
Exact Inference

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, University of Edinburgh

Spring semester 2018



Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

I Issue 1: To specify p(x, y, z), we need to specify
K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?

I Directed and undirected graphical models, factor graphs
I Factorisation and independencies

Michael Gutmann Exact Inference 2 / 77



Recap

p(x|yo) =

∑
z

p(x,yo ,z)∑
x,z

p(x,yo ,z)

I Issue 2: The sum in the numerator goes over the order of
Kd = 10500 non-negative numbers and the sum in the
denominator over the order of K 2d = 101000, which is
impossible to compute.
Topic 2: Exact inference Can we further exploit the
assumptions on p(x, y, z) to efficiently compute the posterior
probability or derived quantities?

I Quantities of interest:
I p(x|yo) (marginal inference)
I argmaxx p(x|yo) (inference of most probable states)
I E [g(x) | yo] for some function g

Michael Gutmann Exact Inference 3 / 77



Assumptions

If not otherwise mentioned, we here assume discrete valued
random variables whose joint pmf factorises as

p(x1, . . . , xd) ∝
m∏

i=1
φi(Xi),

with Xi ⊆ {x1, . . . , xd} and xi ∈ {1, . . . ,K}.

Michael Gutmann Exact Inference 4 / 77



Program

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states

Michael Gutmann Exact Inference 5 / 77



Program

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
Structural changes to the graph due to variable elimination
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states

Michael Gutmann Exact Inference 6 / 77



Example (full factorisation)

I Consider discrete-valued random variables
x1, x2, x3 ∈ {1, . . . ,K}

I Assume pmf factorises p(x1, x2, x3) ∝ φ1(x1)φ2(x2)φ3(x3)
I Task: compute p(x1 = k) for k ∈ {1, . . . ,K}
I We can use the sum-rule

p(x1 = k) =
∑
x2,x3

p(x1 = k, x2, x3)

I But doing this naively is not a good idea: pre-computing
p(x1, x2, x3) for all K 3 configurations is not necessary

I Exploit factorisation when computing p(x1 = k).

Michael Gutmann Exact Inference 7 / 77



Example (full factorisation)

p(x1 = k) =
∑
x2,x3

p(x1 = k, x2, x3) (1)

∝
∑
x2

∑
x3

φ1(k)φ2(x2)φ3(x3) (2)

(by distr. law) ∝ φ1(k)
∑
x2

∑
x3

φ2(x2)φ3(x3) (3)

(by distr. law) ∝ φ1(k)
[∑

x2

φ2(x2)
] [∑

x3

φ3(x3)
]

(4)

Michael Gutmann Exact Inference 8 / 77



Example (full factorisation)

p(x1 = k) ∝ φ1(k)
[∑

x2

φ2(x2)
] [∑

x3

φ3(x3)
]

(5)

What’s the point?
I Because of the factorisation (independencies) we don’t need

to evaluate and store the values of p(x1, x2, x3) for all K 3

configurations of the random variables.
I 2 sums over K numbers vs. 1 sum over K 2 numbers
I Recycling/caching of already computed quantities: we only

need to compute [∑
x2

φ2(x2)
] [∑

x3

φ3(x3)
]

once; the same value can be used for all p(x1 = k).
Michael Gutmann Exact Inference 9 / 77



Example (chain)

I Assume the pmf factorises as

p(x1, . . . , xd) ∝
d−1∏
i=1

φi(xi , xi+1)φd(xd)

x1

φ1
x2

φ2
. . .

φd−1
xd

φd

I Task: compute p(x1 = k) for k ∈ {1, . . . ,K}
I Non-scalable approach: Pre-compute p(x1, . . . , xd) for all Kd

configurations and then use sum-rule
I Smarter: Exploit factorisation when applying the sum rule

Michael Gutmann Exact Inference 10 / 77



Example (chain)
We have to sum over x2, . . . , xd . Let’s do xd first

p(x1, . . . , xd−1) =
∑
xd

p(x1, . . . , xd) (6)

∝
∑
xd

d−1∏
i=1

φi(xi , xi+1)φd(xd) (7)

∝
∑
xd

[d−2∏
i=1

φi(xi , xi+1)
]
φd−1(xd−1, xd)φd(xd)

(8)

(by distr. law) ∝
d−2∏
i=1

φi(xi , xi+1)
∑
xd

φd−1(xd−1, xd)φd(xd)︸ ︷︷ ︸
φ̃d (xd−1)

(9)

∝
d−2∏
i=1

φi(xi , xi+1)φ̃d(xd−1) (10)

Michael Gutmann Exact Inference 11 / 77



Example (chain)

Factor graph for p(x1, . . . , xd) ∝
∏d−1

i=1 φi(xi , xi+1)φd(xd)

x1

φ1
. . .

