Undirected Graphical Models

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring semester 2018

Recap

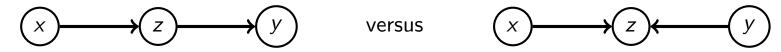
- ► The number of free parameters in probabilistic models increases with the number of random variables involved.
- Making statistical independence assumptions reduces the number of free parameters that need to be specified.
- Starting with the chain rule and an ordering of the random variables, we used statistical independencies to simplify the representation.
- We thus obtained a factorisation in terms of a product of conditional pdfs that we visualised as a DAG.
- In turn, we used DAGs to define sets of distributions ("directed graphical models").
- We discussed independence properties satisfied by the distributions, d-separation, and the equivalence to the factorisation.

The directionality in directed graphical models

So far we mainly exploited the property

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{y}|\mathbf{x},\mathbf{z}) = p(\mathbf{y}|\mathbf{z})$$

- ▶ But when working with p(y|x,z) we impose an ordering or directionality from x and z to y.
- Directionality matters in directed graphical models



- ▶ In some cases, directionality is natural but in others we do not want to choose one direction over another.
- We now discuss how to represent independencies in a symmetric manner without assuming a directionality or ordering of the variables.

Program

- 1. Representing probability distributions without imposing a directionality between the random variables
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
- 4. Further independencies in undirected graphical models

Program

- 1. Representing probability distributions without imposing a directionality between the random variables
 - Factorisation and statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs
 - Conditioning corresponds to removing nodes and edges from the graph
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
- 4. Further independencies in undirected graphical models

Further characterisation of statistical independence

From tutorials: For non-negative functions $a(\mathbf{x}, \mathbf{z}), b(\mathbf{y}, \mathbf{z})$:

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = a(\mathbf{x}, \mathbf{z})b(\mathbf{y}, \mathbf{z})$$

- ▶ More general version of p(x, y, z) = p(x|z)p(y|z)p(z)
- ▶ No directionality or ordering of the variables is imposed.
- ▶ Unconditional version: For non-negative functions $a(\mathbf{x}), b(\mathbf{y})$:

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}) = a(\mathbf{x})b(\mathbf{y})$$

- ► The important point is the factorisation of $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ into two factors:
 - if the factors share a variable z, then we have conditional independence,
 - if not, we have unconditional independence.

Further characterisation of statistical independence

▶ Since p(x, y, z) must sum (integrate) to one, we must have

$$\sum_{\mathbf{x},\mathbf{y},\mathbf{z}} a(\mathbf{x},\mathbf{z}) b(\mathbf{y},\mathbf{z}) = 1$$

Normalisation condition often ensured by re-defining $a(\mathbf{x}, \mathbf{z})b(\mathbf{y}, \mathbf{z})$:

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{Z} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z}) \qquad Z = \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

- Z: normalisation constant (related to partition function, see later)
- ϕ_i : factors (also called potential functions). Do generally not correspond to (conditional) probabilities. They measure "compatibility", "agreement", or "affinity"

What does it mean?

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{Z} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

" \Rightarrow " If we want our model to satisfy $\mathbf{x} \perp \!\!\! \perp \mathbf{y} \mid \mathbf{z}$ we should write the pdf (pmf) as

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

"\(= \)" If the pdf (pmf) can be written as $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$ then we have $\mathbf{x} \perp \!\!\! \perp \mathbf{y} \mid \mathbf{z}$

equivalent for unconditional version

Example

Consider
$$p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_4)$$

What independencies does *p* satisfy?

We can write

$$p(x_1, x_2, x_3, x_4) \propto \underbrace{[\phi_1(x_1, x_2)\phi_2(x_2, x_3)]}_{\tilde{\phi}_1(x_1, x_2, x_3)} [\phi_3(x_4)]$$
$$\propto \tilde{\phi}_1(x_1, x_2, x_3)\phi_3(x_4)$$

so that $x_4 \perp x_1, x_2, x_3$.

► Integrating out x₄ gives

$$p(x_1, x_2, x_3) = \int p(x_1, x_2, x_3, x_4) dx_4 \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3)$$

so that $x_1 \perp \!\!\! \perp x_3 \mid x_2$

Gibbs distributions

 Example is a special case of a class of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\prod_c\phi_c(\mathcal{X}_c)$$

- $\lambda_c \subseteq \{x_1,\ldots,x_d\}$
- ϕ_c are non-negative factors (potential functions) Do generally not correspond to (conditional) probabilities. They measure "compatibility", "agreement", or "affinity"
- ▶ Z is a normalising constant so that $p(x_1, ..., x_d)$ integrates (sums) to one.
- Known as Gibbs (or Boltzmann) distributions
- $\tilde{p}(x_1,\ldots,x_d)=\prod_c\phi_c(\mathcal{X}_c)$ is an example of an unnormalised model: $\tilde{p}\geq 0$ but does not necessarily integrate (sum) to one.

