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Recap

I Learning and inference often involves intractable integrals
I For example: marginalisation

p(x) =
∫

y
p(x, y)dy

I For example: likelihood in case of unobserved variables

L(θ) = p(D; θ) =
∫

u
p(u,D; θ)du

I We can use Monte Carlo integration and sampling to
approximate the integrals.

I Alternative: variational approach to (approximate) inference
and learning.
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History

Variational methods have a long history, in particular in physics.
For example:

I Fermat’s principle (1650) to explain the path of light: “light
travels between two given points along the path of shortest
time” (see e.g. http://www.feynmanlectures.caltech.edu/I_26.html)

I Principle of least action in classical mechanics and beyond (see
e.g. http://www.feynmanlectures.caltech.edu/II_19.html)

I Finite elements methods to solve problems in fluid dynamics
or civil engineering.
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Program

1. Preparations

2. The variational principle

3. Application to inference and learning
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Program

1. Preparations
Concavity of the logarithm and Jensen’s inequality
Kullback-Leibler divergence and its properties

2. The variational principle

3. Application to inference and learning
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log is concave

I log(u) is concave

log(au1 +(1−a)u2) ≥ a log(u1)+(1−a) log(u2) a ∈ [0, 1]

I log(average) ≥ average (log)

I Generalisation

logE[g(x)] ≥ E[log g(x)]

with g(x) > 0

log(u)

u

log(u)

I Jensen’s inequality for concave functions.
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Kullback-Leibler divergence

I Kullback Leibler divergence KL(p||q)

KL(p||q) =
∫

p(x) log p(x)
q(x)dx = Ep(x)

[
log p(x)

q(x)

]
I Properties

I KL(p||q) = 0 if and only if (iff) p = q
(they may be different on sets of probability zero)

I KL(p||q) 6= KL(q||p)
I KL(p||q) ≥ 0

I Non-negativity follows from the concavity of the logarithm.
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Non-negativity of the KL divergence
Non-negativity follows from the concavity of the logarithm.

Ep(x)

[
log q(x)

p(x)

]
≤ logEp(x)

[q(x)
p(x)

]
= log

∫
p(x)q(x)

p(x)dx

= log
∫

q(x)dx

= log 1 = 0.

From
Ep(x)

[
log q(x)

p(x)

]
≤ 0

it follows that

KL(p||q) = Ep(x)

[
log p(x)

q(x)

]
= −Ep(x)

[
log q(x)

p(x)

]
≥ 0
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)

Green: (unimodal) Gaussian q that minimises KL(q||p)

Red: (unimodal) Gaussian q that minimises KL(p||q)
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Barber Figure 28.1, Section 28.3.4
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Asymmetry of the KL divergence
argminq KL(q||p) = argminq

∫
q(x) log q(x)

p(x) dx
I Optimal q avoids regions where p is small.
I Produces good local fit, “mode seeking”

argminq KL(p||q) = argminq
∫

p(x) log p(x)
q(x) dx

I Optimal q is nonzero where p is nonzero
(and does not care about regions where p is small)

I Corresponds to MLE; produces global fit/moment matching
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)

Red: optimal (unimodal) Gaussians q(x)

Global moment matching (left) versus mode seeking (middle and
right). (two local minima are shown)

minq KL( p || q) minq KL( q || p) minq KL( q || p)

Bishop Figure 10.3
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Program

1. Preparations
Concavity of the logarithm and Jensen’s inequality
Kullback-Leibler divergence and its properties

2. The variational principle

3. Application to inference and learning
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Program

1. Preparations

2. The variational principle
Variational lower bound
Free energy and the decomposition of the log marginal
Free energy maximisation to compute the marginal and

conditional from the joint

3. Application to inference and learning
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Variational lower bound: auxiliary distribution

Consider joint pdf /pmf p(x, y) with marginal p(x) =
∫

p(x, y)dy
I Like for importance sampling, we can write

p(x) =
∫

p(x, y)dy =
∫ p(x, y)

q(y) q(y)dy = Eq(y)

[p(x, y)
q(y)

]
where q(y) is an auxiliary distribution (called the variational
distribution in the context of variational inference/learning)

I Log marginal is

log p(x) = logEq(y)

[p(x, y)
q(y)

]
I Instead of approximating the expectation with a sample

average, use now the concavity of the logarithm.
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Variational lower bound: concavity of the logarithm

I Concavity of the log gives

log p(x) = logEq(y)

[p(x, y)
q(y)

]
≥ Eq(y)

[
log p(x, y)

q(y)

]
This is the variational lower bound for log p(x).