φd−2
xd−1

φd−1
xd

φd

Factor graph for p(x1, . . . , xd−1) ∝
∏d−2

i=1 φi(xi , xi+1)φ̃d(xd−1)

x1

φ1
. . .

φd−2
xd−1

φ̃d

Michael Gutmann Exact Inference 12 / 77



Example (chain)
Next, sum over xd−1

p(x1, . . . , xd−2) =
∑
xd−1

p(x1, . . . , xd−1) (11)

∝
∑
xd−1

d−2∏
i=1

φi(xi , xi+1)φ̃d(xd−1) (12)

∝
∑
xd−1

[d−3∏
i=1

φi(xi , xi+1)
]
φd−2(xd−2, xd−1)φ̃d(xd−1)

(by distr. law) ∝
d−3∏
i=1

φi(xi , xi+1)
∑
xd−1

φd−2(xd−2, xd−1)φ̃d(xd−1)
︸ ︷︷ ︸

φ̃d,d−1(xd−2)

∝
d−3∏
i=1

φi(xi , xi+1)φ̃d ,d−1(xd−2) (13)

Michael Gutmann Exact Inference 13 / 77



Example (chain)

Factor graph for p(x1, . . . , xd−1) ∝
∏d−2

i=1 φi(xi , xi+1)φ̃d(xd−1)

x1

φ1
x2 . . . xd−2

φd−2
xd−1

φ̃d

Factor graph for p(x1, . . . , xd−2) ∝
∏d−3

i=1 φi(xi , xi+1)φ̃d ,d−1(xd−2)

x1

φ1
x2 . . . xd−2

φ̃d ,d−1

Michael Gutmann Exact Inference 14 / 77



Example (chain)

I Continue eliminating the last (leaf) variable
I Each time we eliminate a variable, we need to

I compute φi(xi , xi+1) for all values of xi and xi+1
(matrix with K 2 numbers)

I sum over K numbers to compute the φ̃(xi) for all K values of
xi (cost: O(K 2))

I To compute p(x1 = k) we have to eliminate d − 1 variables
⇒ Total cost for p(x1) :O((d − 1)K 2) = O(dK 2)

Michael Gutmann Exact Inference 15 / 77



Example (chain)

I Benefits of exploiting the factorisation
I Linear growth in number of variables d , in contrast to

exponential growth O(K d) when factorisation is not exploited
I Recycling/caching : most terms do not depend on x1 and can

be re-used when we compute p(x1 = k) for different k.
I Chains have the special property that they stay a chain after a

leaf variable is eliminated.
I More general factor trees have the same property, which we

exploit in the sum-product algorithm.
I First: variable elimination for general factor graphs.

Michael Gutmann Exact Inference 16 / 77



Basic ideas of variable elimination

1. Use the distributive law ab + ac = a(b + c) to exploit the
factorisation (

∑∏
→
∏∑

):
reduces the overall dimensionality of the domain of the factors
in the sum and thereby the computational cost.

2. Recycle/cache results

Michael Gutmann Exact Inference 17 / 77



Variable (bucket) elimination

Example task: Given p(x1, . . . , xd) ∝
∏m

i φi(Xi) compute the
marginal p(Xtarget) for some Xtarget ⊆ {x1, . . . , xd}.

I Assume that at iteration k, you have the pmf over dk = d − k
variables X k = (xi1 , . . . , xidk ) that factorises as

p(X k) ∝
mk∏
i=1

φk
i (X k

i )

I Decide which variable to eliminate. Call it x∗.
I Let X k+1 be equal to X k with x∗ removed. By sum rule

p(X k+1) ∝
∑
x∗

p(X k) (14)

∝
∑
x∗

mk∏
i=1

φk
i (X k

i ) (15)

Michael Gutmann Exact Inference 18 / 77



Variable elimination (cont.)

p(X k+1) ∝
∑
x∗

∏
i :x∗ /∈X k

i

φk
i (X k

i )
∏

i :x∗∈X k
i

φk
i (X k

i ) (16)

(by distr. law) ∝
∏

i :x∗ /∈X k
i

φk
i (X k

i )
∑
x∗

∏
i :x∗∈X k

i

φk
i (X k

i )

︸ ︷︷ ︸
new factor φ̃∗

(17)

∝
∏

i :x∗ /∈X k
i

φk
i (X k

i )φ̃∗(X̃∗) (18)

where X̃∗ is the union of all X k
i that contained x∗, with x∗ removed

X̃∗ =
⋃

i :x∗∈X k
i

(
X k

i \ x∗
)

(19)

Michael Gutmann Exact Inference 19 / 77



Variable elimination (cont.)

