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Recap
Learning and inference often involves intractable integrals, e.g.

I Marginalisation
p(x) =

∫
y

p(x, y)dy

I Expectations

E [g(x) | yo] =
∫

g(x)p(x|yo)dx

for some function g .
I For unobserved variables, likelihood and gradient of the log lik

L(θ) = p(D; θ) =
∫

u
p(u,D; θdu),

∇θ`(θ) = Ep(u|D;θ) [∇θ log p(u,D; θ)]

Notation: Ep(x) is sometimes used to indicate that the expectation is taken with
respect to p(x).
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Recap

Learning and inference often involves intractable integrals, e.g.
I For unnormalised models with intractable partition functions

L(θ) = p̃(D; θ)∫
x p̃(x; θ)dx

∇θ`(θ) ∝ m(D; θ)− Ep(x;θ) [m(x; θ)]

I Combined case of unnormalised models with intractable
partition functions and unobserved variables.

I Evaluation of intractable integrals can sometimes be avoided
by using other learning criteria (e.g. score matching).

I Here: methods to approximate integrals like those above using
sampling.
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Program

1. Monte Carlo integration

2. Sampling
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Program

1. Monte Carlo integration
Approximating expectations by averages
Importance sampling

2. Sampling
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Averages with iid samples

I Tutorial 7: For Gaussians, the sample average is an estimate
(MLE) of the mean (expectation) E[x ]

x̄ = 1
n

n∑
i=1

xi ≈ E[x ]

I Gaussianity not needed: assume xi are iid observations of
x ∼ p(x).

E[x ] =
∫

xp(x)dx ≈ x̄n x̄n = 1
n

n∑
i=1

xi

I Subscript n reminds us that we used n samples to compute
the average.

I Approximating integrals by means of sample averages is called
Monte Carlo integration.
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Averages with iid samples

I Sample average is unbiased

E [x̄n] = 1
n

n∑
i=1

E[xi ]
∗= n

nE[x ] = E[x ]

(∗: “identically distributed” assumption is used, not
independence)

I Variability

V [x̄n] = 1
n2V

[ n∑
i=1

xi

]
∗= 1

n2
n∑

i=1
V[xi ] = 1

nV[x ]

(∗: independence assumption used)
I Squared error decreases as 1/n

V [x̄n] = E
[
(x̄n − E[x ])2

]
= 1

nV[x ]
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Averages with iid samples

I Weak law of large numbers:

Pr (|x̄n − E[x ]| ≥ ε) ≤ V[x ]
nε2

I As n→∞, the probability for the sample average to deviate
from the expected value goes to zero.

I We say that sample average converges in probability to the
expected value.

I Speed of convergence depends on the variance V[x ].
I Different “laws of large numbers” exist that make different

assumptions.
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Chebyshev’s inequality

I Weak law of large numbers is a direct consequence of
Chebyshev’s inequality

I Chebyshev’s inequality: Let s be some random variable with
mean E[s] and variance V[s].

Pr (|s − E[s]| ≥ ε) ≤ V[s]
ε2

I This means that for all random variables:
I probability to deviate more than three standard deviation from

the mean is less than 1/9 ≈ 0.11
(set ε = 3

√
V(s))

I Probability to deviate more than 6 standard deviations:
1/36 ≈ 0.03.

These are conservative values; for many distributions, the
probabilities will be smaller.
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Proofs (not examinable)

I Chebyshev’s inequality follows from Markov’s inequality.
I Markov’s inequality: For a random variable y ≥ 0

Pr(y ≥ t) ≤ E[y ]
t (t > 0)

I Chebyshev’s inequality is obtained by setting y = |s − E[s]|

Pr (|s − E[s]| ≥ t) = Pr
(

(s − E[s])2 ≥ t2
)

≤ E
[
(s − E[s])2

]
t2 .

Chebyshev’s inequality follows with t = ε, and because
E[(s − E[s]2] is the variance V[s] of s.
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Proofs (not examinable)

Proof for Markov’s inequality: Let t be an arbitrary positive number and
y a one-dimensional non-negative random variable with pdf p.
We can decompose the expectation of y using t as split-point,

E[y ] =
∫ ∞
0

up(u)du =
∫ t

0
up(u)du +

∫ ∞
t

up(u)du.

Since u ≥ t in the second term, we obtain the inequality

E[y ] ≥
∫ t

0
up(u)du +

∫ ∞
t

tp(u)du.

The second term is t times the probability that y ≥ t, so that

E[y ] ≥
∫ t

0
up(u)du + t Pr(y ≥ t)

≥ t Pr(y ≥ t),
where the second line holds because the first term in the first line is
non-negative. This gives Markov’s inequality

Pr(y ≥ t) ≤ E(y)
t (t > 0)
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Averages with correlated samples

I When computing the variance of the sample average

V [x̄n] = V[x ]
n

we assumed the samples are identically and independently
distributed.

