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Recap

I We can decompose the log marginal of any joint distribution
into a sum of two terms:

I the free energy and
I the KL divergence between the variational and the conditional

distribution
I Variational principle: Maximising the free energy with respect

to the variational distribution allows us to (approximately)
compute the (log) marginal and the conditional from the joint.

I We applied the variational principle to inference and learning
problems.

I For parameter estimation in presence of unobserved variables:
Coordinate ascent on the free energy leads to the (variational)
EM algorithm.
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Hidden Markov model

Specified by
I DAG (representing the independence assumptions)

v1 v2 v3 v4

h1 h2 h3 h4

I Transition distribution p(hi |hi−1)
I Emission distribution p(vi |hi)
I Initial state distribution p(h1)
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The classical inference problems

I Classical inference problems:
I Filtering: p(ht |v1:t)
I Smoothing: p(ht |v1:u) where t < u
I Prediction: p(ht |v1:u) and/or p(vt |v1:u) where t > u
I Most likely hidden path (Viterbi alignment):

argmaxh1:t p(h1:t |v1:t)

I Inference problems can be solved by message passing.
I Requires that the transition, emission, and initial state

distributions are known.
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Learning problem

I Data: D = {D1, . . . ,Dn}, where each Dj is a sequence of
visibles of length d , i.e.

Dj = (v (j)
1 , . . . , v (j)

d )
I Assumptions:

I All variables are discrete: hi ∈ {1, . . .K}, vi ∈ {1, . . . ,M}.
I Stationarity

I Parametrisation:
I Transition distribution is parametrised by the matrix A

p(hi = k|hi−1 = k ′; A) = Ak,k′

I Emission distribution is parametrised by the matrix B

p(vi = m|hi = k; B) = Bm,k

I Initial state distribution is parametrised by the vector a

p(h1 = k; a) = ak

I Task: Use the data D to learn A, B, and a
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Learning problem

I Since A, B, and a represent (conditional) distributions, the
parameters are constrained to be non-negative and to satisfy

K∑
k=1

p(hi = k|hi−1 = k ′) =
K∑

k=1
Ak,k′ = 1

M∑
m=1

p(vi = m|hi = k) =
M∑

m=1
Bm,k = 1

k∑
k=1

p(h1 = k) =
K∑

k=1
ak = 1

I Note: Much of what follows holds more generally for HMMs
and does not use the stationarity assumption or that the hi
and vi are discrete random variables.

I The parameters together will be denoted by θ.
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Options for learning the parameters

I The model p(h, v; θ) is normalised but we have unobserved
variables.

I Option 1: Simple gradient ascent on the log-likelihood

θnew = θold + ε
n∑

j=1
Ep(h|Dj ;θold)

[
∇θ log p(h,Dj ; θ)

∣∣∣∣
θold

]

see slides Intractable Likelihood Functions
I Option 2: EM algorithm

θnew = argmax
θ

n∑
j=1

Ep(h|Dj ;θold) [log p(h,Dj ; θ)]

see slides Variational Inference and Learning
I For HMMs, both are possible thanks to sum-product message

passing.
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Options for learning the parameters

Option 1: θnew = θold + ε
∑n

j=1 Ep(h|Dj ;θold)

[
∇θ log p(h,Dj ; θ)

∣∣∣
θold

]
Option 2: θnew = argmaxθ

∑n
j=1 Ep(h|Dj ;θold) [log p(h,Dj ; θ)]

I Similarities:
I Both require computation of the posterior expectation.
I Assume the “M” step is performed by gradient ascent,

θ′ = θ + ε
n∑

j=1
Ep(h|Dj ;θold)

[
∇θ log p(h,Dj ; θ)

∣∣∣∣
θ

]

where θ is initialised with θold, and the final θ′ gives θnew.
If only one gradient step is taken, option 2 becomes option 1.

I Differences:
I Unlike option 2, option 1 requires re-computation of the

posterior after each ε update of θ, which may be costly.
I In some cases (including HMMs), the “M”/argmax step can be

performed analytically in closed form.
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Expected complete data log-likelihood

I Denote the objective in the EM algorithm by J(θ,θold),

J(θ,θold) =
n∑

j=1
Ep(h|Dj ;θold) [log p(h,Dj ; θ)]

I We show on the next slide that in general for the HMM
model, the full posteriors p(h|Dj ; θold) are not needed but just

p(hi |hi−1,Dj ; θold) p(hi |Dj ; θold).

They can be obtained by the alpha-beta recursion
(sum-product algorithm).