I We obtain

p(X k+1) ∝
∏

i :x∗ /∈X k
i

φk
i (X k

i )φ̃∗(X̃∗) (20)

∝
mk+1∏
i=1

φk+1
i (X k+1

i ) (21)

I Set k = k + 1 and decide which variable x∗ to eliminate next.
I To compute p(Xtarget) stop when X k = Xtarget, followed by

normalisation.

Michael Gutmann Exact Inference 20 / 77



How to choose the elimination variable x ∗?

I When we marginalise over x∗, we generate a new factor φ̃∗
that depends on

X̃∗ =
⋃

i :x∗∈X k
i

(
X k

i \ x∗
)

(22)

This is the set of variables with which x∗ shares a factor node
in the factor graph (“neighbours”).

I If X̃∗ contains many variables, variable elimination becomes
expensive in later iterations (exponential in size of largest X k).

I Optimal choice of x∗ is difficult (for details, see e.g. Koller, Section
9.4, not examinable)

I Heuristic: choose x∗ in a greedy way, e.g. the variable with
the least number of neighbours in the factor graph.

Michael Gutmann Exact Inference 21 / 77



Computing conditionals

I The same approach can be used to compute conditionals.
I For example, given

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
assume you want to compute p(x1|x3 = α)

I We can write

p(x1, x2, x4, x5, x6|x3 = α) ∝ φ1(x1, x2, x4)φα2 (x2, x4)φα3 (x5)φα4 (x6)

and can compute p(x1|x3 = α) by applying variable
elimination to p̃(x1, x2, x4, x5, x6),

p̃(x1, x2, x4, x5, x6) = p(x1, x2, x4, x5, x6|x3 = α).

Michael Gutmann Exact Inference 22 / 77



Example

I Example:

p(x1, . . . , x6) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φD(x3, x6)

x1

φA

x2

x4

φB
x3

φC
x5

φD
x6

I Task: Compute p(x1, x3)
I Note the structural changes in the graph during variable

elimination

Michael Gutmann Exact Inference 23 / 77



Example (cont)

Task: Compute p(x1, x3)
First eliminate x6

p(x1, . . . , x5) ∝
∑
x6

φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φD(x3, x6)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)
∑
x6

φD(x3, x6)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φ̃6(x3)

x1

φA

x2

x4

φB
x3

φC
x5

x6

φD

φ̃6

Michael Gutmann Exact Inference 24 / 77



Example (cont)

Task: Compute p(x1, x3)
Eliminate x5

p(x1, . . . , x4) ∝
∑
x5

φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φ̃6(x3)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃6(x3)
∑
x5

φC (x3, x5)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃6(x3)φ̃5(x3)

x1

φA

x2

x4

φB
x3

φC
x5

φ̃5

φ̃6

Michael Gutmann Exact Inference 25 / 77



Example (cont)

Write φ̃6(x3)φ̃5(x3) = φ̃56(x3)

p(x1, . . . , x4) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃6(x3)φ̃5(x3)
∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃56(x3)

x1

φA

x2

x4

φB
x3

φ̃5

φ̃6

φ̃56

Michael Gutmann Exact Inference 26 / 77



Example (cont)

Task: Compute p(x1, x3)
Eliminate x2

p(x1, x3, x4) ∝
∑
x2

φA(x1, x2, x4)φB(x2, x3, x4)φ̃56(x3)

∝ φ̃56(x3)
∑
x2

φA(x1, x2, x4)φB(x2, x3, x4)

∝ φ̃56(x3)φ̃2(x1, x3, x4)

x1

φA

x2

x4

φB
x3

φ̃56

φ̃2

x4

x3

φ̃56

Michael Gutmann Exact Inference 27 / 77



Example (cont)
Task: Compute p(x1, x3)

Eliminate x4

p(x1, x3) ∝
∑
x4

φ̃56(x3)φ̃2(x1, x3, x4)

∝ φ̃56(x3)
∑
x4

φ̃2(x1, x3, x4)

∝ φ̃56(x3)φ̃24(x1, x3)

x1

φ̃24
x3

φ̃56

Normalisation:

p(x1, x3) = φ̃56(x3)φ̃24(x1, x3)∑
x1,x3 φ̃56(x3)φ̃24(x1, x3)

Michael Gutmann Exact Inference 28 / 77



Structural changes in the graph during variable elimination

I Eliminated leaf-variable and factor node
→ factor node

I Factors node depending on the same variables
→ single factor node

I Factor nodes between neighbours of the target variable
→ single factor node connecting all neighbours

Michael Gutmann Exact Inference 29 / 77



What if we have continuous random variables?

