condition for optimality

1 & .
aj = X Zp(hl — I’Dj; 90|d)
Jj=1

» The derivative with respect to A gives back the constraint
Sa=1
i

> Set A =323 7 4 p(h1 = i|Dj; Ooiq) to satisfy the constraint.
» The Hessian of the Lagrangian is negative definite, which
shows that we have found a maximum.
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M-step
> Since ) . p(h1 = i|Dj; Oo1q) = 1, we obtain A = n so that
1 n
= > p(h1 = k|Dj; O41a)
j=1

Average of all posteriors of h; obtained by message passing.

» Equivalent calculations give

ZJ'?:1 Z,qzz p(hi =k, hi_1 = k'|Dj; Oo14)
Dk 27:1 Z,q:z p(hi = k, hi_1 = K'|Dj; Oo14)

Ak ke =

and

S S 1w = m)p(hi = KD Oaia)

Bmk
St S (v = mYp(h: = k|Dj; Boia)

Y

Inferred posteriors obtained by message passing are averaged over
different sequences D; and across each sequence (stationarity).
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EM for discrete-valued HMM (Baum-Welch algorithm)

Given parameters 04

1. For each sequence D; compute the posteriors
p(hilhi—1,Dj; Oold) p(hi|Dj; Ooid)
using the alpha-beta recursion (sum-product algorithm)

2. Update the parameters

1 n
ax nE p(h1 = k|Dj; Ooia)

j=1
D i S8, p(hi = k, hi_1 = K'|Dj; O1a)
D kD S, p(hi = k, hi_1 = K'|Dj; O1a)
g 22 1w = mp(h = KIDj; Oa)
TS L 1(v?) = mYp(h = k|Dj; Baia)

Repeat step 1 and 2 using the new parameters for 0,4. Stop e.g. if

Ak k=

change in parameters is less than a threshold.
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Program

1. EM algorithm to learn the parameters of HMMs
o Problem statement
o Learning by gradient ascent on the log-likelihood or by EM
o EM update equations
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1. EM algorithm to learn the parameters of HMMs

2. Course recap



Course recap

» \We started the course with the basic observation that
variability is part of nature.

» Variability leads to uncertainty when analysing or drawing
conclusions from data.

» This motivates taking a probabilistic approach to modelling
and reasoning.

Michael Gutmann Learning for Hidden Markov Models 24 /28



Course recap

» Probabilistic modelling:

» |dentify the quantities that relate to the aspects of reality that
you wish to capture with your model.
» Consider them to be random variables, e.g. x,y, z, with a joint

pdf (pmf) p(x,y, z).
» Probabilistic reasoning:

» Assume you know that y € £ (measurement, evidence)
» Probabilistic reasoning about x then consists in computing

p(x|y € &)

or related quantities like its maximiser or posterior
expectations.
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Course recap

» Principled framework but naive implementation quickly runs
into computational issues.

» For example,

_ 2.2 P(X,¥o,2)
p(X\yo) T zxg P(X, ymz)

cannot be computed if x,y, z each are d = 500 dimensional,
and if each element of the vectors can take K = 10 values.

» The course had four main topics.

Topic 1: Representation We discussed reasonable weak
assumptions to efficiently represent p(x,y,z).

» Two classes of assumptions: independence and parametric
assumptions.

» Directed and undirected graphical models

» Expressive power of the graphical models

» Factor graphs
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Course recap

Topic 2: Exact inference We have seen that the independence
assumptions allow us, under certain conditions, to efficiently
compute the posterior probability or derived quantities.

» Variable elimination for general factor graphs

» Inference when the model can be represented as a factor tree
(message passing algorithms)

» Application to Hidden Markov models

Topic 3: Learning We discussed methods to learn probabilistic
models from data by introducing parameters and learning
them from data.

» Learning by Bayesian inference

» Learning by parameter estimation

» Likelihood function

» Factor analysis and independent component analysis
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Course recap

Topic 4: Approximate inference and learning We discussed
that intractable integrals may hinder inference and
likelihood-based learning.

» Intractable integrals may be due to unobserved variables or
intractable partition functions.

» Alternative criteria for learning when the partition function is
intractable (score matching)

» Monte Carlo integration and sampling
» Variational approaches to learning and inference

» EM algorithm and its application to hidden Markov models
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