Estimating Unnormalised Models by Score Matching

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring semester 2018

- 1. Basics of score matching
- 2. Practical objective function for score matching

- 1. Basics of score matching
 - Basic ideas of score matching
 - Objective function that captures the basic ideas but cannot be computed
- 2. Practical objective function for score matching

Problem formulation

- We want to estimate the parameters θ of a parametric statistical model for a random vector $\mathbf{x} \in \mathbb{R}^d$.
- ▶ Given: iid data $\mathbf{x}_i, \dots, \mathbf{x}_n$ that are assumed to be observations of \mathbf{x} that has pdf p_*
- ▶ Further notation: $p(\xi; \theta)$ is the model pdf; $\xi \in \mathbb{R}^d$ is a dummy variable.
- Assumptions:
 - ▶ Model $p(\xi; \theta)$ is known only up the partition function

$$p(\xi; \theta) = \frac{\tilde{p}(\xi; \theta)}{Z(\theta)}$$
 $Z(\theta) = \int_{\xi} \tilde{p}(\xi; \theta) d\xi$

- ightharpoonup Functional form of \tilde{p} is known (can be easily computed)
- Partition function $Z(\theta)$ cannot be computed analytically in closed form and numerical approximation is expensive.
- ▶ Goal: Estimate the model without approximating the partition function $\mathbf{Z}(\theta)$.

Basic ideas of score matching

Maximum likelihood estimation can be considered to find parameter values $\hat{ heta}$ so that

$$p(m{\xi};\hat{m{ heta}})pprox p_*(m{\xi})$$
 or $\log p(m{\xi};\hat{m{ heta}})pprox \log p_*(m{\xi})$

(as measured by Kullback-Leibler divergence, see Barber 8.7)

Instead of estimating the parameters θ by matching (log) densities, score matching identifies parameter values $\hat{\theta}$ for which the derivatives (slopes) of the log densities match

$$abla_{m{\xi}} \log p(m{\xi}; \hat{m{ heta}}) pprox
abla_{m{\xi}} \log p_*(m{\xi})$$

▶ $\nabla_{\xi} \log p(\xi; \theta)$ does not depend on the partition function:

$$\nabla_{\boldsymbol{\xi}} \log p(\boldsymbol{\xi}; \boldsymbol{\theta}) = \nabla_{\boldsymbol{\xi}} \left[\log \widetilde{p}(\boldsymbol{\xi}; \boldsymbol{\theta}) - \log Z(\boldsymbol{\theta}) \right] = \nabla_{\boldsymbol{\xi}} \log \widetilde{p}(\boldsymbol{\xi}; \boldsymbol{\theta})$$

The score function (in the context of score matching)

▶ Define the model score function $\mathbb{R}^d \to \mathbb{R}^d$ as

$$m{\psi}(m{\xi};m{ heta}) = egin{pmatrix} rac{\partial \log p(m{\xi};m{ heta})}{\partial \xi_1} \ dots \ rac{\partial \log p(m{\xi};m{ heta})}{\partial \xi_d} \end{pmatrix} =
abla_{m{\xi}} \log p(m{\xi};m{ heta})$$

While defined in terms of $p(\xi; \theta)$, we also have

$$\psi(oldsymbol{\xi}; oldsymbol{ heta}) =
abla_{oldsymbol{\xi}} \log \widetilde{p}(oldsymbol{\xi}; oldsymbol{ heta})$$

Similarly, define the data score function as

$$oldsymbol{\psi}_*(oldsymbol{\xi}) =
abla_{oldsymbol{\xi}} \log p_*(oldsymbol{\xi})$$

Definition of the SM objective function

Estimate θ by minimising a distance between model score function $\psi(\xi;\theta)$ and score function of observed data $\psi_*(\xi)$

$$egin{aligned} J_{\mathrm{sm}}(oldsymbol{ heta}) &= rac{1}{2} \int_{oldsymbol{\xi} \in \mathbb{R}^m} p_*(oldsymbol{\xi}) \| oldsymbol{\psi}(oldsymbol{\xi}; oldsymbol{ heta}) - oldsymbol{\psi}_*(oldsymbol{\xi}) \|^2 doldsymbol{\xi} \ &= rac{1}{2} \mathbb{E}_* \| oldsymbol{\psi}(oldsymbol{x}; oldsymbol{ heta}) - oldsymbol{\psi}_*(oldsymbol{x}) \|^2 \qquad (oldsymbol{x} \sim p_*) \end{aligned}$$

- ▶ Since $\psi(\xi; \theta) = \nabla_{\xi} \log \tilde{p}(\xi; \theta)$ does not depend on $Z(\theta)$ there is no need to compute the partition function.
- ightharpoonup Knowing the unnormalised model $\tilde{p}(\xi;\theta)$ is enough.
- Expectation \mathbb{E}_* with respect to p_* can be approximated as sample average over the observed data, but what about ψ_* ?