I Conceptually, all stays the same but we replace sums with
integrals

I Simplifications due to distributive law remain valid
I Caching of results remains valid

I In special cases, integral can be computed in closed form (e.g.
Gaussian family)

I If not: need for approximations (see later)
I Approximations are also needed for discrete random variables

with high-dimensional range (if K is large).

Michael Gutmann Exact Inference 30 / 77



Program

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
Structural changes to the graph due to variable elimination
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states

Michael Gutmann Exact Inference 31 / 77



Program

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Sum-product algorithm = variable elimination for factor trees
Messages = effective factors
The rules for sum-product message passing

3. Inference of most probable states

Michael Gutmann Exact Inference 32 / 77



Factor trees

I We next consider the class of models (pmfs/pdfs) for which
the factor graph is a tree

I Tree: graph where there is only one path connecting any two
nodes (no loops!)

I Chain is a (special) example of a factor tree.
I Useful property: the factor tree obtained after summing out a

leaf variable is still a factor tree.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

Michael Gutmann Exact Inference 33 / 77



Variable elimination for factor trees

Task: Compute p(x1) for

p(x1, . . . , x5) ∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φE (x3, x5)φF (x5)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

Michael Gutmann Exact Inference 34 / 77



Sum out leaf-variable x5
Task: Compute p(x1)

p(x1, . . . , x4) =
∑

x5

p(x1, . . . , x5)

∝
∑

x5

φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φE (x3, x5)φF (x5)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)
∑

x5

φE (x3, x5)φF (x5)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φ̃5(x3)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

φ̃5

Michael Gutmann Exact Inference 35 / 77



Visualising the computation
Graph with transformed factors:

φA
x1

φC

x2

φB

x3

φD
x4

φ̃5
Graph with “messages”:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φFµφE→x3

Message: µφE →x3(x3) = φ̃5(x3) =
∑

x5
φE (x3, x5)φF (x5)

Effective factor for x3 if all variables in the subtree attached to φE
are eliminated (subtree does not include x3)

Michael Gutmann Exact Inference 36 / 77



Sum out leaf-variable x4
Task: Compute p(x1)

p(x1, . . . , x3) =
∑

x4

p(x1, . . . , x4)

∝
∑

x4

φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φ̃5(x3)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φ̃5(x3)
∑

x4

φD(x3, x4)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φ̃5(x3)φ̃4(x3)

φA
x1

φC

x2

φB

x3

φ̃5

φD
x4

φ̃4

Michael Gutmann Exact Inference 37 / 77



Visualising the computation
Graph with transformed factors:

φA
x1

φC

x2

φB

x3

φ̃5

φ̃4

Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφD→x3

µφE→x3

Message: µφD→x3(x3) = φ̃4(x3) =
∑

x4
φD(x3, x4)

Effective factor for x3 if all variables in the subtree attached to φD
are eliminated (subtree does not include x3)

Michael Gutmann Exact Inference 38 / 77



Simplify by multiplying factors with common domain

Task: Compute p(x1)

p(x1, . . . , x3) ∝ φA(x1)φB(x2)φC (x1, x2, x3) φ̃5(x3)φ̃4(x3)︸ ︷︷ ︸
φ̃54(x3)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φ̃54(x3)

φA
x1

φC

x2

φB

x3

φ̃4

φ̃5

φ̃54

Michael Gutmann Exact Inference 39 / 77



Visualising the computation
Graph with transformed factors:

φA
x1

φC

x2

φB

x3

φ̃54

Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF
µx3→φC

µφD→x3

µφE→x3

Message: µx3→φC (x3) = φ̃54(x3) = φ̃4(x3)φ̃5(x3) = µφD→x3(x3)µφE →x3(x3)
Effective factor for x3 if all variables in the subtrees attached to x3
are eliminated (subtrees do not include φc)

Michael Gutmann Exact Inference 40 / 77



Sum out leaf-variable x3
Task: Compute p(x1)

p(x1, x2) =
∑

x3

p(x1, x2, x3)

∝
∑

x3

φA(x1)φB(x2)φC (x1, x2, x3)φ̃54(x3)

∝ φA(x1)φB(x2)
∑

x3

φC (x1, x2, x3)φ̃54(x3)

∝ φA(x1)φB(x2)φ̃543(x1, x2)