I Right-hand side is called the (variational) free energy

F(x, q) = Eq(y)

[
log p(x, y)

q(y)

]
It depends on x through the joint p(x, y), and on the auxiliary
distribution q(y)
(since q is a function, the free energy is called a functional, which is a mapping
that depends on a function)
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Decomposition of the log marginal

I We can re-write the free energy as

F(x, q) = Eq(y)

[
log p(x, y)

q(y)

]
= Eq(y)

[
log p(y|x)p(x)

q(y)

]
= Eq(y)

[
log p(y|x)

q(y) + log p(x)
]

= Eq(y)

[
log p(y|x)

q(y)

]
+ log p(x)

= −KL(q(y)||p(y|x)) + log p(x)

I Hence: log p(x) = KL(q(y)||p(y|x)) + F(x, q)
I KL ≥ 0 implies the bound log p(x) ≥ F(x, q).
I KL(q||p) = 0 iff q = p implies that for q(y) = p(y|x), the free

energy is maximised and equals log p(x) .
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Variational principle

I By maximising the free energy

F(x, q) = Eq(y)

[
log p(x, y)

q(y)

]
we can split the joint p(x, y) into p(x) and p(y|x)

log p(x) = max
q(y)
F(x, q)

p(y|x) = argmax
q(y)

F(x, q)

I You can think of free energy maximisation as a “function”
that takes as input a joint p(x, y) and returns as output the
(log) marginal and the conditional.
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Variational principle

I Given p(x, y), consider inference tasks
1. compute p(x) =

∫
p(x, y)dy

2. compute p(y|x)
I Variational principle: we can formulate the marginal inference

problems as an optimisation problem.
I Maximising the free energy

F(x, q) = Eq(y)

[
log p(x, y)

q(y)

]
gives
1. log p(x) = maxq(y) F(x, q)
2. p(y|x) = argmaxq(y) F(x, q)

I Inference becomes optimisation.
I Note: while we use q(y) to denote the variational distribution,

it depends on (fixed) x. Better (and rarer) notation is q(y|x).
Michael Gutmann Variational Inference and Learning 18 / 36



Solving the optimisation problem

F(x, q) = Eq(y)
[
log p(x,y)

q(y)

]
I Difficulties when maximising the free energy:

I optimisation with respect to pdf/pmf q(y)
I computation of the expectation

I Restrict search space to family of variational distributions q(y)
for which F(x, q) is computable.

I Family Q specified by
I independence assumptions, e.g. q(y) =

∏
i q(yi), which

corresponds to “mean-field” variational inference
I parametric assumptions, e.g. q(yi) = N (yi ;µi , σ

2
i )

I Optimisation is generally challenging: lots of research on how
to do it (keywords: stochastic variational inference, black-box
variational inference)
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Program

1. Preparations

2. The variational principle
Variational lower bound
Free energy and the decomposition of the log marginal
Free energy maximisation to compute the marginal and

conditional from the joint

3. Application to inference and learning
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Program

1. Preparations

2. The variational principle

3. Application to inference and learning
Inference: approximating posteriors
Learning with Bayesian models
Learning with statistical models and unobserved variables
Learning with statistical models and unobs variables: EM

algorithm
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Approximate posterior inference

I Inference task: given value x = xo and joint pdf/pmf p(x, y),
compute p(y|xo).