I Posteriors need to be computed for each observed sequence
Dj , and need to be re-computed after updating θ.
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Expected complete data log-likelihood

I The HMM model factorises as

p(h, v; θ) = p(h1; a)p(v1|h1; B)
d∏

i=2
p(hi |hi−1; A)p(vi |hi ; B)

I For sequence Dj , we have

log p(h,Dj ; θ) = log p(h1; a) + log p(v (j)
1 |h1; B)+

d∑
i=2

log p(hi |hi−1; A) + log p(v (j)
i |hi ; B)

I Since
Ep(h|Dj ;θold) [log p(h1; a)] = Ep(h1|Dj ;θold) [log p(h1; a)]

Ep(h|Dj ;θold) [log p(hi |hi−1; A)] = Ep(hi ,hi−1|Dj ;θold) [log p(hi |hi−1; A)]

Ep(h|Dj ;θold)

[
log p(v (j)

i |hi ; B)
]

= Ep(hi |Dj ;θold)

[
log p(v (j)

i |hi ; B)
]

we do not need the full posterior but only the marginal posteriors
and the joint of the neighbouring variables.
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Expected complete data log-likelihood

With the factorisation (independencies) in the HMM model, the
objective function thus becomes

J(θ,θold) =
n∑

j=1
Ep(h|Dj ;θold) [log p(h,Dj ; θ)]

=
n∑

j=1
Ep(h1|Dj ;θold) [log p(h1; a)]+

n∑
j=1

d∑
i=2

Ep(hi ,hi−1|Dj ;θold) [log p(hi |hi−1; A)]+

n∑
j=1

d∑
i=1

Ep(hi |Dj ;θold)
[
log p(v (j)

i |hi ; B)
]

In the derivation so far we have not yet used the assumed
parametrisation of the model. We insert these assumptions next.
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The term for the initial state distribution

I We have assumed that
p(h1 = k; a) = ak k = 1, . . . ,K

which we can write as
p(h1; a) =

∏
k

a1(h1=k)
k

(like for the Bernoulli model, see slides Basics of Model-Based Learning and
Tutorial 7)

I The log pmf is thus
log p(h1; a) =

∑
k
1(h1 = k) log ak

I Hence
Ep(h1|Dj ;θold) [log p(h1; a)] =

∑
k

Ep(h1|Dj ;θold) [1(h1 = k)] log ak

=
∑

k
p(h1 = k|Dj ; θold) log ak
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The term for the transition distribution

I We have assumed that
p(hi = k|hi−1 = k ′; A) = Ak,k′ k, k ′ = 1, . . .K

which we can write as
p(hi |hi−1; A) =

∏
k,k′

A1(hi =k,hi−1=k′)
k,k′

(see slides Basics of Model-Based Learning and Tutorial 7)
I Further:

log p(hi |hi−1; A) =
∑
k,k′

1(hi = k, hi−1 = k ′) logAk,k′

I Hence Ep(hi ,hi−1|Dj ;θold) [log p(hi |hi−1; A)] equals∑
k,k′

Ep(hi ,hi−1|Dj ;θold)
[
1(hi = k, hi−1 = k ′)

]
logAk,k′

=
∑
k,k′

p(hi = k, hi−1 = k ′|Dj ; θold) logAk,k′
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The term for the emission distribution

We can do the same for the emission distribution.

With

p(vi |hi ; B) =
∏
m,k

B1(vi =m,hi =k)
m,k =

∏
m,k

B1(vi =m)1(hi =k)
m,k

we have

Ep(hi |Dj ;θold)
[
log p(v (j)

i |hi ; B)
]

=
∑
m,k

1(v (j)
i = m)p(hi = k|Dj ,θold) logBm,k
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E-step for discrete-valued HMM

I Putting all together, we obtain the complete data log
likelihood for the HMM with discrete visibles and hiddens.

J(θ,θold) =
n∑

j=1

∑
k

p(h1 = k|Dj ; θold) log ak+

n∑
j=1

d∑
i=2

∑
k,k′

p(hi = k, hi−1 = k ′|Dj ; θold) logAk,k′+

n∑
j=1

d∑
i=1

∑
m,k

1(v (j)
i = m)p(hi = k|Dj ,θold) logBm,k

I The objectives for a, and the columns of A and B decouple.
I Does not completely decouple because of the constraint that

the elements of a have to sum to one, and that the columns
of A and B have to sum to one.
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M-step

I We discuss the details for the maximisation with respect to a.
The other cases are done equivalently.

I Optimisation problem:

max
a

n∑
j=1

∑
k

p(h1 = k|Dj ; θold) log ak

subject to ak ≥ 0
∑

k
ak = 1

I The non-negativity constraint could be handled by
re-parametrisation, but the constraint is here not active (the
objective is not defined for ak ≤ 0) and can be dropped.