φA
x1

x2

φB

x3
φC

φ̃54

φ̃543

Michael Gutmann Exact Inference 41 / 77



Sum out leaf-variable x2 and normalise

p(x1) =
∑

x2

p(x1, x2) ∝
∑

x2

φA(x1)φB(x2)φ̃543(x1, x2)

∝ φA(x1)
∑

x2

φB(x2)φ̃543(x1, x2)

∝ φA(x1)φ̃5432(x1)

φA
x1

φ̃543

x2

φB

φ̃5432

p(x1) = φA(x1)φ̃5432(x1)∑
x1
φA(x1)φ̃5432(x1)

Michael Gutmann Exact Inference 42 / 77



Alternative: sum out both x2 and x3

Since

φ̃5432(x1) =
∑
x2

φB(x2)φ̃543(x1, x2)

=
∑
x2

φB(x2)
∑
x3

φC (x1, x2, x3)φ̃54(x3)

=
∑
x2,x3

φC (x1, x2, x3)φB(x2)φ̃54(x3)

we obtain the same result by first summing out x2 and then x3, or
both at the same time.

In any case:

p(x1) ∝ φA(x1)
∑
x2,x3

φC (x1, x2, x3)φB(x2)φ̃54(x3)

Michael Gutmann Exact Inference 43 / 77



Visualising the computation

Graph with transformed factors:

φA
x1

φ̃5432

Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF
µφC→x1 µx3→φC

µφD→x3

µφE→x3

Message:
µφC →x1(x1) = φ̃5432(x1) =

∑
x2,x3

φC (x1, x2, x3)φB(x2)µx3→φC (x3)
Effective factor for x1 if all variables in the subtrees attached to φC
are eliminated (subtrees do not include x1)

Michael Gutmann Exact Inference 44 / 77



Representing leaf-factors with messages
Since there are no variables “behind” the leaf-factors, all
leaf-factors define effective factors themselves:

µφA→x1(x1) = φA(x1)
µφB→x2(x2) = φB(x2)
µφF→x5(x5) = φF (x5)

We then obtain

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µφB→x2

µx3→φC

µφD→x3

µφE→x3

µφF→x5

Michael Gutmann Exact Inference 45 / 77



Variables with single incoming messages copy the message
We had

µx3→φC (x3) = µφD→x3(x3)µφE→x3(x3)
which corresponded to simplifying the factorisation by multiplying
effective factors defined on the same domain. Special cases:

µx5→φE (x5) = µφF→x5(x5)
µx2→φC (x2) = µφB→x2(x2)

We then obtain

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µx2→φC

µφB→x2

µx3→φC

µφD→x3

µφE→x3

µx5→φE µφF→x5

Michael Gutmann Exact Inference 46 / 77



Messages from leaf variable nodes
What about x4? We can consider

p(x1, . . . , x5) ∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φE (x3, x5)φF (x5)

to include an additional factor φG(x4) = 1. We can thus set

µφG→x4(x4) = 1
µx4→φD (x4) = µφG→x4(x4) = 1

Graph:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µx2→φC

µφB→x2

µx3→φC

µφD→x3

µx4→φD

µφE→x3

µx5→φE µφF→x5

φGµφG→x4

Michael Gutmann Exact Inference 47 / 77



Single marginal from messages

We have seen that

p(x1) ∝ φA(x1)φ̃5432(x1)
∝ µφA→x1(x1)µφC →x1(x1)

Marginal is proportional to the product of the incoming messages.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µx2→φC

µφB→x2

µx3→φC

µφD→x3

µx4→φD

µφE→x3

µx5→φE µφF→x5

Michael Gutmann Exact Inference 48 / 77



Single marginal from messages

Cost (due to properties of variable elimination):
I Linear in number of variables d , exponential in maximal number of

variables attached to a factor node.
I Recycling: most messages do not depend on x1 and can be re-used

for computing p(x1) for any value of x1.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µx2→φC

µφB→x2

µx3→φC

µφD→x3

µx4→φD

µφE→x3

µx5→φE µφF→x5

Michael Gutmann Exact Inference 49 / 77



Further marginals from messages

I We have seen that

p(x1) ∝ φA(x1)φ̃5432(x1)
∝ µφA→x1(x1)µφC→x1(x1)

I Remember: Messages are effective factors
φA

x1

φ̃5432
=

µφA→x1

x1

µφc→x1

I This correspondence allows us to write down the marginal for
other variables too. All we need are the incoming messages.

