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Recap

Learning and inference often involves intractable integrals, e.g.

» Marginalisation
M@:/f&dMy
y

» Expectations

Elg(x) | yol = [ g(x)p(xlyo)dx

for some function g.
» For unobserved variables, likelihood and gradient of the log lik

L(6) = p(D;8) = | p(u, D; 6du).

u

Vol(0) = Epup;e) [V log p(u, D; 0)]

Notation: [E,) is sometimes used to indicate that the expectation is taken with
respect to p(x).
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Recap

Learning and inference often involves intractable integrals, e.g.

» For unnormalised models with intractable partition functions
p(D; 0)

Jx P(x; 6)dx

ng(e) X m(D; 9) — Ep(x;H) [m(x; 9)]

L(0) =

» Combined case of unnormalised models with intractable
partition functions and unobserved variables.

» Evaluation of intractable integrals can sometimes be avoided
by using other learning criteria (e.g. score matching).

» Here: methods to approximate integrals like those above using
sampling.
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1. Monte Carlo integration

2. Sampling



Program

1. Monte Carlo integration
o Approximating expectations by averages
e Importance sampling
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Averages with iid samples

» Tutorial 7: For Gaussians, the sample average is an estimate
(MLE) of the mean (expectation) E[x]

1 <
X = — i~ K
X niglx [x]

» Gaussianity not needed: assume x; are iid observations of
x ~ p(x).

1 n
I — dx =~ X, Xp = — i
[x] /Xp(x) X R X Xn = ;X

» Subscript n reminds us that we used n samples to compute
the average.

» Approximating integrals by means of sample averages is called
Monte Carlo integration.
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Averages with iid samples
» Sample average is unbiased
_ 1 & « N
E [x,] = - ZE[X,’] = ;E[X] = E|[x]
i=1

(x: “identically distributed” assumption is used, not
independence)

» Variability
VIRl = LV Y| 2
Xn|l = —H Xji| =
n? o

(*: independence assumption used)

Ly > Vil = "]

» Squared error decreases as 1/n

V[R] = E [(% — E)?] = TVIx]
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Averages with iid samples

» Weak law of large numbers:

V[x]

Pr(|x, — E[x]| > ¢) <
(%0 —Elx] > ) < - 5

» As n — o0, the probability for the sample average to deviate
from the expected value goes to zero.

» \We say that sample average converges in probability to the
expected value.

» Speed of convergence depends on the variance V|x].

» Different “laws of large numbers” exist that make different
assumptions.
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Chebyshev's inequality

» Weak law of large numbers is a direct consequence of
Chebyshev's inequality

» Chebyshev's inequality: Let s be some random variable with
mean [E[s] and variance V|s].

Vls]
2

€

Pr(|s —E[s]| > ¢) <

» This means that for all random variables:

» probability to deviate more than three standard deviation from
the mean is less than 1/9 ~ 0.11

(set e = 34/V(s))

» Probability to deviate more than 6 standard deviations:
1/36 ~ 0.03.

These are conservative values; for many distributions, the
probabilities will be smaller.
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Proofs (not examinable)

» Chebyshev's inequality follows from Markov's inequality.

» Markov's inequality: For a random variable y > 0
K
Pry >t) < —— (t>0)
» Chebyshev’s inequality is obtained by setting y = |s — E[s]|

Pr(|s — E[s]| > t) = Pr (s — E[s])? > 1?)

_ E (s~ Els])?
<

Chebyshev's inequality follows with t = ¢, and because
E[(s — E[s]?] is the variance V[s] of s.
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Proofs (not examinable)

Proof for Markov's inequality: Let t be an arbitrary positive number and
y a one-dimensional non-negative random variable with pdf p.
We can decompose the expectation of y using t as split-point,

E[y] = /O " up(u)du = /0 up(u)du + /t " up(u)du.

Since u > t in the second term, we obtain the inequality

E[y] > /Ot up(u)du + /too tp(u)du.