I The variance shrinks with increasing n and the average
becomes more and more concentrated around E[x ].

I Corresponding results exist for the case of statistically
dependent samples xi . Known as “ergodic theorems”.

I Important for the theory of Markov chain Monte Carlo
methods but requires advanced mathematical theory.
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More general expectations

I So far, we have considered

E[x ] =
∫

xp(x)dx ≈ 1
n

n∑
i=1

xi

where xi ∼ p(x)
I This generalises

E[g(x)] =
∫

g(x)p(x)dx ≈ 1
n

n∑
i=1

g(xi )

where xi ∼ p(x)
I Variance of the approximation if the xi are iid is 1

nV[g(x)]
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Example (Based on a slide from Amos Storkey)

E[g(x)] =
∫

g(x)N (x ; 0, 1)dx ≈ 1
n

n∑
i=1

g(xi ) (xi ∼ N (x ; 0, 1))

for g(x) = x and g(x) = x2

Left: sample average as a function of n
Right: Variability (0.5 quantile: solid, 0.1 and 0.9 quantiles: dashed)
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Example (Based on a slide from Amos Storkey)

E[g(x)] =
∫

g(x)N (x ; 0, 1)dx ≈ 1
n

n∑
i=1

g(xi ) (xi ∼ N (x ; 0, 1))

for g(x) = exp(0.6x2)

Left: sample average as a function of n
Right: Variability (0.5 quantile: solid, 0.1 and 0.9 quantiles: dashed)
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Example

I Indicators that something is wrong:
I Strong fluctuations in the sample average as n increases.
I Large non-declining variability.

I Note: integral is not finite:∫
exp(0.6x2)N (x ; 0, 1)dx = 1√

2π

∫
exp(0.6x2) exp(−0.5x2)dx

= 1√
2π

∫
exp(0.1x2)dx

=∞

but for any n, the sample average is finite and may be
mistaken for a good approximation.

I Check variability when approximating the expected value by a
sample average!
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Approximating general integrals

I If the integral does not correspond to an expectation, we can
smuggle in a pdf q to rewrite it as an expected value with
respect to q

I =
∫

g(x)dx =
∫

g(x)q(x)
q(x)dx

=
∫ g(x)

q(x)q(x)dx

= Eq(x)

[g(x)
q(x)

]
≈ 1

n

n∑
i=1

g(xi )
q(xi )

with xi ∼ q(x) (iid)
I This is the basic idea of importance sampling.
I q is called the importance (or proposal) distribution
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Choice of the importance distribution

I Call the approximation Î,

Î = 1
n

n∑
i=1

g(xi )
q(xi )

I Î is unbiased by construction

E[̂I] = E
[g(x)

q(x)

]
=
∫ g(x)

q(x)q(x)dx =
∫

g(x)dx = I

I Variance

V
[̂
I
]

= 1
nV

[g(x)
q(x)

]
= 1

nE
[(g(x)

q(x)

)2]
− 1

n

(
E
[g(x)

q(x)

])2

︸ ︷︷ ︸
I2

Depends on the second moment.
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Choice of the importance distribution

I The second moment is

E
[(g(x)

q(x)

)2]
=
∫ (g(x)

q(x)

)2
q(x)dx =

∫ g(x)2
q(x) dx

=
∫
|g(x)| |g(x)|

q(x) dx

I Bad: q(x) is small when |g(x)| is large. Gives large variance.
I Good: q(x) is large when |g(x)| is large.
I Optimal q equals

q∗(x) = |g(x)|∫
|g(x)|dx

I Optimal q cannot be computed, but justifies the heuristic that
q(x) should be large when |g(x)| is large, or that the ratio
|g(x)|/q(x) should be approximately constant .
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Proof (not examinable)

Since the variance of a random variable |x | is non-negative and can
be written as

V[|x |] = E[x2]− (E[|x |])2,

we have
E[x2] ≥ E[|x |]2

The smallest second moment achieves equality. We now verify that
for q∗(x), we have

E
[( g(x)

q∗(x)

)2]
= E

[∣∣∣∣ g(x)
q∗(x)

∣∣∣∣]2

Michael Gutmann Sampling and Monte Carlo Integration 20 / 41



Proof (not examinable)

Indeed, for the optimal q, we have

E
[( g(x)

q∗(x)

)2]
=
∫
|g(x)| |g(x)|

q∗(x) dx

=
∫
|g(x)|dx

∫
|g(x)|2 1

|g(x)|dx

=
(∫
|g(x)|dx

)2

and

E
[∣∣∣∣ g(x)

q∗(x)

∣∣∣∣]2 =
(∫ ∣∣∣∣ g(x)

q∗(x)

∣∣∣∣q∗(x)dx
)2

=
(∫
|g(x)|dx

)2
,

which concludes the proof.
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Importance sampling to compute the partition function

We can use importance sampling to approximate the partition
function for unnormalised models p̃(x; θ).