Michael Gutmann Exact Inference 50 / 77



Further marginals from messages

I Example: For p(x2) we need µφB→x2 and µφC→x2

I µφB→x2 is known but µφC→x2 needs to be computed
I µφC→x2 corresponds to effective factor for x2 if all variables of

the subtrees attached to φc are eliminated.
I Can be computed from previously computed factors:

µφA→x1 and µx3→φC

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µx2→φC µφc→x2

µφB→x2

µx3→φC

µφD→x3

µx4→φD

µφE→x3

µx5→φE µφF→x5

Michael Gutmann Exact Inference 51 / 77



Further marginals from messages

I By definition of the messages, and their correspondence to
effective factors, we have

p(x1, x2, x3) ∝ φC (x1, x2, x3)µφA→x1(x1)µφB→x2(x2)µx3→φC (x3)
I Eliminating x1 and x3 gives

p(x2) ∝ µφB→x2(x2)
∑
x1,x3

φc(x1, x2, x3)µx3→φC (x3)µφA→x1(x1)

∝ µφB→x2(x2)µφC→x2(x2)

µφA→x1

x1

x2

µφB→x2

x3
φC

µx3→φcµφc→x2

x2

µφB→x2

µφc→x2

Michael Gutmann Exact Inference 52 / 77



Further marginals from messages

µφC→x2(x2) =
∑
x1,x3

φc(x1, x2, x3)µx3→φC (x3)µφA→x1(x1)

With variable to factor message µx1→φc = µφA→x1 = φA

µφC→x2(x2) =
∑
x1,x3

φc(x1, x2, x3)µx3→φC (x3)µx1→φc (x1)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

µφA→x1

µφC→x1

µx1→φc

µx2→φC µφc→x2

µφB→x2

µx3→φC

µφD→x3

µx4→φD

µφE→x3

µx5→φE µφF→x5

Michael Gutmann Exact Inference 53 / 77



Using arrows to indicate the messages

Less cluttered representation using arrows for the messages

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→ →
←
↓ ↑

↓

←

←
←

←

← ←

Michael Gutmann Exact Inference 54 / 77



All (univariate) marginals from messages

I We can use the messages to compute the marginals of all
variables in the graph.

I For the marginal of a variable x we need to know the incoming
messages µφi→x from all factor nodes φi connected to x .

I This means that if each edge has a message in both directions,
we can compute the marginals of all variables in the graph.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←

→
←
↓ ↑

↓ ↑

→
←

→
← →

←

→
← →

←
→
←

Michael Gutmann Exact Inference 55 / 77



Joint distributions from messages

I The correspondence between messages and effective factors
allows us to find the joint distribution for variables connected
to the same factor node (neighbours).

I For example, we can compute p(x3, x5) from messages
I The messages µx3→φE and µx5→φE correspond to effective

factors attached to x3 and x5, respectively.

µx3→φE x3
φE

x5 µx5→φE

I Factor graph corresponds to

p(x3, x5) ∝ φE (x3, x5)µx3→φE (x3)µx5→φE (x5)

Michael Gutmann Exact Inference 56 / 77



“Rules” of message passing: factor to variable messages

Remember! Messages correspond to effective factors obtained after
marginalisation.

µφ→x (x) =
∑

x1,...,xj

φ(x1, . . . , xj , x)
j∏

i=1
µxi→φ(xi)

x1

x2

x3

φ
x

−→

−→

−→

−→

Rule corresponds to eliminating variables x1, . . . , xj

Michael Gutmann Exact Inference 57 / 77



“Rules” of message passing: variable to factor messages
Remember! Messages correspond to effective factors obtained after
marginalisation.

µx→φ(x) =
j∏

i=1
µφi→x (x)

φ1

φ2

φ3

x
φ

−→

−→

−→

−→

Rule corresponds to simplifying the factorisation by multiplying effective
factors defined on the same domain.

Michael Gutmann Exact Inference 58 / 77



“Rules” of message passing: univariate marginals

Remember! Messages correspond to effective factors obtained after
marginalisation.

p(x) ∝
j∏

i=1
µφi→x (x)

φ1

φ2

φ3

x
φ4

−→

−→

−→

←−

Michael Gutmann Exact Inference 59 / 77



“Rules” of message passing: joint marginals

Remember! Messages correspond to effective factors obtained after
marginalisation.

p(x1, . . . , xj) ∝ φ(x1, . . . , xj)
j∏

i=1
µxi→φ(xi)

x1

x2

x3

φ
x4

−→

−→

−→

←−

Michael Gutmann Exact Inference 60 / 77



A word about numerics

In practice, it is better to work with log-messages (see Barber’s
paragraph on “log messages”, p86)

Michael Gutmann Exact Inference 61 / 77



Other names for the sum-product algorithm

I Other names for the sum-product algorithm include
I sum-product message passing
I message passing
I belief propagation

I Whatever the name: it is variable elimination applied to factor
trees

Michael Gutmann Exact Inference 62 / 77



Key advantages of the sum-product algorithm

Assume p(x1, . . . , xd) ∝
∏m

i=1 φi(Xi), with Xi ⊆ {x1, . . . , xd}, can
represented as a factor tree.