Energy-based model

▶ With $\phi_c(\mathcal{X}_c) = \exp(-E_c(\mathcal{X}_c))$, we have equivalently

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\exp\left[-\sum_c E_c(\mathcal{X}_c)\right]$$

 $\triangleright \sum_c E_c(\mathcal{X}_c)$ is the energy of the configuration (x_1, \ldots, x_d) . low energy \iff high probability

Example

Other examples of Gibbs distributions:

$$p(x_1, ..., x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

$$p(x_1, ..., x_6) \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_2, x_5) \phi_4(x_1, x_4) \phi_5(x_4, x_5)$$

$$\phi_6(x_5, x_6) \phi_7(x_3, x_6)$$
?

Independencies?

In principle, the independencies follow from

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow \rho(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

with appropriately defined factors ϕ_A and ϕ_B .

But the mathematical manipulations of grouping together factors and integrating variables out become unwieldy.

Let us use graphs to better see what's going on.

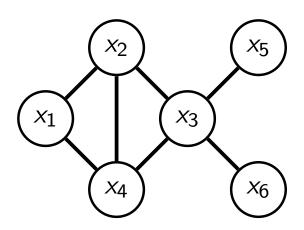
Visualising Gibbs distributions with undirected graphs

$$p(x_1,\ldots,x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$$

- \triangleright Node for each x_i
- For all factors ϕ_c : draw an undirected edge between all x_i and x_j that belong to \mathcal{X}_c
- ▶ Results in a fully-connected subgraph for all x_i that are part of the same factor (this subgraph is called a clique).

Example:

Graph for $p(x_1, ..., x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$



Effect of conditioning

Let $p(x_1, \ldots, x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$.

- What is $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$?
- By definition $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$

$$= \frac{p(x_{1}, x_{2}, x_{3} = \alpha, x_{4}, x_{5}, x_{6})}{\int p(x_{1}, x_{2}, x_{3} = \alpha, x_{4}, x_{5}, x_{6}) dx_{1} dx_{2} dx_{4} dx_{5} dx_{6}}$$

$$= \frac{\phi_{1}(x_{1}, x_{2}, x_{4}) \phi_{2}(x_{2}, \alpha, x_{4}) \phi_{3}(\alpha, x_{5}) \phi_{4}(\alpha, x_{6})}{\int \phi_{1}(x_{1}, x_{2}, x_{4}) \phi_{2}(x_{2}, \alpha, x_{4}) \phi_{3}(\alpha, x_{5}) \phi_{4}(\alpha, x_{6}) dx_{1} dx_{2} dx_{4} dx_{5} dx_{6}}$$

$$= \frac{1}{Z(\alpha)} \phi_{1}(x_{1}, x_{2}, x_{4}) \phi_{2}^{\alpha}(x_{2}, x_{4}) \phi_{3}^{\alpha}(x_{5}) \phi_{4}^{\alpha}(x_{6})$$

- ▶ Gibbs distribution with derived factors ϕ_i^{α} of reduced domain and new normalisation "constant" $Z(\alpha)$
- ▶ Note that $Z(\alpha)$ depends on the conditioning value α .

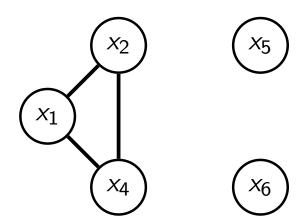
Effect of conditioning

Let
$$p(x_1, ..., x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$
.

► Conditional $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$ is

$$\frac{1}{Z(\alpha)}\phi_1(x_1,x_2,x_4)\phi_2^{\alpha}(x_2,x_4)\phi_3^{\alpha}(x_5)\phi_4^{\alpha}(x_6)$$

 Conditioning on variables removes the corresponding nodes and connecting edges from the undirected graph



Program

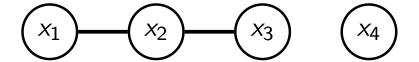
- 1. Representing probability distributions without imposing a directionality between the random variables
 - Factorisation and statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs
 - Conditioning corresponds to removing nodes and edges from the graph
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
- 4. Further independencies in undirected graphical models