Z (θ) =
∫

p̃(x; θ)dx

=
∫

p̃(x; θ)q(x)
q(x)dx

=
∫ p̃(x; θ)

q(x) q(x)dx

≈ 1
n

n∑
i=1

p̃(xi ; θ)
q(xi )

(xi ∼ q(x) iid)
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Example
Approximating the log partition function of the unnormalised
beta-distribution

p̃(x ;α, β) = xα−1(1− x)β−1, x ∈ [0, 1]
for β fixed to β = 2.

Importance distribution: uniform distribution on [0, 1]
Left: n = 10, right: n = 100.
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Importance sampling to compute expectations

I Assume you would like to approximate Ep(x)[g(x)] by a
sample average but sampling from p(x) is difficult.

I We can write

Ep(x)[g(x)] =
∫

g(x)p(x)dx

=
∫

g(x)p(x)
q(x)q(x)dx

= Eq(x)

[
g(x)p(x)

q(x)

]
≈ 1

n

n∑
i=1

g(xi )
p(xi )
q(xi )

where xi ∼ q(x) (iid)
I The wi = p(xi )/q(xi ) are called the importance weights.
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Normalised importance weights

I We can combine the above ideas to approximate

Ep(x)[g(x)] =
∫

g(x)p(x)dx

by importance sampling even if we only know p̃(x) ∝ p(x) and

p(x) = p̃(x)∫
p̃(x)dx

I Write ∫
g(x)p(x)dx =

∫
g(x)p̃(x)dx∫

p̃(x)dx

=
∫

g(x) p̃(x)
q(x)q(x)dx∫ p̃(x)

q(x)q(x)dx

=
Eq(x)

[
g(x) p̃(x)

q(x)

]
Eq(x)

[
p̃(x)
q(x)

]
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Normalised importance weights

I Since ∫
g(x)p(x)dx =

Eq(x)
[
g(x) p̃(x)

q(x)

]
Eq(x)

[
p̃(x)
q(x)

]
=

Eq(x)
[
g(x) p̃(x)

q̃(x)

]
Eq(x)

[
p̃(x)
q̃(x)

]
we only need to know the importance distribution q(x) up to
normalisation constant.

I Approximate both expectations by sample average
∫

g(x)p(x)dx ≈
1
n
∑n

i=1 g(xi ) p̃(xi )
q̃(xi )

1
n
∑n

i=1
p̃(xi )
q̃(xi )

where xi ∼ q(x) (iid)
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Normalised importance weights

I With importance weights

wi = p̃(xi )
q̃(xi )

,

where xi
iid∼ q(x), we can write∫

g(x)p(x)dx ≈
∑n

i=1 g(xi )wi∑n
i=1 wi

I Same weights in numerator and denominator.
I The quantities

wi∑n
i=1 wi

are called normalised importance weights.
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Program

1. Monte Carlo integration
Approximating expectations by averages
Importance sampling

2. Sampling
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Program

1. Monte Carlo integration

2. Sampling
Simple univariate sampling
Rejection sampling
Ancestral sampling
Gibbs sampling
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Assumption

I We assume that we are able to generate iid samples from the
uniform distribution on [0, 1].

I How to do that: see e.g.
https://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf
(not examinable)
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Sampling for univariate discrete random variables

(Based on a slide from David Barber)

I Consider the one dimensional discrete distribution p(x) with
x ∈ {1, 2, 3}, with

p(x) =


0.6 x = 1
0.1 x = 2
0.3 x = 3

I Divide [0, 1] into chunks [0, 0.6), [0.6, 0.7), [0.7, 1]

1 × 2 3

I We then draw a sample u uniformly from [0, 1]
I We return the label of the partition in which u fell.
I Example: if u = 0.53, we return the sample “1”
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Sampling for univariate continuous random variables

I A similar method as the one above exists for continuous
random variables.

I Called inverse transform sampling.
I Recall: the cumulative distribution function (cdf) of a random

variable x with pdf px is

Fx (α) = Pr(x ≤ α) =
∫ α

−∞
px (u)du

I To generate n iid samples from x with cdf Fx :
I calculate the inverse F−1x
I sample n iid random variables uniformly distributed on [0, 1]:

yi ∼ U(0, 1), i = 1, . . . , n.
I transform each sample by F−1x : xi = F−1x (yi ), i = 1, . . . , n.