I The sum-product algorithm allows us to compute
I all univariate marginals p(xi).
I all joint distributions p(Xi) for the variables Xi that are part of

the same factor φi .
I Cost: If variables can take maximally K values and there are

maximally M elements in the Xi : O(2dKM) = O(dKM)

Michael Gutmann Exact Inference 63 / 77



Applicability of the sum-product algorithm

I Factor graph must be a tree
I Can be used to compute conditionals (same argument as for

variable elimination)
I May be used for continuous random variables (same caveats

as for variable elimination)
I Same ideas can be used to compute argmaxx p(x)

Michael Gutmann Exact Inference 64 / 77



If the factor graph is not a tree

I Use variable elimination
I Group variables together so that the factor graph becomes a

tree (for details, see Chapter 6 in Barber, or Section V in Kschischang et
al, Factor Graphs and the Sum-Product Algorithm, 2001; not examinable)

I Pretend the factor graph is a tree and use message passing
(loopy belief propagation; not examinable)

I Can you condition on some variables so that the conditional is
a tree? Message passing can then be used to solve part of the
inference problem.
Example: p(x1, x2, x3, x4) is not a tree but p(x1, x2, x3|x4) is.
Use law of total probability

p(x1) =
∑
x4

∑
x2,x3

p(x1, x2, x3|x4)︸ ︷︷ ︸
by message passing

p(x4)

(see Barber Section 5.3.2, “Loop-cut conditioning”)

Michael Gutmann Exact Inference 65 / 77



Summary

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
Structural changes to the graph due to variable elimination
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Sum-product algorithm = variable elimination for factor trees
Messages = effective factors
The rules for sum-product message passing

Michael Gutmann Exact Inference 66 / 77



Program

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states
Maximisers of the marginals 6= maximiser of joint
We can use the distributive law max(ab, ac) = amax(b, c) to

exploit the factorisation
Max-product algorithm and back-tracking

Michael Gutmann Exact Inference 67 / 77



Other inference tasks

I So far: given a joint distribution p(x), find marginals or
conditionals over variables

I Other common inference task:
I Find a setting of the variables that maximises p(x), i.e.

argmax
x

p(x)

I Find the corresponding value of p(x), i.e.

max
x

p(x)

I Note: the argmaxx p(x) task here includes argmaxx p̃(x|yo),
which is known as maximum a-posteriori (MAP) estimation or
inference.

Michael Gutmann Exact Inference 68 / 77



Maximisers of the marginals 6= maximiser of joint

I The sum-product algorithm gives us the univariate marginals
p(xi) for all variables x1, . . . , xd .

I But the vector with the argmaxxi p(xi), x1, . . . , xd , is not the
same as argmaxx p(x)

I Example (Bishop Table 8.1):

x1 x2 p(x1, x2)

0 0 0.3
1 0 0.4
0 1 0.3
1 1 0.0

x1 p(x1)

0 0.6
1 0.4

x2 p(x2)

0 0.7
1 0.3

Michael Gutmann Exact Inference 69 / 77



Using the distributive law to exploit the factorisation

I For marginal inference, we relied on the distributive law

ab + ac = a(b + c)

I For finding the most probable state, use similarly

max(ab, ac) = amax(b, c)

Michael Gutmann Exact Inference 70 / 77



Example (chain)
(Based on a slide courtesy of David Barber)

p(a, b, c, d) ∝ f1(a, b)f2(b, c)f3(c, d)f4(d)

a b c d
f1 f2 f3 f4

For marginal inference, we had

p(a) ∝
∑

b

∑
c

∑
d

f1(a, b)f2(b, c)f3(c, d)f4(d)

∝
∑

b
f1(a, b)

[∑
c

f2(b, c)
[∑

d
f3(c, d)f4(d)

]
︸ ︷︷ ︸

µf3→c=µc→f2

]

︸ ︷︷ ︸
µf2→b=µb→f1︸ ︷︷ ︸

µf1→a

Michael Gutmann Exact Inference 71 / 77



Example (chain)
(Based on a slide courtesy of David Barber)

p(a, b, c, d) ∝ f1(a, b)f2(b, c)f3(c, d)f4(d)

a b c d
f1 f2 f3 f4

For finding max p(a, b, c, d):

max
a,b,c,d

p(a, b, c, d) = 1
Z max

a
max

b
max

c
max

d
f1(a, b)f2(b, c)f3(c, d)f4(d)

