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Problem formulation

I We want to estimate the parameters θ of a parametric
statistical model for a random vector x ∈ Rd .

I Given: iid data xi , . . . , xn that are assumed to be observations
of x that has pdf p∗

I Further notation: p(ξ;θ) is the model pdf; ξ ∈ Rd is a
dummy variable.

I Assumptions:
I Model p(ξ;θ) is known only up the partition function

p(ξ;θ) = p̃(ξ;θ)
Z (θ) Z (θ) =

∫
ξ

p̃(ξ;θ)dξ

I Functional form of p̃ is known (can be easily computed)
I Partition function Z (θ) cannot be computed analytically in

closed form and numerical approximation is expensive.
I Goal: Estimate the model without approximating the partition

function Z(θ).
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Basic ideas of score matching

I Maximum likelihood estimation can be considered to find
parameter values θ̂ so that

p(ξ; θ̂) ≈ p∗(ξ) or log p(ξ; θ̂) ≈ log p∗(ξ)

(as measured by Kullback-Leibler divergence, see Barber 8.7)
I Instead of estimating the parameters θ by matching (log)

densities, score matching identifies parameter values θ̂ for
which the derivatives (slopes) of the log densities match

∇ξ log p(ξ; θ̂) ≈ ∇ξ log p∗(ξ)

I ∇ξ log p(ξ;θ) does not depend on the partition function:

∇ξ log p(ξ;θ) = ∇ξ [log p̃(ξ;θ)− logZ (θ)] = ∇ξ log p̃(ξ;θ)
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The score function (in the context of score matching)

I Define the model score function Rd → Rd as

ψ(ξ;θ) =


∂ log p(ξ;θ)

∂ξ1...
∂ log p(ξ;θ)

∂ξd

 = ∇ξ log p(ξ;θ)

While defined in terms of p(ξ;θ), we also have

ψ(ξ;θ) = ∇ξ log p̃(ξ;θ)

I Similarly, define the data score function as

ψ∗(ξ) = ∇ξ log p∗(ξ)
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Definition of the SM objective function

I Estimate θ by minimising a distance between model score
function ψ(ξ;θ) and score function of observed data ψ∗(ξ)

Jsm(θ) = 1
2

∫
ξ∈Rm

p∗(ξ)‖ψ(ξ;θ)−ψ∗(ξ)‖2dξ

= 1
2E∗‖ψ(x;θ)−ψ∗(x)‖2 (x ∼ p∗)

I Since ψ(ξ;θ) = ∇ξ log p̃(ξ;θ) does not depend on Z (θ)
there is no need to compute the partition function.

I Knowing the unnormalised model p̃(ξ;θ) is enough.
I Expectation E∗ with respect to p∗ can be approximated as

sample average over the observed data, but what about ψ∗?
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Reformulation of the SM objective function

I In the objective function we have the score function of the
data distribution ψ∗. How to compute it?

I In fact, no need to compute it because the score matching
objective function Jsm can be expressed as

Jsm(θ) = E∗
d∑

j=1

[
∂jψj(x;θ) + 1

2ψ
2
j (x;θ)

]
+ const.

where the constant does not depend on θ, and

ψj(ξ;θ) = ∂ log p̃(ξ;θ)
∂ξj

∂jψj(ξ;θ) = ∂2 log p̃(ξ;θ)
∂ξ2

j
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Proof (general idea)

I Use Euclidean distance and expand the objective function Jsm

Jsm(θ) = 1
2E∗‖ψ(x;θ)−ψ∗(x)‖2

= 1
2E∗‖ψ(x;θ)‖2 − E∗

[
ψ(x;θ)>ψ∗(x)

]
+ 1

2E∗‖ψ∗(x)‖2

= 1
2E∗‖ψ(x;θ)‖2 −

d∑
j=1

E∗ [ψj(x;θ)ψ∗,j(x)] + const

I First term does not depend on ψ∗. The ψj and ψ∗,j are the
j-th elements of the vectors ψ and ψ∗, respectively. Constant
does not depend on θ.