The second term is t times the probability that y > t, so that

Ely] > /Ot up(u)du + tPr(y > t)

> tPr(y > t),

where the second line holds because the first term in the first line is
non-negative. This gives Markov's inequality

E(y)

Pr()/Zt)ST (t >0)
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Averages with correlated samples

» When computing the variance of the sample average

Vx|

n

Vv [>_<n] —

we assumed the samples are identically and independently
distributed.

» The variance shrinks with increasing n and the average
becomes more and more concentrated around E[x].

» Corresponding results exist for the case of statistically
dependent samples x;. Known as “ergodic theorems’.

» |Important for the theory of Markov chain Monte Carlo
methods but requires advanced mathematical theory.
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More general expectations

» So far, we have considered

E[x] = / Z Xj

where x; ~ p(x)

» This generalises

Elg(x)] = [ g(x)p(x)dx ~ Zg

where x; ~ p(x)

» Variance of the approximation if the x; are iid is —V[g( )]
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Examp|e (Based on a slide from Amos Storkey)

Elg(x)] = [ g()N(x;0,1)d

for g(x) = x and g(x) =

Left: sample average as a function
Right: Variability (0.5 quantile: solid,
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Examp|e (Based on a slide from Amos Storkey)

Elg(x)] = [ g()N(x;0,1)d

for g(x) = exp(0.6x?)

ng,

Left: sample average as a function of n
Right: Variability (0.5 quantile: solid, 0.1 and 0.9 quantiles: dashed)

Average

200

400 600
Number of samples

800 1000

Michael Gutmann

(x; ~ N(x;0,1))

Distribution of the average

NNNNN

- —
o~

0 200

400 600 800 1000
Number of samples

Sampling and Monte Carlo Integration

15/ 41



Example

» Indicators that something is wrong:

» Strong fluctuations in the sample average as n increases.
» Large non-declining variability.

» Note: integral is not finite:

/exp(O.6X2)N(X; 0,1)dx = exp(0.6x%) exp(—0.5x?)dx

|

= \/—2?/exp(0.1x2)dx

= O

but for any n, the sample average is finite and may be
mistaken for a good approximation.

» Check variability when approximating the expected value by a
sample average!
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Approximating general integrals

» |f the integral does not correspond to an expectation, we can
smuggle in a pdf g to rewrite it as an expected value with

respect to g

| = /g(x)dx = /g(x)de

with x; ~ g(x) (iid)

= Eqx) [@]

Y

q(x)

_ / g(x) o(x)dx

q(x)

q(x)
1 ¢ s(xi)
n = q(xi)

» This is the basic idea of importance sampling.

» ¢ is called the importance (or proposal) distribution

Michael Gutmann
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Choice of the importance distribution

» Call the approximation 1

1=

:||—x

» | is unbiased by construction

E[f] = E [g(x)] 8(X) - (x)dx / g(x)dx = |

q(x) a(x)”
» Variance
V=[] - () | -5 L)

Depends on the second moment.
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Choice of the importance distribution

» The second moment is
g(x 2(x)\ 2 y
( EXD ] /(qg g) q(x)dx:/i((x);dx

— [ letol £ e

q(x)

» Bad: g(x) is small when |g(x)| is large. Gives large variance.
» Good: g(x) is large when |g(x)| is large.
» Optimal g equals

(x|
J lg(x)[dx

» Optimal g cannot be computed, but justifies the heuristic that
q(x) should be large when |g(x)| is large, or that the ratio
lg(x)|/q(x) should be approximately constant .

q (x) =
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Proof (not examinable)

Since the variance of a random variable |x| is non-negative and can

be written as
Vx| = E[x*] = (E[x]])?,

we have
E[x°] > E[|x]]?

The smallest second moment achieves equality. We now verify that

for g*(x), we have
8 (;((,;)))2] -] i(();)) ]2
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Proof (not examinable)

Indeed, for the optimal g, we have

(5 (x)) ] [ st

E

and

| = /[l o)
- ([ lgtoiax)”
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Importance sampling to compute the partition function

We can use importance sampling to approximate the partition
function for unnormalised models p(x; 6).