- 1. Basics of score matching
 - Basic ideas of score matching
 - Objective function that captures the basic ideas but cannot be computed
- 2. Practical objective function for score matching

- 1. Basics of score matching
- 2. Practical objective function for score matching
 - Integration by parts to obtain a computable objective function
 - Simple example

Reformulation of the SM objective function

- In the objective function we have the score function of the data distribution ψ_* . How to compute it?
- In fact, no need to compute it because the score matching objective function $J_{\rm sm}$ can be expressed as

$$J_{\mathrm{sm}}(\boldsymbol{\theta}) = \mathbb{E}_* \sum_{j=1}^d \left[\partial_j \psi_j(\mathbf{x}; \boldsymbol{\theta}) + \frac{1}{2} \psi_j^2(\mathbf{x}; \boldsymbol{\theta}) \right] + \mathrm{const.}$$

where the constant does not depend on heta, and

$$\psi_j(\boldsymbol{\xi};\boldsymbol{\theta}) = \frac{\partial \log \tilde{p}(\boldsymbol{\xi};\boldsymbol{\theta})}{\partial \xi_j} \qquad \partial_j \psi_j(\boldsymbol{\xi};\boldsymbol{\theta}) = \frac{\partial^2 \log \tilde{p}(\boldsymbol{\xi};\boldsymbol{\theta})}{\partial \xi_j^2}$$

Proof (general idea)

lacktriangle Use Euclidean distance and expand the objective function $J_{
m sm}$

$$\begin{split} J_{\text{sm}}(\boldsymbol{\theta}) &= \frac{1}{2} \mathbb{E}_* \| \boldsymbol{\psi}(\mathbf{x}; \boldsymbol{\theta}) - \boldsymbol{\psi}_*(\mathbf{x}) \|^2 \\ &= \frac{1}{2} \mathbb{E}_* \| \boldsymbol{\psi}(\mathbf{x}; \boldsymbol{\theta}) \|^2 - \mathbb{E}_* \left[\boldsymbol{\psi}(\mathbf{x}; \boldsymbol{\theta})^\top \boldsymbol{\psi}_*(\mathbf{x}) \right] + \frac{1}{2} \mathbb{E}_* \| \boldsymbol{\psi}_*(\mathbf{x}) \|^2 \\ &= \frac{1}{2} \mathbb{E}_* \| \boldsymbol{\psi}(\mathbf{x}; \boldsymbol{\theta}) \|^2 - \sum_{j=1}^d \mathbb{E}_* \left[\boldsymbol{\psi}_j(\mathbf{x}; \boldsymbol{\theta}) \boldsymbol{\psi}_{*,j}(\mathbf{x}) \right] + \text{const} \end{split}$$

- First term does not depend on ψ_* . The ψ_j and $\psi_{*,j}$ are the j-th elements of the vectors ψ and ψ_* , respectively. Constant does not depend on θ .
- ▶ The trick is to use integration by parts for the second term to get an objective function which does not involve ψ_* .

Proof (not examinable)

$$\mathbb{E}_{*} \left[\psi_{j}(\mathbf{x}; \boldsymbol{\theta}) \psi_{*,j}(\mathbf{x}) \right] = \int_{\boldsymbol{\xi}} p_{*}(\boldsymbol{\xi}) \psi_{*,j}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi}; \boldsymbol{\theta}) d\boldsymbol{\xi}$$

$$= \int_{\boldsymbol{\xi}} p_{*}(\boldsymbol{\xi}) \frac{\partial \log p_{*}(\boldsymbol{\xi})}{\partial \xi_{j}} \psi_{j}(\boldsymbol{\xi}; \boldsymbol{\theta}) d\boldsymbol{\xi}$$

$$= \prod_{k \neq i} \int_{\xi_{k}} \left(\int_{\xi_{j}} p_{*}(\boldsymbol{\xi}) \frac{\partial \log p_{*}(\boldsymbol{\xi})}{\partial \xi_{j}} \psi_{j}(\boldsymbol{\xi}; \boldsymbol{\theta}) d\xi_{j} \right) d\xi_{k}$$

$$= \prod_{k \neq i} \int_{\xi_{k}} \left(\int_{\xi_{j}} \frac{\partial p_{*}(\boldsymbol{\xi})}{\partial \xi_{j}} \psi_{j}(\boldsymbol{\xi}; \boldsymbol{\theta}) d\xi_{j} \right) d\xi_{k}$$

Use integration by parts

$$\int_{\xi_{j}} \frac{\partial p_{*}(\boldsymbol{\xi})}{\partial \xi_{j}} \psi_{j}(\boldsymbol{\xi};\boldsymbol{\theta}) d\xi_{j} = \left[p_{*}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi};\boldsymbol{\theta}) \right]_{a_{j}}^{b_{j}} - \int_{\xi_{j}} p_{*}(\boldsymbol{\xi}) \frac{\partial \psi_{j}(\boldsymbol{\xi};\boldsymbol{\theta})}{\partial \xi_{j}} d\xi_{j}
= - \int_{\xi_{j}} p_{*}(\boldsymbol{\xi}) \frac{\partial \psi_{j}(\boldsymbol{\xi};\boldsymbol{\theta})}{\partial \xi_{j}} d\xi_{j},$$

where the a_j and b_j specify the boundaries of the data pdf p_* along dimension j and where we assume that $[p_*(\xi)\psi_j(\xi;\theta)]_{a_i}^{b_j}=0$.

