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Recap

The number of free parameters in probabilistic models
increases with the number of random variables involved.

Making statistical independence assumptions reduces the
number of free parameters that need to be specified.

Starting with the chain rule and an ordering of the random
variables, we used statistical independencies to simplify the
representation.

We thus obtained a factorisation in terms of a product of
conditional pdfs that we visualised as a DAG.

In turn, we used DAGs to define sets of distributions
(“directed graphical models™).

We discussed independence properties satisfied by the
distributions, d-separation, and the equivalence to the
factorisation.
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The directionality in directed graphical models

» So far we mainly exploited the property

x 1L y|z< p(yx,z) = p(y|z)

» But when working with p(y|x,z) we impose an ordering or
directionality from x and z to y.

» Directionality matters in directed graphical models

» |n some cases, directionality is natural but in others we do not
want to choose one direction over another.

» \We now discuss how to represent independencies in a
symmetric manner without assuming a directionality or
ordering of the variables.
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Program

1. Representing probability distributions without imposing a
directionality between the random variables

2. Undirected graphs, separation, and statistical independencies
3. Definition of undirected graphical models

4. Further independencies in undirected graphical models
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Program

1. Representing probability distributions without imposing a
directionality between the random variables
o Factorisation and statistical independence
o Gibbs distributions
o Visualising Gibbs distributions with undirected graphs
o Conditioning corresponds to removing nodes and edges from
the graph
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Further characterisation of statistical independence

» From tutorials: For non-negative functions a(x, z), b(y, z):
x L y|z+ p(x,y,z) = a(x,2)b(y, )

» More general version of p(x,y,z) = p(x|z)p(y|z)p(z)
» No directionality or ordering of the variables is imposed.

» Unconditional version: For non-negative functions a(x), b(y):
x lLy <= p(x,y) = a(x)b(y)

» The important point is the factorisation of p(x,y, z) into two
factors:
» if the factors share a variable z, then we have conditional

independence,
» if not, we have unconditional independence.
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Further characterisation of statistical independence

» Since p(x,y,z) must sum (integrate) to one, we must have

Z a(x,z)b(y,z) =1

x7y7Z

» Normalisation condition often ensured by re-defining
a(x,z)b(y, 2):

1
p(X7 y; Z) — ?¢A(X7 Z)¢B(y7 Z) VS Z ¢A(X7 Z)¢B(y7 Z)
X7y7z
» /: normalisation constant (related to partition function, see later)

» ¢;: factors (also called potential functions).
Do generally not correspond to (conditional) probabilities.
They measure “compatibility”, “agreement”, or “affinity”
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What does it mean?

x ILy|z < p(x,y,2) = 79a(x,2)¢5(y, 2)

“=" If we want our model to satisfy x 1L y | z we should write the
pdf (pmf) as

p(x, y; Z) X QbA(Xv Z)¢B(Y7 Z)

‘<" If the pdf (pmf) can be written as
p(x.y.2) x Ga(x, 2)¢5(y. 2) then we have x 1Ly | 2

equivalent for unconditional version
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Example

Consider p(X17 X2, X3, X4) X ¢1(X1, X2)¢2(X27 X3)¢3(X4)

What independencies does p satisfy?

» We can write

p(x1, x2, X3, x4) o [p1(x1, x2)d2(x2, X3)][#3(xa)]

~~

b1 (x1,%2,X3)

x ¢1(x1, %2, x3)$3(xa)

so that xz 1L x1, X2, Xx3.

» Integrating out x4 gives

p(x1,x2,x3) = /P(X17X2,X3,X4)dX4 X ¢1(x1, X2)P2(x2, X3)

so that x; 1L x3 | xo
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Gibbs distributions

» Example is a special case of a class of pdfs/pmfs that
factorise as

p(Xl7 “ . ,Xd) — % H ¢C(XC)

» X C{x1,...,xq}

> ¢, are non-negative factors (potential functions)
Do generally not correspond to (conditional) probabilities.
They measure “compatibility”, “agreement”, or “affinity”

» Z is a normalising constant so that p(xi,...,xy) integrates
(sums) to one.