Z(0) = /b(x;H)dx

eI

:/ﬁc(;le)g) q(x)dx

Nl ; f)(x,-;H) X; ~ g(x) 1
~ n; q(xi) ( I q( ) d)

Michael Gutmann Sampling and Monte Carlo Integration 22 /41



Example

Approximating the log partition function of the unnormalised
beta-distribution

p(x;a, B) = x¥71(1 — x)PL, x € [0,1]
for B fixed to 0 = 2.

Importance distribution: uniform distribution on [0, 1]

Left: n =10, right: n = 100.
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Importance sampling to compute expectations

> Assume you would like to approximate [E,)[g(x)] by a
sample average but sampling from p(x) is difficult.

» We can write

2
S|
I.M:
pisl
X
S
X

where x; ~ g(x) (iid)
» The w; = p(x;)/q(x;) are called the importance weights.
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Normalised importance weights

» We can combine the above ideas to approximate

Enole(x)] = [ g(x)p(x)dx

by importance sampling even if we only know p(x) = p(x) and

» Write
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Normalised importance weights

» Since

we only need to know the importance distribution g(x) up to
normalisation constant.

» Approximate both expectations by sample average

12? 1 8(xi
121 1ZX

'Ol

| g(xp(x)dx ~ *

vm

Z

where x; ~ g(x) (iid)
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Normalised importance weights

» With importance weights

> i1 8(xi)w;

/ BO)p(x)dx ~ S 0

» Same weights in numerator and denominator

» The quantities
Wi
n

zzjk:1 Wi

are called normalised importance weights.

Sampling and Monte Carlo Integration
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Program

1. Monte Carlo integration
o Approximating expectations by averages
e Importance sampling
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Program

2. Sampling
e Simple univariate sampling
o Rejection sampling
e Ancestral sampling
o Gibbs sampling
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Assumption

» We assume that we are able to generate iid samples from the
uniform distribution on [0, 1].

» How to do that: see e.g.
https://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf

(not examinable)
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Sampling for univariate discrete random variables

(Based on a slide from David Barber)

» Consider the one dimensional discrete distribution p(x) with
x € {1,2,3}, with

(06 x=1
p(x) =1 0.1 x=2
| 03 x=3

» Divide [0, 1] into chunks [0, 0.6), [0.6,0.7), [0.7, 1]

1 X 2 3

» We then draw a sample u uniformly from [0, 1]
» We return the label of the partition in which u fell.

» Example: if u = 0.53, we return the sample “1”
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Sampling for univariate continuous random variables

» A similar method as the one above exists for continuous
random variables.

» Called inverse transform sampling.

» Recall: the cumulative distribution function (cdf) of a random
variable x with pdf py is

«

Fy(a) =Pr(x < a) = / px(u)du
» To generate n iid samples from x with cdf F,:

» calculate the inverse F_1

» sample n iid random variables uniformly distributed on [0, 1]:
Yi NZ/[(O,].), | = 1,...,/7.
» transform each sample by F_1: x; = F71(y;), i=1,...,n

(see Tutorial 8 for derivation)
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Basic principle of rejection sampling

» Assume you can draw iid samples x; ~ q(x).

» For each sampled x;, you draw a Bernoulli random variable
y;i € {0,1} whose success probability depends on x;

Pryi = 1|x;) = f(x;)
» You get samples (y;, x;) with joint distribution
q(x)f(x)’ (1 — £(x)) )

» Conditional pdf of x|y = 1 is proportional to g(x)f(x)

» Keep or “accept” the x; with y; = 1, “reject” those with
yi = 0.