Program

- 1. Representing probability distributions without imposing a directionality between the random variables
- 2. Undirected graphs, separation, and statistical independencies
 - Separation in undirected graphs
 - Statistical independencies from graph separation
 - Global Markov property
 - I-map
- 3. Definition of undirected graphical models
- 4. Further independencies in undirected graphical models

Relating graph properties to independencies

- ► Consider $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_4)$ from before
- We have seen:
 - $x_4 \perp \!\!\! \perp x_1, x_2, x_3$
 - $\rightarrow x_1 \perp x_3 \mid x_2$
- Graph:

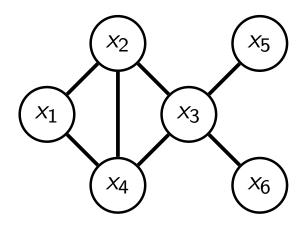


- In the graph, x_4 is separated from x_1, x_2, x_3 . Starting at x_4 , we cannot reach x_1, x_2 , or x_3 (and vice versa). In other words, all trails from x_4 to x_1, x_2, x_3 are "blocked".
- ▶ In the graph, x_1 and x_3 are separated by x_2 . In other words, all trails from x_1 to x_3 are blocked by x_2 (when removing x_2 from the graph, we cannot reach x_3 from x_1 and vice versa)

Relating graph properties to independencies

Example: $p(x_1,...,x_6) \propto \phi_1(x_1,x_2,x_4)\phi_2(x_2,x_3,x_4)\phi_3(x_3,x_5)\phi_4(x_3,x_6)$

► Graph:



- ▶ x_3 separates $\{x_1, x_2, x_4\}$ and $\{x_5, x_6\}$ In other words, x_3 blocks all trails from $\{x_1, x_2, x_4\}$ to $\{x_5, x_6\}$
- ▶ Do we have $x_1, x_2, x_4 \perp \!\!\! \perp x_5, x_6 \mid x_3$?

Relating graph properties to independencies

$$p(\mathbf{x}) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

- ▶ Do we have $x_1, x_2, x_4 \perp \!\!\! \perp x_5, x_6 \mid x_3$?
- Group the factors

$$p(\mathbf{x}) \propto \underbrace{\phi_1(x_1, x_2, x_4)\phi_2(x_2, x_3, x_4)}_{\phi_A(x_1, x_2, x_4, x_3)} \underbrace{\phi_3(x_3, x_5)\phi_4(x_3, x_6)}_{\phi_B(x_5, x_6, x_3)}$$

Takes the form

$$p(\mathbf{x}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

with
$$\mathbf{x} \equiv (x_1, x_2, x_4), \mathbf{y} \equiv (x_5, x_6), \mathbf{z} = x_3$$

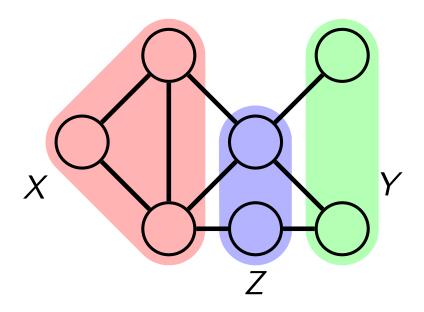
► Hence: $x_1, x_2, x_4 \perp \!\!\!\perp x_5, x_6 \mid x_3$ holds indeed.

20 / 51

Separation in undirected graphs

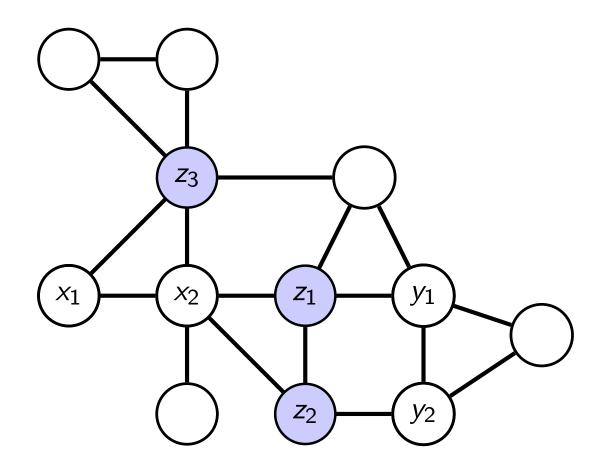
Let X, Y, Z be three disjoint set of nodes in an undirected graph.

- \blacktriangleright X and Z are separated by Z if every trail from any node in X to any node in Y passes through at least one node of Z.
- ► In other words:
 - all trails from X to Y are blocked by Z
 - ightharpoonup removing Z from the graph leaves X and Y disconnected.
 - \triangleright Nodes are valves; open by default but closed when part of Z.