= 1
Z max

a
max

b
f1(a, b)

[
max

c
f2(b, c)

[
max

d
f3(c, d)f4(d)

]
︸ ︷︷ ︸

γf3→c=γc→f2

]
︸ ︷︷ ︸

γf2→b=γb→f1︸ ︷︷ ︸
γf1→a

As before for the sum-product algorithm, the γ→ denote messages
Michael Gutmann Exact Inference 72 / 77



Example (chain)

max
a,b,c,d

p(a, b, c, d) = 1
Z max

a
max

b
f1(a, b)

[
max

c
f2(b, c)

[
max

d
f3(c, d)f4(d)

]
︸ ︷︷ ︸
γf3→c (c)=µc→f2 (c)

]
︸ ︷︷ ︸

γf2→b(b)=γb→f1 (b)︸ ︷︷ ︸
γf1→a(a)

How to compute argmax p(a, b, c, d)?

Michael Gutmann Exact Inference 73 / 77



Example (chain)

max
a,b,c,d

p(a, b, c, d) =
1
Z

max
a

max
b

f1(a, b)
[

max
c

f2(b, c)
[

max
d

f3(c, d)f4(d)
]

︸ ︷︷ ︸
γf3→c (c)=µc→f2 (c)

]
︸ ︷︷ ︸

γf2→b(b)=γb→f1 (b)︸ ︷︷ ︸
γf1→a(a)

Consider maxd f3(c, d)f4(d):
I This is an optimisation problem that needs to be solved for all

values of c.
I Maximiser d∗ = argmaxd f3(c, d)f4(d) depends on c:

d∗(c) = argmax
d

f3(c, d)f4(d)

I d∗(c) is a function (look-up table) that returns the optimal
value for d for any value of c.

Michael Gutmann Exact Inference 74 / 77



Example (chain)

max
a,b,c,d

p(a, b, c, d) =
1
Z

max
a

max
b

f1(a, b)
[

max
c

f2(b, c)
[

max
d

f3(c, d)f4(d)
]

︸ ︷︷ ︸
γf3→c (c)=µc→f2 (c)

]
︸ ︷︷ ︸

γf2→b(b)=γb→f1 (b)︸ ︷︷ ︸
γf1→a(a)

In addition to d∗(c) = argmaxd f3(c, d)f4(d), we further have:

c∗(b) = argmax
c

f2(b, c)γc→f2(c)

b∗(a) = argmax
c

f1(a, b)γb→f1(b)

â = argmax
a

γf1→a(a)

After â has been computed, we can compute argmax p(a, b, c, d)
via b̂ = b∗(â), ĉ = c∗(b̂), and d̂ = d∗(ĉ) (“back-tracking” )

Michael Gutmann Exact Inference 75 / 77



Max-product algorithm

I The above example for a chain extends to general factor
graphs (like in variable elimination)

I max takes the place of
∑

I For factor trees: sum-product algorithm becomes max-product
algorithm with corresponding rules of how to compute the
corresponding messages (see Barber, Section 5.2.1)

I Messages for the max-product algorithm are called
max-product messages.

I For numerical stability, it is better to implement the
algorithms using log messages: max-product algorithm
becomes max-sum algorithm (see Bishop, 8.4.5)

Michael Gutmann Exact Inference 76 / 77



Program recap

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
Structural changes to the graph due to variable elimination
The principles of variable elimination also apply to continuous random

variables

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Sum-product algorithm = variable elimination for factor trees
Messages = effective factors
The rules for sum-product message passing

3. Inference of most probable states
Maximisers of the marginals 6= maximiser of joint
We can use the distributive law max(ab, ac) = amax(b, c) to exploit the

factorisation
Max-product algorithm and back-tracking

Michael Gutmann Exact Inference 77 / 77


	Marginal inference by variable elimination
	Exploiting the factorisation by using the distributive law ab+ac=a(b+c) and by caching computations
	Variable elimination for general factor graphs
	Structural changes to the graph due to variable elimination
	The principles of variable elimination also apply to continuous random variables

	Marginal inference for factor trees (sum-product algorithm)
	Factor trees
	Sum-product algorithm = variable elimination for factor trees
	Messages = effective factors
	The rules for sum-product message passing

	Inference of most probable states
	Maximisers of the marginals = maximiser of joint
	We can use the distributive law max(ab, ac) = amax(b, c) to exploit the factorisation
	Max-product algorithm and back-tracking