I The trick is to use integration by parts for the second term to
get an objective function which does not involve ψ∗.
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Proof (not examinable)

E∗ [ψj(x; θ)ψ∗,j(x)] =
∫

ξ

p∗(ξ)ψ∗,j(ξ)ψj(ξ; θ)dξ

=
∫

ξ

p∗(ξ)
∂ log p∗(ξ)

∂ξj
ψj(ξ; θ)dξ

=
∏
k 6=i

∫
ξk

(∫
ξj

p∗(ξ)
∂ log p∗(ξ)

∂ξj
ψj(ξ; θ)dξj

)
dξk

=
∏
k 6=i

∫
ξk

(∫
ξj

∂p∗(ξ)
∂ξj

ψj(ξ; θ)dξj

)
dξk

Use integration by parts∫
ξj

∂p∗(ξ)
∂ξj

ψj(ξ; θ)dξj = [p∗(ξ)ψj(ξ; θ)]bj
aj

−
∫
ξj

p∗(ξ)
∂ψj(ξ; θ)
∂ξj

dξj

= −
∫
ξj

p∗(ξ)
∂ψj(ξ; θ)
∂ξj

dξj ,

where the aj and bj specify the boundaries of the data pdf p∗ along dimension j
and where we assume that [p∗(ξ)ψj(ξ; θ)]bj

aj
= 0.
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Proof (not examinable)

If [p∗(ξ)ψj(ξ;θ)]bj
aj

= 0

E∗ [ψj(x;θ)ψ∗,j(x)] = −
∏
k 6=i

∫
ξk

(∫
ξj

p∗(ξ)
∂ψj(ξ;θ)
∂ξj

dξj

)
dξk

= −
∫

ξ

p∗(ξ)
∂ψj(ξ;θ)
∂ξj

dξ

= −E∗ [∂jψj(x;θ)]
so that

Jsm(θ) = 1
2E∗‖ψ(x;θ)‖2 −

d∑
j=1
−E∗ [∂jψj(x;θ)] + const

= E∗
d∑

j=1

[
∂jψj(x;θ) + 1

2ψ
2
j (x;θ)

]
+ const

Replacing the expectation / integration over the data density p∗ by a
sample average over the observed data gives a computable objective
function for score matching.
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Final method of score matching

I Given iid data x1, . . . , xn, the score matching estimate is

θ̂ = argmin
θ

J(θ)

J(θ) = 1
n

n∑
i=1

d∑
j=1

[
∂jψj(xi ;θ) + 1

2ψj(xi ;θ)2
]

ψj is the partial derivative of the log unnormalised model log p̃
with respect to the j-th coordinate (slope) and ∂jψj its second
partial derivative (curvature).

I Parameter estimation with intractable partition functions
without approximating the partition function.
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Requirements

J(θ) = 1
n
∑n

i=1
∑d

j=1
[
∂jψj(xi ;θ) + 1

2ψj(xi ;θ)2]
Requirements:

I technical (from proof): [p∗(ξ)ψj(ξ;θ)]bj
aj

= 0, where the aj
and bj specify the boundaries of the data pdf p∗ along
dimension j

I smoothness: second derivatives of log p̃(ξ;θ) with respect to
the ξj need to exist, and should be smooth with respect to θ
so that J(θ) can be optimised with gradient-based methods.
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Simple example

I p̃(ξ; θ) = exp(−θξ2/2), parameter θ > 0 is the precision.

I The slope and curvature of the log unnormalised model are

ψ(ξ; θ) = ∂ξ log p̃(ξ; θ) = −θξ, ∂ξψ(ξ; θ) = −θ.

I If p∗ is Gaussian, limξ→±∞ p∗(ξ)ψ(ξ; θ) = 0 for all θ.

I Score matching objective

J(θ) = −θ + 1
2θ

2 1
n

n∑
i=1

x2
i

⇒ θ̂ =
(
1
n

n∑
i=1

x2
i

)−1

I For Gaussians, same as the MLE. 0.5 1 1.5 2
−2

−1

0

1

2

Precision

 

 

Neg. score matching objective

Term with score function derivative

Term with squared score function
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Extensions

I Score matching as presented here only works for x ∈ Rd

I There are extensions for discrete and non-negative random
variables (not examinable)
https://www.cs.helsinki.fi/u/ahyvarin/papers/CSDA07.pdf

I Can be shown to be part of a general framework to estimate
unnormalised models (not examinable)
https://michaelgutmann.github.io/assets/papers/Gutmann2011b.pdf

I Overall message: in some situations, other learning criteria
than likelihood are preferable.
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