» Known as Gibbs (or Boltzmann) distributions

> p(x1,...,xq) = [I. ¢c(Xe) is an example of an unnormalised

model: p > 0 but does not necessarily integrate (sum) to one.
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Energy-based model

» With ¢ (X.) = exp (—E-(X,)), we have equivalently

p(x1,...,Xq) = % exp [— Z Ec(Xc)]

» > - E.(X.) is the energy of the configuration (xi,...,xq4).
low energy <= high probability
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Example

Other examples of Gibbs distributions:

p(Xla R 7X6) O<¢1(X17X27 X4)¢2(X27 X3, X4)¢3(X37 X5)¢4(X37 X6)
p(x1,...,X6) XP1(x1,x2)P2(x2, x3)P3(X2, X5)Pa(x1, Xa) P5(X4, X5)
¢6(X57X6)¢7(X37X6)?

Independencies?

» In principle, the independencies follow from

x L y|z< p(x,y,2z) x ¢pa(x,z)p5(Y, 2)

with appropriately defined factors ¢4 and ¢p.

» But the mathematical manipulations of grouping together
factors and integrating variables out become unwieldy.

Let us use graphs to better see what's going on.
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Visualising Gibbs distributions with undirected graphs

p(Xla R 7Xd) X Hc ¢C(XC)

» Node for each x;
» For all factors ¢.: draw an undirected edge between all x; and
xj that belong to X

» Results in a fully-connected subgraph for all x; that are part of
the same factor (this subgraph is called a clique).

Example:
Graph for p(X17 K 7X6) X ¢1(X17X27X4)¢2(X27X37X4)¢3(X37X5)¢4(X37X6)
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Effect of conditioning

Let p(x1,...,X6) o @1(x1, X2, Xa)P2(x2, X3, X4 ) P3(x3, X5 ) P4 (X3, X6)-
> What is p(X17X27X47X57X6‘X3 — (14)7

» By definition p(x1, x2, x4, X5, Xs|X3 = @)

_ p(X17X27X3 — 047X47X57X6)
| p(x1,x2,x3 = o, X4, X5, X )dx1dxodxsd x5 dxe
_ P1(x1, X2, Xa)P2(x2, v, Xa) P3( v, x5)Pa(cv, X6)
[ d1(x1, X2, Xa)p2(x2, v, Xa )3 (v, X5)Pa (v, X6 )dx1dxodxadxsdxe

B Z(loz)(bl(Xl,X2,X4)¢§(X2»X4)¢g(x5)¢g(x6)

> Gibbs distribution with derived factors ¢$ of reduced domain
and new normalisation “constant” Z(«)

» Note that Z(«a) depends on the conditioning value a.
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Effect of conditioning

Let p(X17 RN 7X6) X ¢1(X17X27 X4)¢2(X27 X3, X4)¢3(X37 X5)¢4(X37 X6)'
» Conditional p(x1, X2, X, X5, Xg|x3 = ) is

1
Z(a)

P1(x1, X2, Xa) 5 (X2, Xa )95 (x5) D3 (X6)

» Conditioning on variables removes the corresponding nodes
and connecting edges from the undirected graph

OO
O
OO
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Program

1. Representing probability distributions without imposing a
directionality between the random variables
o Factorisation and statistical independence
o Gibbs distributions
o Visualising Gibbs distributions with undirected graphs
o Conditioning corresponds to removing nodes and edges from
the graph

Michael Gutmann Undirected Graphical Models 16 /51



Program

2. Undirected graphs, separation, and statistical independencies
o Separation in undirected graphs
o Statistical independencies from graph separation
o Global Markov property
o |l-map
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Relating graph properties to independencies

> Consider P(X17X27X3,X4) X ¢1(X17X2)¢2(X27X3)¢3(X4) from
before

» We have seen:
> X4 AL x1,X2,X3
> Xi Al X3 | X2

» In the graph, xs is separated from xi, x2, x3.

» Graph:

Starting at x4, we cannot reach xi, xp, or x3 (and vice versa).
In other words, all trails from x4 to x1, x2, x3 are “blocked”.