I The normalisation constraint can be handled by using the
methods of Lagrange multipliers (see e.g. Barber Appendix A.6).
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M-step

I Lagrangian: ∑n
j=1
∑

k p(h1 = k|Dj ; θold) log ak − λ(
∑

k ak − 1)
I The derivative with respect to a specific ai is

n∑
j=1

p(h1 = i |Dj ; θold) 1ai
− λ

I Gives the necessary condition for optimality

ai = 1
λ

n∑
j=1

p(h1 = i |Dj ; θold)

I The derivative with respect to λ gives back the constraint∑
i

ai = 1

I Set λ =
∑

i
∑n

j=1 p(h1 = i |Dj ; θold) to satisfy the constraint.
I The Hessian of the Lagrangian is negative definite, which

shows that we have found a maximum.
Michael Gutmann Learning for Hidden Markov Models 19 / 28



M-step

I Since
∑

i p(h1 = i |Dj ; θold) = 1, we obtain λ = n so that

ak = 1
n

n∑
j=1

p(h1 = k|Dj ; θold)

Average of all posteriors of h1 obtained by message passing.
I Equivalent calculations give

Ak,k′ =
∑n

j=1
∑d

i=2 p(hi = k, hi−1 = k ′|Dj ; θold)∑
k
∑n

j=1
∑d

i=2 p(hi = k, hi−1 = k ′|Dj ; θold)

and

Bm,k =
∑n

j=1
∑d

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)∑

m
∑n

j=1
∑d

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)

Inferred posteriors obtained by message passing are averaged over
different sequences Dj and across each sequence (stationarity).

Michael Gutmann Learning for Hidden Markov Models 20 / 28



EM for discrete-valued HMM (Baum-Welch algorithm)

Given parameters θold

1. For each sequence Dj compute the posteriors

p(hi |hi−1,Dj ; θold) p(hi |Dj ; θold)

using the alpha-beta recursion (sum-product algorithm)
2. Update the parameters

ak = 1
n

n∑
j=1

p(h1 = k|Dj ; θold)

Ak,k′ =
∑n

j=1
∑d

i=2 p(hi = k, hi−1 = k ′|Dj ; θold)∑
k
∑n

j=1
∑d

i=2 p(hi = k, hi−1 = k ′|Dj ; θold)

Bm,k =
∑n

j=1
∑d

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)∑

m
∑n

j=1
∑d

i=1 1(v (j)
i = m)p(hi = k|Dj ; θold)

Repeat step 1 and 2 using the new parameters for θold. Stop e.g. if
change in parameters is less than a threshold.
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Program

1. EM algorithm to learn the parameters of HMMs
Problem statement
Learning by gradient ascent on the log-likelihood or by EM
EM update equations
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Course recap

I We started the course with the basic observation that
variability is part of nature.

I Variability leads to uncertainty when analysing or drawing
conclusions from data.

I This motivates taking a probabilistic approach to modelling
and reasoning.
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Course recap

I Probabilistic modelling:
I Identify the quantities that relate to the aspects of reality that

you wish to capture with your model.
I Consider them to be random variables, e.g. x, y, z, with a joint

pdf (pmf) p(x, y, z).

I Probabilistic reasoning:
I Assume you know that y ∈ E (measurement, evidence)
I Probabilistic reasoning about x then consists in computing

p(x|y ∈ E)

or related quantities like its maximiser or posterior
expectations.
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Course recap

I Principled framework but naive implementation quickly runs
into computational issues.

I For example,
p(x|yo) =

∑
z p(x, yo , z)∑

x,z p(x, yo , z)

cannot be computed if x, y, z each are d = 500 dimensional,
and if each element of the vectors can take K = 10 values.

I The course had four main topics.
Topic 1: Representation We discussed reasonable weak
assumptions to efficiently represent p(x, y, z).

I Two classes of assumptions: independence and parametric
assumptions.

I Directed and undirected graphical models
I Expressive power of the graphical models
I Factor graphs
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Course recap

Topic 2: Exact inference We have seen that the independence
assumptions allow us, under certain conditions, to efficiently
compute the posterior probability or derived quantities.

I Variable elimination for general factor graphs
I Inference when the model can be represented as a factor tree

(message passing algorithms)
I Application to Hidden Markov models

Topic 3: Learning We discussed methods to learn probabilistic
models from data by introducing parameters and learning
them from data.

I Learning by Bayesian inference
I Learning by parameter estimation
I Likelihood function
I Factor analysis and independent component analysis

Michael Gutmann Learning for Hidden Markov Models 27 / 28



Course recap

Topic 4: Approximate inference and learning We discussed
that intractable integrals may hinder inference and
likelihood-based learning.

I Intractable integrals may be due to unobserved variables or
intractable partition functions.

I Alternative criteria for learning when the partition function is
intractable (score matching)

I Monte Carlo integration and sampling
I Variational approaches to learning and inference
I EM algorithm and its application to hidden Markov models
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