Proof (not examinable)

If
$$[p_*(\boldsymbol{\xi})\psi_j(\boldsymbol{\xi};\boldsymbol{\theta})]_{a_j}^{b_j} = 0$$

$$\mathbb{E}_* [\psi_j(\mathbf{x};\boldsymbol{\theta})\psi_{*,j}(\mathbf{x})] = -\prod_{k\neq i} \int_{\xi_k} \left(\int_{\xi_j} p_*(\boldsymbol{\xi}) \frac{\partial \psi_j(\boldsymbol{\xi};\boldsymbol{\theta})}{\partial \xi_j} d\xi_j \right) d\xi_k$$

$$= -\int_{\boldsymbol{\xi}} p_*(\boldsymbol{\xi}) \frac{\partial \psi_j(\boldsymbol{\xi};\boldsymbol{\theta})}{\partial \xi_j} d\boldsymbol{\xi}$$

$$= -\mathbb{E}_* [\partial_i \psi_i(\mathbf{x};\boldsymbol{\theta})]$$

so that

$$J_{\text{sm}}(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}_* || \boldsymbol{\psi}(\mathbf{x}; \boldsymbol{\theta}) ||^2 - \sum_{j=1}^d -\mathbb{E}_* \left[\partial_j \psi_j(\mathbf{x}; \boldsymbol{\theta}) \right] + \text{const}$$
$$= \mathbb{E}_* \sum_{j=1}^d \left[\partial_j \psi_j(\mathbf{x}; \boldsymbol{\theta}) + \frac{1}{2} \psi_j^2(\mathbf{x}; \boldsymbol{\theta}) \right] + \text{const}$$

Replacing the expectation / integration over the data density p_* by a sample average over the observed data gives a computable objective function for score matching.

Final method of score matching

▶ Given iid data $\mathbf{x}_1, \dots, \mathbf{x}_n$, the score matching estimate is

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \left[\partial_{j} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta}) + \frac{1}{2} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta})^{2} \right]$$

 ψ_j is the partial derivative of the log unnormalised model $\log \tilde{p}$ with respect to the *j*-th coordinate (slope) and $\partial_j \psi_j$ its second partial derivative (curvature).

Parameter estimation with intractable partition functions without approximating the partition function.

Requirements

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \left[\partial_{j} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta}) + \frac{1}{2} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta})^{2} \right]$$

Requirements:

- technical (from proof): $[p_*(\xi)\psi_j(\xi;\theta)]_{a_j}^{b_j} = 0$, where the a_j and b_j specify the boundaries of the data pdf p_* along dimension j
- ▶ smoothness: second derivatives of $\log \tilde{p}(\xi; \theta)$ with respect to the ξ_j need to exist, and should be smooth with respect to θ so that $J(\theta)$ can be optimised with gradient-based methods.

Simple example

- $\tilde{p}(\xi;\theta) = \exp(-\theta \xi^2/2)$, parameter $\theta > 0$ is the precision.
- The slope and curvature of the log unnormalised model are

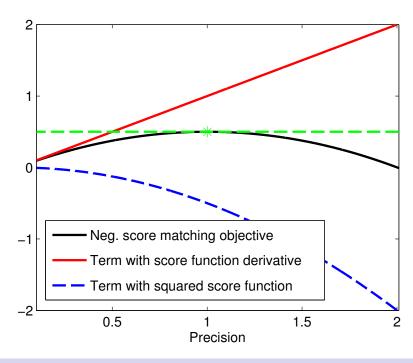
$$\psi(\xi;\theta) = \partial_{\xi} \log \tilde{p}(\xi;\theta) = -\theta\xi, \qquad \partial_{\xi} \psi(\xi;\theta) = -\theta.$$

- ▶ If p_* is Gaussian, $\lim_{\xi \to \pm \infty} p_*(\xi) \psi(\xi; \theta) = 0$ for all θ .
- Score matching objective

$$J(\theta) = -\frac{\theta}{2} + \frac{1}{2}\theta^{2} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$$

$$\Rightarrow \hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2\right)^{-1}$$

For Gaussians, same as the MLE.



Extensions

- Score matching as presented here only works for $\mathbf{x} \in \mathbb{R}^d$
- There are extensions for discrete and non-negative random variables (not examinable)

```
https://www.cs.helsinki.fi/u/ahyvarin/papers/CSDA07.pdf
```

Can be shown to be part of a general framework to estimate unnormalised models (not examinable)

```
https://michaelgutmann.github.io/assets/papers/Gutmann2011b.pdf
```

Overall message: in some situations, other learning criteria than likelihood are preferable.

Program recap

1. Basics of score matching

- Basic ideas of score matching
- Objective function that captures the basic ideas but cannot be computed

2. Practical objective function for score matching

- Integration by parts to obtain a computable objective function
- Simple example