» In the graph, x; and x3 are separated by x». In other words,
all trails from x; to x3 are blocked by xo
(when removing x; from the graph, we cannot reach x3 from x; and
vice versa)
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Relating graph properties to independencies

» Example:
p(x1, .-, X6) X P1(X1, X2, Xa)P2(x2, X3, Xa ) P3(X3, X5 ) Pa(X3, X6)

> Graph:
ofje
oo
@

> x3 separates {xi,x2,xs} and {xs, X5 }
In other words, x3 blocks all trails from {x;, x2,xa} to {xs, X6}

» Do we have x1,x2,xz 1 x5, X6 | x37
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Relating graph properties to independencies

p(X) X ¢1(X17X27X4)¢2(X27X37X4)¢3(X37X5)¢4(X37X6)
» Do we have x1,x2,xz 1 x5, X6 | x37

» Group the factors

p(X) X ?1 (X17 X2, X4)¢2(X27 X3, X4Z£¢3(X37 X5)¢4(X37 X6Z

~" ~"

¢A(X17X27X4)X3) ¢B(X57X67X3)

» Takes the form

p(x) o< pa(x,2)¢s(y, 2)

with x = (x1,x2,Xx2),yY = (X5, %6),Z = X3

» Hence: x1,x2,x3 1L x5, %6 | x3 holds indeed.

Michael Gutmann Undirected Graphical Models

20 /51



Separation in undirected graphs

Let X, Y, Z be three disjoint set of nodes in an undirected graph.

» X and Z are separated by Z if every trail from any node in X
to any node in Y passes through at least one node of Z.

» In other words:
» all trails from X to Y are blocked by Z
» removing Z from the graph leaves X and Y disconnected.

» Nodes are valves; open by default but closed when part of Z.

V4
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Statistical independencies from graph separation

Assume p(xi, ..., Xq) X [, pc(Xe), with X C {x1,...,xg4} can
be visualised as the graph below.

Do we have x1,x2 1L y1,yo | 21, 22, 237
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Statistical independencies from graph separation

Assume p(xi, ..., Xq) X [, pc(Xe), with X C {x1,...,xg4} can
be visualised as the graph below.

Do we have x 1L y | z1, 20, z37
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Statistical independencies from graph separation

» With z = (z1, 22, z3), all x; belong to one of the x,y, z, or u.

» We thus have p(xi,...,xq) = p(X,Y,2,u) and we can group
the factors ¢. together so that

P(X, Y, Z, U) X gbl (Xv Z)¢2(y7 Z)¢3(U, Z)
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Statistical independencies from graph separation

» Integrating (summing) out u gives

p(x,y,z) = > p(x,y,z,u) (1)
x Y ¢1(x,2)d2(y, 2)¢3(u,z)  (2)
(distributive law) o< ¢1(X, z)P2(Y, 2) Z ¢3(u, 2) (3)

x ¢1(x,2)p2(y, z)9(2) (4)
< pa(x,2)9B(Y; 2) (5)

> And p(x,y,2)  $a(x,2)¢5(y, z) means x Ly | z
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Statistical independencies from graph separation

Assume p(xi, ..., Xq) X [, pc(Xe), with X C {x1,...,xg4} can
be visualised as the graph below.

We have shown that if x and y are separated by z, then x I y | z.
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Statistical independencies from graph separation

Assume p(xi, ..., Xq) X [, pc(Xe), with X C {x1,...,xg4} can
be visualised as the graph below.

So do we have x1,x2 1L y1,yo | 21, 22, 237
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Statistical independencies from graph separation

» From tutorial: x 1L {y,w} | z implies x 1 y | z

» Hence x 1L Yy ‘ Z1,22,23 implies X1, X2 Al Vi, Y2 ‘ Z1,22,2Z3.
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Summary

Theorem:

Let G be the undirected graph for p(x1,...,xq) <[], ¢c(Xc), and
X,Y,Z three disjoint subsets of {xy,...,xq}.

If, in the graph, X and Y are separated by Z, then X 1L Y | Z.

» Important because:
1. the theorem allows us to read out (conditional) independencies
from the undirected graph

2. the theorem shows that graph separation does not indicate
false independence relations. (“Soundness” of the
independence assertions.)

» We say that p(xi, ..., xy) satisfies the global Markov property
relative to G.
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Converse

Theorem: If X and Y are not separated by Z in the graph
then X . Y | Z in some probability distributions that factorise
according to the graph.

Optional, for those interested: A proof sketch can be found in Section 4.3.1.2
of Probabilistic Graphical Models by Koller and Friedman.