I Variational approach: estimate the posterior by solving an
optimisation problem

p̂(y|xo) = argmax
q(y)∈Q

F(x, q)

Q is the set of pdfs in which we search for the solution
I The decomposition of the log marginal gives

log p(xo) = KL(q(y)||p(y|x)) + F(x, q) = const

I Because the sum of the KL and free energy term is constant
we have

argmax
q(y)∈Q

F(x, q) = argmin
q(y)∈Q

KL(q(y)||p(y|x))
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Nature of the approximation

I When minimising KL(q||p) with respect to q, q will try to be
zero where p is small.

I Assume true posterior is correlated bivariate Gaussian and we
work with Q = {q(y) : q(y) = q(y1)q(y2)}
(independence but no parametric assumptions)

I p̂(y|xo), i.e. q(y) that
minimises KL(q||p), is
Gaussian.

I Mean is correct but
variances dictated by the
marginal variances along
the y1 and y2 axes.

I Posterior variance is
underestimated. 0 0.5 1

0

0.5

1

y1

y2

 

mean �eld 

true

approximation

(Bishop, Figure 10.2)
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Nature of the approximation

I Assume that true posterior is multimodal, but that the family
of variational distributions Q only includes unimodal
distributions.

I The learned approximate posterior p̂(y|xo) only covers one
mode (“mode-seeking” behaviour)

local optimumlocal optimum

Blue: true posterior

Red: approximation

Bishop Figure 10.3 (adapted)
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Learning by Bayesian inference

I Task 1: For a Bayesian model p(x|θ)p(θ) = p(x,θ), compute
the posterior p(θ|D)

I Formally the same problem as before: D = xo and θ ≡ y.
I Task 2: For a Bayesian model p(v,h|θ)p(θ) = p(v,h,θ),

compute the posterior p(θ|D) where the data D are for the
visibles v only.

I With the equivalence D = xo and (h,θ) ≡ y, we are formally
back to the problem just studied.

I But the variational distribution q(y) becomes q(h,θ).
I Often: assume q(h,θ) factorises as q(h)q(θ)

(see Barber Section 11.5)
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Parameter estimation in presence of unobserved variables

I Task: For the model p(v,h; θ), estimate the parameters θ
from data D about the visibles v.

I See slides on Intractable Likelihood Functions: the log
likelihood function `(θ) is implicitly defined by the integral

`(θ) = log p(D; θ) = log
∫

h
p(D,h; θ)dh,

which is generally intractable.
I We could approximate `(θ) and its gradient using Monte

Carlo integration.
I Here: use the variational approach.
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Parameter estimation in presence of unobserved variables

I Foundational result that we derived

log p(x) = KL(q(y)||p(y|x)) + F(x, q) F(x, q) = Eq(y)

[
log p(x, y)

q(y)

]
log p(x) = max

q(y)
F(x, q) p(y|x) = argmax

q(y)
F(x, q)

I With correspondence

v ≡ x h ≡ y p(v,h; θ) ≡ p(x, y)

we obtain

log p(v; θ) = KL(q(h)||p(h|v)) + F(v, q; θ) F(v, q; θ) = Eq(h)

[
log p(v,h; θ)

q(h)

]
log p(v; θ) = max

q(h)
F(v, q; θ) p(h|v; θ) = argmax

q(h)
F(v, q; θ)

I Plug in D for v: log p(D; θ) equals `(θ)
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Approximate MLE by free energy maximisation

I With v = D and `(θ) = p(D; θ), the equations become

`(θ) = KL(q(h)||p(h|D)) +

JF (q,θ)︷ ︸︸ ︷
F(D, q; θ) JF (q, θ) = Eq(h)

[
log p(D, h; θ)

q(h)

]
`(θ) = max

q(h)
JF (q, θ) p(h|D; θ) = argmax

q(h)
JF (q, θ)

Write JF (q,θ) for F(D, q; θ) when data D are fixed.
I Maximum likelihood estimation (MLE)

max
θ
`(θ) = max

θ
max
q(h)

JF (q,θ)

MLE = maximise the free energy with respect to θ and q(h)
I Restricting the search space Q for the variational distribution

q(h) due to computational reasons leads to an approximation.
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Free energy as sum of completed log likelihood and entropy