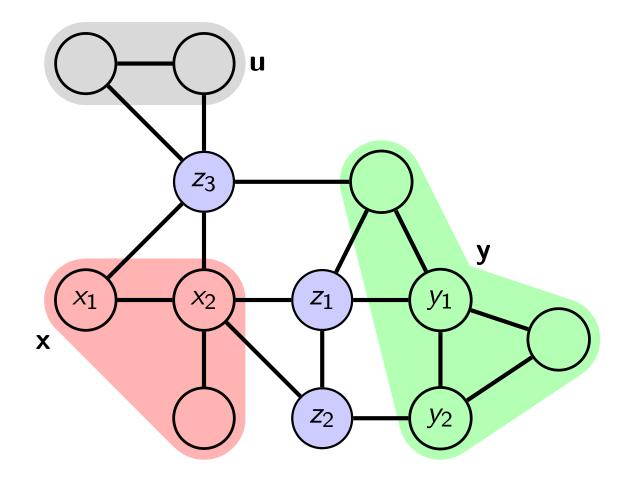
Assume $p(x_1, ..., x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, ..., x_d\}$ can be visualised as the graph below.

Do we have $x_1, x_2 \perp \!\!\!\perp y_1, y_2 \mid z_1, z_2, z_3$?



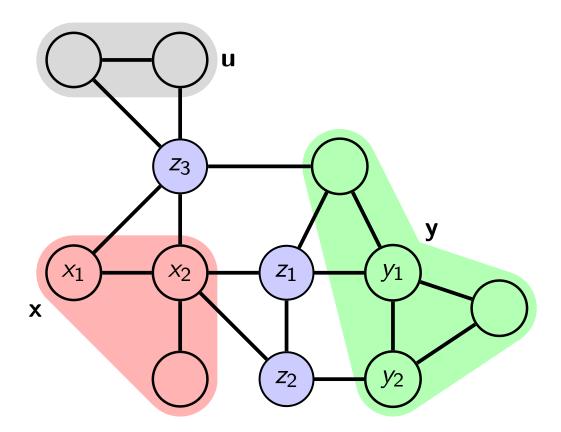
Assume $p(x_1, ..., x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, ..., x_d\}$ can be visualised as the graph below.

Do we have $\mathbf{x} \perp \mathbf{y} \mid z_1, z_2, z_3$?



- ▶ With $\mathbf{z} = (z_1, z_2, z_3)$, all x_i belong to one of the $\mathbf{x}, \mathbf{y}, \mathbf{z}$, or \mathbf{u} .
- ▶ We thus have $p(x_1,...,x_d) = p(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u})$ and we can group the factors ϕ_c together so that

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}) \propto \phi_1(\mathbf{x}, \mathbf{z}) \phi_2(\mathbf{y}, \mathbf{z}) \phi_3(\mathbf{u}, \mathbf{z})$$



► Integrating (summing) out **u** gives

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{\mathbf{u}} p(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u})$$
 (1)

$$\propto \sum_{\mathbf{u}} \phi_1(\mathbf{x}, \mathbf{z}) \phi_2(\mathbf{y}, \mathbf{z}) \phi_3(\mathbf{u}, \mathbf{z})$$
 (2)

(distributive law)
$$\propto \phi_1(\mathbf{x}, \mathbf{z})\phi_2(\mathbf{y}, \mathbf{z}) \sum_{\mathbf{u}} \phi_3(\mathbf{u}, \mathbf{z})$$
 (3)

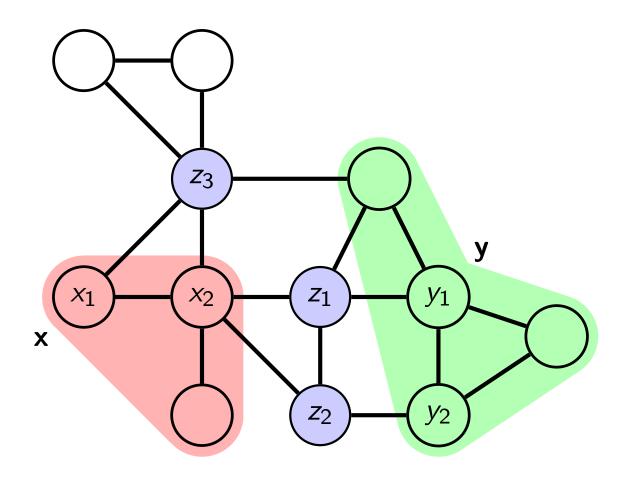
$$\propto \phi_1(\mathbf{x}, \mathbf{z})\phi_2(\mathbf{y}, \mathbf{z})\tilde{\phi}(\mathbf{z})$$
 (4)

$$\propto \phi_A(\mathbf{x}, \mathbf{z})\phi_B(\mathbf{y}, \mathbf{z})$$
 (5)