Remark: The theorem implies that for some specific factors, we
may have X 1L Y | Z even though X and Y are not separated by
Z. The separation criterion only allows us to decide about
independence and not about dependence. It is not “complete”.
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l-map

(as before for directed graphical models)

» A graph is said to be an independency map (I-map) for a set

of independencies Z if the independencies asserted by the
graph are part of 7.

For a undirected graph H, let Z(H) be all the independencies
that we can derive via graph separation.

Denote the independencies that a distribution p satisfies by
Z(p).

The previous results on graph separation can thus be written
as
Z(H) C Z(p) for all p that factorise over H

As before, we generally do not have Z(H) = Z(p). If we have
equality, the graph is said to be a perfect map (P-map) for

Z(p).
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Example

> p(X17 R 7X6) X ¢1(X17X27X4)¢2(X27X37X4)¢3(X37 X5)¢4(X37 X6)

> Graph
ofe

ofe
@

» Example independencies:

x1 AL {x3, x5, %6} | X2, X4 xo AL xg | x3 x5 1L Xg | x3
» But x3 JL x3 for some distributions that factorise over the
graph.
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Summary

1. Representing probability distributions without imposing a
directionality between the random variables
o Factorisation and statistical independence
o Gibbs distributions
o Visualising Gibbs distributions with undirected graphs
o Conditioning corresponds to removing nodes and edges from
the graph

2. Undirected graphs, separation, and statistical independencies
e Separation in undirected graphs
o Statistical independencies from graph separation
o Global Markov property
o |-map
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Program

3. Definition of undirected graphical models
o Via factorisation according to the graph
o Undirected graphical models satisfy the global Markov
property
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Undirected graphical models

» We started with a pdf/pmf in the form of a Gibbs distribution,
and associated a undirected graph with it.

» We now go the other way around and start with an undirected
graph.
» Definition An undirected graphical model based on an

undirected graph with d nodes and associated random
variables x; is the set of pdfs/pmfs that factorise as

p(Xl, .. ,Xd) = % H ¢C(XC)

where Z is the normalisation constant, ¢.(X:) > 0, and the
X correspond to the maximal cliques in the graph.

» p(x1,...,xq) as above are said to factorise according to the
graph.
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Remarks

» The undirected graphical model corresponds to a set of
probability distributions. This is because we left the actual
definition of the factors ¢.(X,) unspecified.

» Other names for an undirected graphical model: Markov
network (MN), Markov random field (MRF)

» By definition, all p(xi,...,xy) defined by the graph satisfy the
global Markov property relative to the graph.

» Since the graph is an |I-map, we can use graph separation to
determine independencies that hold for all distributions that
factorise according to the graph.

» The X, correspond to maximal cliques in the graph.

Maximal clique: a set of fully connected nodes (clique) that is
not contained in another clique.
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Why maximal cliques?

» The mapping from Gibbs distribution to graph is many to one

We may obtain the same graph for different Gibbs
distributions, e.g.

p(x) o< ¢1(x1, X2, Xa)P2(x2, X3, X2 ) P3(X3, X5 ) Pa(X3, Xe)
p(x) o< d1(x1, %2) P2 (x1, Xa) D3 (X2, Xa) a2, x3) 5 (X3, Xa) D6 (X3, X5 ) D7 (X3, X6)

» By using maximal cliques, we take a conservative approach
and do not make additional assumptions on the factorisation.
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Example (pair-wise Markov network)

Graph:

Random variables: xq,..., xg

Maximal cliques: all neighbours

{x1, %} {x,x3} {xa,x5} ¢e{xs.x%} {x1,x} {x2,x5} ¢P7r{x3,%6}

All models defined by the graph factorise as:

p(x) x@1(x1, X2)P2(x2, X3)P3(Xa, X5 ) Pa(X5, X6 ) Ps (X1, Xa ) Ps (X2, X5 ) P7(X3, X6)

Example of a pairwise Markov network.
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Example (pair-wise Markov network)

Graph:

Some independencies from global Markov property:
X1, X4 AL X3, X6 ‘ X2, X5

x1 AL 557X67X3J ’ X4, X2 x1 AL X6 ‘ 527X37X47X5j

TV TV

all \(x1Une1) ne; all without x1,xs

Last two are examples of the “local Markov property” and the
“pairwise Markov property” relative to the undirected graph.
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Program