(see Tutorial 8 for derivation)
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Basic principle of rejection sampling

I Assume you can draw iid samples xi ∼ q(x).
I For each sampled xi , you draw a Bernoulli random variable

yi ∈ {0, 1} whose success probability depends on xi

Pr(yi = 1|xi ) = f (xi )

I You get samples (yi , xi ) with joint distribution

q(x)f (x)y (1− f (x))(1−y)

I Conditional pdf of x|y = 1 is proportional to q(x)f (x)
I Keep or “accept” the xi with yi = 1, “reject” those with

yi = 0.
I Accepted samples follow

xi ∼
q(x)f (x)∫
q(x)f (x)dx
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Sampling from the posterior by rejection sampling

I Conditional acceptance probability f (x) ∈ [0, 1] can be used
to shape the distribution of the samples from q(x)

I Consider Bayesian inference: prior p(θ), likelihood L(θ)
I Using L(θ)/(max L(θ)) as acceptance probability f transforms

the samples θi from the prior into samples from the posterior.
I Accepted parameters follow

θi ∼
p(θ)L(θ)∫
p(θ)L(θ)dθ

= p(θ|D)

I More likely parameter configurations are more likely accepted.
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Sampling from the posterior by rejection sampling

I For discrete random variables L(θ) = Pr(x = D; θ) ∈ [0, 1].

I Accepting a θi with probability L(θ) can be implemented by
checking whether data simulated from the model with
parameter value θi equals the observed data.

I Samples from the posterior = samples from the prior that
produce data equal to the observed one.
(see slides “Basic of Model-Based Learning”)

Side-note (not examinable): enables Bayesian inference when the
likelihood is intractable (e.g. due to unobserved variables) but sampling
from the model is possible. Forms the basis of a set of methods called
approximate Bayesian computation.
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Standard formulation of rejection sampling

I Rejection sampling is typically presented (slightly) differently.
I Goal is to generate samples from a target distribution p(x)

known up to normalisation constant when being able to
sample from q(x).

I Since accepted samples follow

xi ∼
q(x)f (x)∫
q(x)f (x)dx

choose conditional acceptance probability f (x) ∝ p(x)/q(x)
I See Barber 27.1.2.
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Multivariate by univariate sampling

I Rejection sampling is limited to low-dimensional cases (see
Barber 27.1.2)

I Sampling from high-dimensional multivariate distributions is
generally difficult.

I One way to approach the problem of multivariate sampling is
to translate it into the task of solving several lower
dimensional sampling problems.

I We did that in ancestral sampling.
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Ancestral sampling

I Factorisation provides a recipe for data generation / sampling
from p(x)

I Example:
p(x1, . . . , x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

I We can generate samples from the joint distribution
p(x1, x2, x3, x4, x5) by sampling

1. x1 ∼ p(x1)
2. x2 ∼ p(x2)
3. x3 ∼ p(x3|x1, x2)
4. x4 ∼ p(x4|x3)
5. x5 ∼ p(x5|x2)

x1 x2

x3

x4

x5

I Sets of univariate sampling problems.
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Gibbs sampling
(Based on a slide from David Barber)

I Gibbs sampling also reduces the problem of multivariate
sampling to the problem of univariate sampling.

I Goal: generate samples from p(x) = p(x1, . . . , xd ).
I By product rule

p(x) = p(xi |x1, . . . , xi−1, xi+1, . . . , xd )p(x1, . . . , xi−1, xi+1, . . . , xd )
= p(xi |x\i )p(x\i )

I Given a joint initial state x1, from which we can read off the
‘parental’ state x1\i

x1\i = (x1
1 , . . . , x1

i−1, x1
i+1, . . . , x1

d ),

we can draw a sample x2
i from p(xi |x1\i ).

I We assume this distribution is easy to sample from since it is
univariate.
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Gibbs sampling
(Based on a slide from David Barber)

I We call the new joint sample in which only xi has been
updated x2,

x2 = (x1
1 , . . . , x1

i−1, x2
i , x1

i+1, . . . , x1
n ).

I One then selects another variable xj to sample and, by
continuing this procedure, generates a set x1, . . . , xn of
samples in which each xk+1 differs from xk in only a single
component.

I Since p(xi |x\i ) = p(xi |MB(xi )), we can sample from
p(xi |MB(xi )) which is easier.
(MB(xi ) denotes the Markov blanket of xi , see slides on directed and undirected
graphical models.)

I Samples are not independent.
I Gibbs sampling is an example of a Markov chain Monte Carlo

method (see Barber 27.3 and 27.4).
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Program recap

1. Monte Carlo integration
Approximating expectations by averages
Importance sampling

2. Sampling
Simple univariate sampling
Rejection sampling
Ancestral sampling
Gibbs sampling
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