► And $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$ means $\mathbf{x} \perp \!\!\! \perp \mathbf{y} \mid \mathbf{z}$

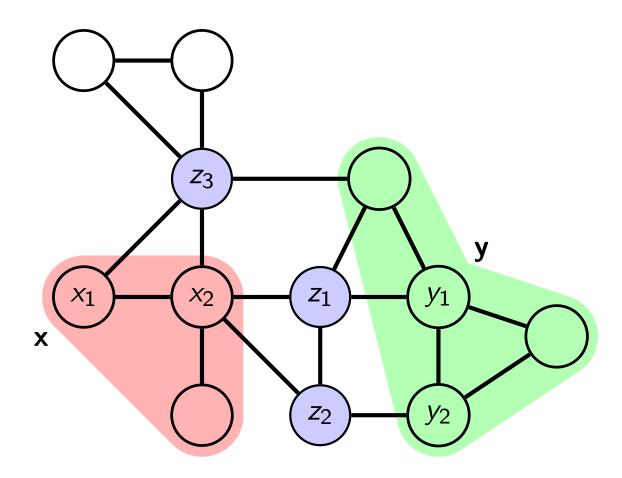
Assume $p(x_1, ..., x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, ..., x_d\}$ can be visualised as the graph below.

We have shown that if **x** and **y** are separated by **z**, then $\mathbf{x} \perp \!\!\! \perp \mathbf{y} \mid \mathbf{z}$.

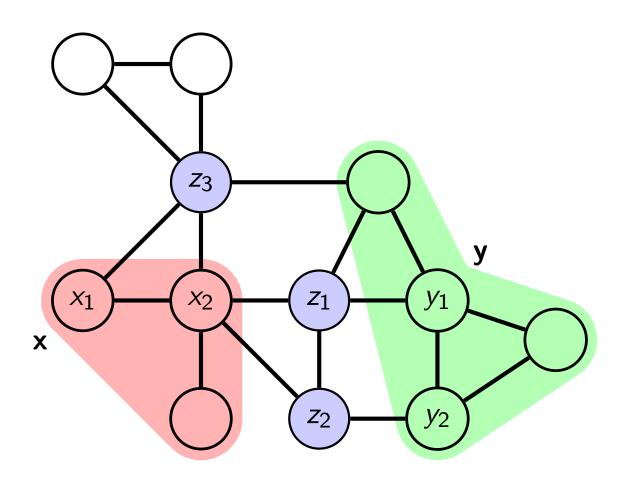


Assume $p(x_1, ..., x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, with $\mathcal{X}_c \subset \{x_1, ..., x_d\}$ can be visualised as the graph below.

So do we have $x_1, x_2 \perp \!\!\!\perp y_1, y_2 \mid z_1, z_2, z_3$?



- ▶ From tutorial: $x \perp \!\!\! \perp \{y, w\} \mid z \text{ implies } x \perp \!\!\! \perp y \mid z$
- ► Hence $\mathbf{x} \perp \!\!\! \perp \mathbf{y} \mid z_1, z_2, z_3$ implies $x_1, x_2 \perp \!\!\! \perp y_1, y_2 \mid z_1, z_2, z_3$.



Summary

Theorem:

Let G be the undirected graph for $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$, and X, Y, Z three disjoint subsets of $\{x_1, \ldots, x_d\}$. If, in the graph, X and Y are separated by Z, then $X \perp\!\!\!\perp Y \mid Z$.

Important because:

- 1. the theorem allows us to read out (conditional) independencies from the undirected graph
- 2. the theorem shows that graph separation does not indicate false independence relations. ("Soundness" of the independence assertions.)
- We say that $p(x_1, ..., x_d)$ satisfies the global Markov property relative to G.

Converse

Theorem: If X and Y are not separated by Z in the graph then $X \not\perp\!\!\!\perp Y \mid Z$ in some probability distributions that factorise according to the graph.

Optional, for those interested: A proof sketch can be found in Section 4.3.1.2 of *Probabilistic Graphical Models* by Koller and Friedman.