» Accepted samples follow

q(x)f(x)
J a(x)f(x)dx

X
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Sampling from the posterior by rejection sampling

» Conditional acceptance probability f(x) € [0, 1] can be used
to shape the distribution of the samples from g(x)

» Consider Bayesian inference: prior p(8), likelihood L(80)

» Using L(0)/(max L(0)) as acceptance probability f transforms
the samples 0; from the prior into samples from the posterior.

» Accepted parameters follow

p(0)L(6)

01~ T p(0)L(8)d0

p(6|D)

» More likely parameter configurations are more likely accepted.
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Sampling from the posterior by rejection sampling

» For discrete random variables L(8) = Pr(x = D; 0) € [0, 1].

» Accepting a 6; with probability L(€@) can be implemented by
checking whether data simulated from the model with
parameter value @; equals the observed data.

» Samples from the posterior = samples from the prior that
produce data equal to the observed one.

(see slides “Basic of Model-Based Learning”)

Side-note (not examinable): enables Bayesian inference when the
likelihood is intractable (e.g. due to unobserved variables) but sampling
from the model is possible. Forms the basis of a set of methods called

approximate Bayesian computation.
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Standard formulation of rejection sampling

» Rejection sampling is typically presented (slightly) differently.

» Goal is to generate samples from a target distribution p(x)
known up to normalisation constant when being able to
sample from g(x).

» Since accepted samples follow

_q(x)f(x)
J a(x)f(x)dx

choose conditional acceptance probability f(x) o p(x)/q(x)
» See Barber 27.1.2.

X
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Multivariate by univariate sampling

» Rejection sampling is limited to low-dimensional cases (see
Barber 27.1.2)

» Sampling from high-dimensional multivariate distributions is
generally difficult.

» One way to approach the problem of multivariate sampling is
to translate it into the task of solving several lower
dimensional sampling problems.

» We did that in ancestral sampling.
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Ancestral sampling

» Factorisation provides a recipe for data generation / sampling
from p(x)

» Example:
p(x1, ..., x5) = p(x1)p(x2)p(x3|x1, x2) p(xa|x3) P(X5]x2)
» We can generate samples from the joint distribution
p(x1, X2, X3, Xa, X5) by sampling

X1~ P(Xl) ° @

x2 ~ p(x2)

X3 ~ P(X3|X1,X2) @ @
X4~ PEX4|X3)

x5 ~ p(x5|x2) @

» Sets of univariate sampling problems.

oA
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Gibbs sampling

(Based on a slide from David Barber)

» Gibbs sampling also reduces the problem of multivariate
sampling to the problem of univariate sampling.

» Goal: generate samples from p(x) = p(x1,...,Xq).
» By product rule

p(X) — P(X,'|X]_, ce ey Xi—1, Xi41y - - - 7Xd)p(X17 ce ey Xi—1, Xi41y .- - 7Xd)
= P(Xi\x\i)P(x\i)

» Given a joint initial state x! from which we can read off the
‘parental’ state x{

I

1 _ (1 1 1 1
X\j = (XTs s X1, Xi1s - - -5 Xd)

Y

we can draw a sample x7 from p(x;[xi;).

» We assume this distribution is easy to sample from since it is
univariate.
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Gibbs sampling

(Based on a slide from David Barber)

» We call the new joint sample in which only x; has been
updated x2,

X2 = (XL, ey X1, XE Xirgs -+ o5 Xpr).

> One then selects another variable x; to sample and, by
continuing this procedure, generates a set x!,...,x" of
samples in which each x**1 differs from x¥ in only a single
component.

> Since p(xi|x\;) = p(xj|MB(x;)), we can sample from
p(x;|MB(x;)) which is easier.
(MB(x;) denotes the Markov blanket of x;, see slides on directed and undirected

graphical models.)
» Samples are not independent.

» Gibbs sampling is an example of a Markov chain Monte Carlo
method (see Barber 27.3 and 27.4).
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Program recap

1. Monte Carlo integration
e Approximating expectations by averages
@ Importance sampling

2. Sampling
e Simple univariate sampling
@ Rejection sampling
@ Ancestral sampling
e Gibbs sampling
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