I We can write the free energy as

JF (q,θ) = Eq(h)

[
log p(D,h; θ)

q(h)

]
= Eq(h) [log p(D,h; θ)]−Eq(h) [log q(h)]

I −Eq(h)[log q(h)] is the entropy of q(h)
(entropy is a measure of randomness or variability, see e.g. Barber Section 8.2)

I log p(D,h; θ) is the log-likelihood for the filled-in data (D,h)
I Eq(h)[log p(D,h; θ)] is the weighted average of these

“completed” log-likelihoods, with the weighting given by q(h).
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Free energy as sum of completed log likelihood and entropy

JF (q,θ) = Eq(h) [log p(D,h; θ)]−Eq(h) [log q(h)]

I When maximising JF (q,θ) with respect to q we look for
random variables h (filled-in data) that

I are maximally variable (large entropy)
I are maximally compatible with the observed data

(according to the model p(D, v; θ))

I If included in the search space Q, p(h|D; θ) is the optimal q,
which means that the posterior fulfils the two desiderata best.
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Variational EM algorithm
Variational expectation maximisation (EM): maximise JF (q,θ) by
iterating between maximisation with respect to q and maximisation
with respect to θ.

variational distribution

m
o
d
e
l 
p
a
ra

m
e
te

rs

free energy

(Adapted from http://www.cs.cmu.edu/~tom/10-702/Zoubin-702.pdf)
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Where is the “expectation”?

I The optimisation with respect to q is called the “expectation
step”

max
q∈Q

JF (q,θ) = max
q∈Q

Eq

[
log p(D,h; θ)

q(h)

]
I Denote the best q by q∗ so that maxq∈Q JF (q,θ) = JF (q∗,θ)
I When we maximise with respect to θ, we need to know

JF (q∗,θ),

JF (q∗,θ) = Eq∗
[
log p(D,h; θ)

q∗(h)

]
,

which is defined in terms of an expectation and the reason for
the name “expectation step”.
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Classical EM algorithm

I From
`(θk) = KL(q(h)||p(h|D)) + JF (q,θk)

We know that the optimal q(h) is given by p(h|D; θk)
I If we can compute the posterior p(h|D; θk), we obtain the

(classical) EM algorithm that iterates between:

Expectation step

JF (q∗,θ) = Ep(h|D;θk)[log p(D,h; θ)]− Ep(h|D;θk) log p(h|D; θk)︸ ︷︷ ︸
does not depend on θ and

does not need to be computed

Maximisation step

argmax
θ

JF (q∗,θ) = argmax
θ

Ep(h|D;θk)[log p(D,h; θ)]
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Classical EM algorithm never decreases the log likelihood

I Assume you have updated the parameters and start iteration
k with optimisation with respect to q

max
q

JF (q,θk−1)

I Optimal solution q∗k is the posterior so that
`(θk−1) = JF (q∗k ,θk−1)

I Optimise with respect to the θ while keeping q fixed at q∗k
max

θ
JF (q∗k ,θ)

I Because of maximisation, optimiser θk is such that
JF (q∗k ,θk) ≥ JF (q∗k ,θk−1) = `(θk−1)

I From variational lower bound: `(θ) ≥ JF (q,θ)
`(θk) ≥ JF (q∗k ,θk) ≥ `(θk−1)

Hence: EM yields non-decreasing sequence `(θ1), `(θ2), . . ..
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Examples

I Work through the examples in Barber Section 11.2 for the
classical EM algorithm.

I Example 11.4 treats the cancer-asbestos-smoking example
that we had in an earlier lecture.
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Program recap

1. Preparations
Concavity of the logarithm and Jensen’s inequality
Kullback-Leibler divergence and its properties

2. The variational principle
Variational lower bound
Free energy and the decomposition of the log marginal
Free energy maximisation to compute the marginal and conditional

from the joint

3. Application to inference and learning
Inference: approximating posteriors
Learning with Bayesian models
Learning with statistical models and unobserved variables
Learning with statistical models and unobs variables: EM algorithm
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