Remark: The theorem implies that for some specific factors, we may have $X \perp\!\!\!\perp Y \mid Z$ even though X and Y are not separated by Z. The separation criterion only allows us to decide about independence and not about dependence. It is not "complete".

I-map

(as before for directed graphical models)

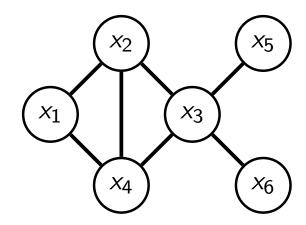
- ▶ A graph is said to be an independency map (I-map) for a set of independencies \mathcal{I} if the independencies asserted by the graph are part of \mathcal{I} .
- For a undirected graph H, let $\mathcal{I}(H)$ be all the independencies that we can derive via graph separation.
- ▶ Denote the independencies that a distribution p satisfies by $\mathcal{I}(p)$.
- ► The previous results on graph separation can thus be written as

$$\mathcal{I}(H) \subseteq \mathcal{I}(p)$$
 for all p that factorise over H

As before, we generally do not have $\mathcal{I}(H) = \mathcal{I}(p)$. If we have equality, the graph is said to be a perfect map (P-map) for $\mathcal{I}(p)$.

Example

- $p(x_1,\ldots,x_6) \propto \phi_1(x_1,x_2,x_4)\phi_2(x_2,x_3,x_4)\phi_3(x_3,x_5)\phi_4(x_3,x_6)$
- Graph



Example independencies:

$$x_1 \perp \!\!\! \perp \{x_3, x_5, x_6\} \mid x_2, x_4 \qquad x_2 \perp \!\!\! \perp x_6 \mid x_3 \qquad x_5 \perp \!\!\! \perp x_6 \mid x_3$$

$$x_2 \perp \!\!\! \perp x_6 \mid x_3$$

$$x_5 \perp \!\!\! \perp x_6 \mid x_3$$

▶ But $x_3 \not\perp \!\!\!\perp x_1$ for some distributions that factorise over the graph.

Summary

- 1. Representing probability distributions without imposing a directionality between the random variables
 - Factorisation and statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs
 - Conditioning corresponds to removing nodes and edges from the graph
- 2. Undirected graphs, separation, and statistical independencies
 - Separation in undirected graphs
 - Statistical independencies from graph separation
 - Global Markov property
 - I-map

Program

- 1. Representing probability distributions without imposing a directionality between the random variables
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
 - Via factorisation according to the graph
 - Undirected graphical models satisfy the global Markov property
- 4. Further independencies in undirected graphical models

Undirected graphical models

- We started with a pdf/pmf in the form of a Gibbs distribution, and associated a undirected graph with it.
- We now go the other way around and start with an undirected graph.
- ▶ Definition An undirected graphical model based on an undirected graph with d nodes and associated random variables x_i is the set of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\prod_c\phi_c(\mathcal{X}_c)$$

where Z is the normalisation constant, $\phi_c(\mathcal{X}_c) \geq 0$, and the \mathcal{X}_c correspond to the maximal cliques in the graph.

 $p(x_1,...,x_d)$ as above are said to factorise according to the graph.

Remarks

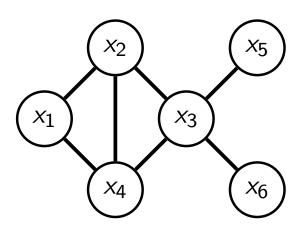
- ▶ The undirected graphical model corresponds to a *set* of probability distributions. This is because we left the actual definition of the factors $\phi_c(\mathcal{X}_c)$ unspecified.
- Other names for an undirected graphical model: Markov network (MN), Markov random field (MRF)
- ▶ By definition, all $p(x_1,...,x_d)$ defined by the graph satisfy the global Markov property relative to the graph.
- ▶ Since the graph is an I-map, we can use graph separation to determine independencies that hold for all distributions that factorise according to the graph.
- The \mathcal{X}_c correspond to maximal cliques in the graph. Maximal clique: a set of fully connected nodes (clique) that is not contained in another clique.

Why maximal cliques?

► The mapping from Gibbs distribution to graph is many to one We may obtain the same graph for different Gibbs distributions, e.g.

$$p(\mathbf{x}) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

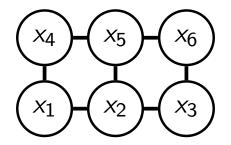
$$p(\mathbf{x}) \propto \tilde{\phi}_1(x_1, x_2) \tilde{\phi}_2(x_1, x_4) \tilde{\phi}_3(x_2, x_4) \tilde{\phi}_4(x_2, x_3) \tilde{\phi}_5(x_3, x_4) \tilde{\phi}_6(x_3, x_5) \tilde{\phi}_7(x_3, x_6)$$



▶ By using maximal cliques, we take a conservative approach and do not make additional assumptions on the factorisation.