3. Definition of undirected graphical models
o Via factorisation according to the graph
o Undirected graphical models satisfy the global Markov
property
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Program

4. Further independencies in undirected graphical models
o Local Markov property
o Pairwise Markov property
o Equivalence between factorisation and Markov properties for
positive distributions
o Markov blanket
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Local Markov property

Denote the set of all nodes by X and the neighbours of a node «
by ne(a).
» A probability distribution is said to satisfy the local Markov
property relative to an undirected graph if

a L X\ (eUne(a)) | ne(a) for all nodes o € X

» |f p satisfies the global Markov property, then it satisfies the
local Markov property. This is because ne(«) blocks all trails
to remaining nodes.
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Pairwise Markov property

Denote the set of all nodes by X.

» A probability distribution is said to satisfy the pairwise Markov
property relative to an undirected graph if

all B X\{a,B} for all non-neighbouring o, 8 € X

» |f p satisfies the local Markov property, then it satisfies the
pairwise Markov property.
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Summary

Let p be a pdf/pmf defined by the undirected graph G.

p factorises according to G

Y

p satisfies the global Markov property
Y

p satisfies the local Markov property
Y

p satisfies the pairwise Markov property
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Do we have an equivalence?

» In directed graphical models, we had an equivalence of

» factorisation,

» ordered Markov property,

» |ocal directed Markov property, and
» global directed Markov property.

» Do we have a similar equivalence for undirected graphical
models?

Yes, under some very mild condition
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Intersection property

» The intersection property holds for all distributions with
p(x) > 0 for all values of x in its domain.

» Excludes deterministic relationships between the variables.

» Intersection property: Let A, B, C, D be sets of random

variables

If AL B|(CUD) and A 1L C | (BUD) then A 1L (BUC) | D

()

A|O

O

X

O

Michael Gutmann
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O
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From pairwise to global Markov property and factorisation

» Let p(x1,...,Xq) be a pdf/pmf that satisfies the intersection
property for all disjoint subsets A, B, C, D of {x1,...,xq}.

Holds if p is always takes positive values (“positive
distributions”).

» |f p satisfies the pairwise Markov property with respect to an
undirected graph G then

» p satisfies the global Markov property with respect to G, and
» p factorises according to G.
» Hence: equivalence of factorisation and the global, local, and
pairwise Markov properties for positive distributions.

» Equivalence known as Hammersely-Clifford theorem.

» Important e.g. for learning because prior knowledge may come
in form of conditional independencies (the graph), which we
can incorporate by working with Gibbs distributions that
factorise accordingly.
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Summary of equivalences

Factorisation p(xt, ... xd) = = [1. pc(Xe)s  Pe(Xe) >0
pairwise Markov property ! all B {x,....,xq} \ {a, 5}
local Markov property ! all {xy,....xq} \ (¢ Une(a)) | ne(a)
global Markov property ! all independencies from graph separation

Broadly speaking, the graph serves two related purposes:
1. it tells us how distributions factorise

2. it represents the independence assumptions made
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Markov blanket

What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From local Markov property: MB(x) = ne(x):

x 1L {all variables \ (x Une(x))} | ne(x)
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Program

4. Further independencies in undirected graphical models
o Local Markov property
o Pairwise Markov property
o Equivalence between factorisation and Markov properties for
positive distributions
o Markov blanket
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Program recap

1. Representing probability distributions without imposing a directionality
between the random variables

@ Factorisation and statistical independence

@ Gibbs distributions

@ Visualising Gibbs distributions with undirected graphs

@ Conditioning corresponds to removing nodes and edges from the graph

2. Undirected graphs, separation, and statistical independencies
@ Separation in undirected graphs
@ Statistical independencies from graph separation
@ Global Markov property
@ |-map
3. Definition of undirected graphical models
@ Via factorisation according to the graph
@ Undirected graphical models satisfy the global Markov property

4. Further independencies in undirected graphical models
@ Local Markov property
@ Pairwise Markov property
@ Equivalence between factorisation and Markov properties for positive
distributions
@ Markov blanket
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