Example (pair-wise Markov network)

Graph:



Random variables: x_1, \ldots, x_6

Maximal cliques: all neighbours

$$\{x_1, x_2\}$$
 $\{x_2, x_3\}$ $\{x_4, x_5\}$ $\phi_6\{x_5, x_6\}$ $\{x_1, x_4\}$ $\{x_2, x_5\}$ $\phi_7\{x_3, x_6\}$

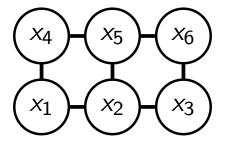
All models defined by the graph factorise as:

$$p(\mathbf{x}) \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_4, x_5) \phi_4(x_5, x_6) \phi_5(x_1, x_4) \phi_6(x_2, x_5) \phi_7(x_3, x_6)$$

Example of a pairwise Markov network.

Example (pair-wise Markov network)

Graph:



Some independencies from global Markov property:

$$x_1, x_4 \perp \!\!\! \perp x_3, x_6 \mid x_2, x_5$$
 $x_1 \perp \!\!\! \perp \underbrace{x_5, x_6, x_3}_{\text{all } \setminus (x_1 \cup \text{ne}_1)} \mid \underbrace{x_4, x_2}_{\text{ne}_1} \qquad x_1 \perp \!\!\! \perp x_6 \mid \underbrace{x_2, x_3, x_4, x_5}_{\text{all without } x_1, x_6}$

Last two are examples of the "local Markov property" and the "pairwise Markov property" relative to the undirected graph.

Program

- 1. Representing probability distributions without imposing a directionality between the random variables
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
 - Via factorisation according to the graph
 - Undirected graphical models satisfy the global Markov property
- 4. Further independencies in undirected graphical models

Program

- 1. Representing probability distributions without imposing a directionality between the random variables
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
- 4. Further independencies in undirected graphical models
 - Local Markov property
 - Pairwise Markov property
 - Equivalence between factorisation and Markov properties for positive distributions
 - Markov blanket

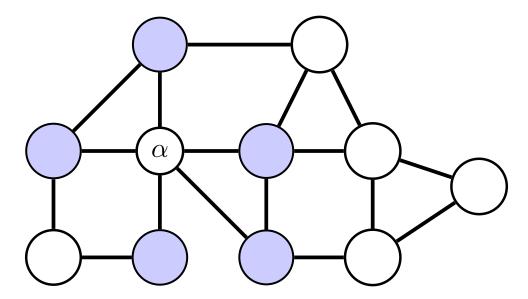
Local Markov property

Denote the set of all nodes by X and the neighbours of a node α by $ne(\alpha)$.

A probability distribution is said to satisfy the local Markov property relative to an undirected graph if

$$\alpha \perp \!\!\! \perp X \setminus (\alpha \cup \operatorname{ne}(\alpha)) \mid \operatorname{ne}(\alpha)$$
 for all nodes $\alpha \in X$

▶ If p satisfies the global Markov property, then it satisfies the local Markov property. This is because $ne(\alpha)$ blocks all trails to remaining nodes.



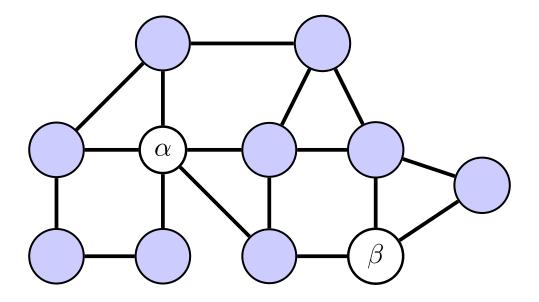
Pairwise Markov property

Denote the set of all nodes by X.

A probability distribution is said to satisfy the pairwise Markov property relative to an undirected graph if

$$\alpha \perp \!\!\!\perp \beta \mid X \setminus \{\alpha, \beta\}$$
 for all non-neighbouring $\alpha, \beta \in X$

▶ If *p* satisfies the local Markov property, then it satisfies the pairwise Markov property.



Summary

Let p be a pdf/pmf defined by the undirected graph G.

p factorises according to G

 \Downarrow

p satisfies the global Markov property

p satisfies the local Markov property

p satisfies the pairwise Markov property

Do we have an equivalence?

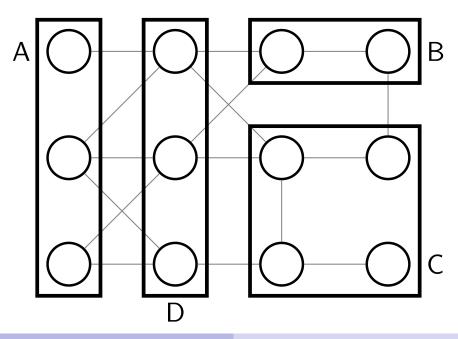
- In directed graphical models, we had an equivalence of
 - factorisation,
 - ordered Markov property,
 - local directed Markov property, and
 - global directed Markov property.
- Do we have a similar equivalence for undirected graphical models?

Yes, under some very mild condition

Intersection property

- ▶ The intersection property holds for all distributions with $p(\mathbf{x}) > 0$ for all values of \mathbf{x} in its domain.
- Excludes deterministic relationships between the variables.
- ▶ Intersection property: Let A, B, C, D be sets of random variables

If $A \perp\!\!\!\perp B \mid (C \cup D)$ and $A \perp\!\!\!\perp C \mid (B \cup D)$ then $A \perp\!\!\!\perp (B \cup C) \mid D$



From pairwise to global Markov property and factorisation

- Let $p(x_1, ..., x_d)$ be a pdf/pmf that satisfies the intersection property for all disjoint subsets A, B, C, D of $\{x_1, ..., x_d\}$. Holds if p is always takes positive values ("positive distributions").
- ▶ If *p* satisfies the pairwise Markov property with respect to an undirected graph *G* then
 - \triangleright p satisfies the global Markov property with respect to G, and
 - p factorises according to G.
- Hence: equivalence of factorisation and the global, local, and pairwise Markov properties for positive distributions.
- Equivalence known as Hammersely-Clifford theorem.
- Important e.g. for learning because prior knowledge may come in form of conditional independencies (the graph), which we can incorporate by working with Gibbs distributions that factorise accordingly.

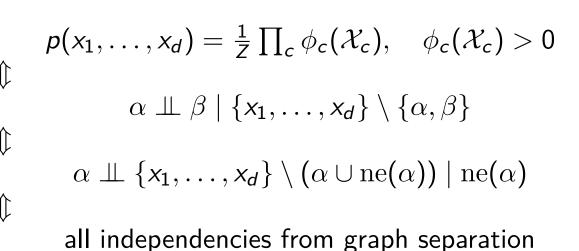
Summary of equivalences

Factorisation

pairwise Markov property

local Markov property

global Markov property



Broadly speaking, the graph serves two related purposes:

- 1. it tells us how distributions factorise
- 2. it represents the independence assumptions made

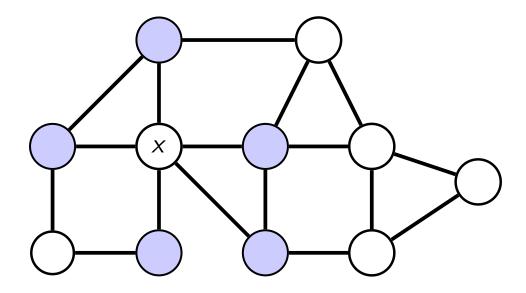
Markov blanket

What is the minimal set of variables such that knowing their values makes x independent from the rest?

From local Markov property: MB(x) = ne(x):

$$x \perp \{\text{all variables} \setminus (x \cup \text{ne}(x))\} \mid \text{ne}(x)\}$$

.



Program

- 1. Representing probability distributions without imposing a directionality between the random variables
- 2. Undirected graphs, separation, and statistical independencies
- 3. Definition of undirected graphical models
- 4. Further independencies in undirected graphical models
 - Local Markov property
 - Pairwise Markov property
 - Equivalence between factorisation and Markov properties for positive distributions
 - Markov blanket

Program recap

- 1. Representing probability distributions without imposing a directionality between the random variables
 - Factorisation and statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs
 - Conditioning corresponds to removing nodes and edges from the graph
- 2. Undirected graphs, separation, and statistical independencies
 - Separation in undirected graphs
 - Statistical independencies from graph separation
 - Global Markov property
 - I-map
- 3. Definition of undirected graphical models
 - Via factorisation according to the graph
 - Undirected graphical models satisfy the global Markov property
- 4. Further independencies in undirected graphical models
 - Local Markov property
 - Pairwise Markov property
 - Equivalence between factorisation and Markov properties for positive distributions
 - Markov blanket