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Recap

I We talked about reasonably weak assumption to facilitate the
efficient representation of a probabilistic model

I Independence assumptions reduce the number of interacting
variables

I Parametric assumptions restrict the way the variables may
interact.

I (Conditional) independence assumptions lead to a
factorisation of the pdf/pmf, e.g.

p(x, y, z) = p(x)p(y)p(z)

p(x1, . . . , xd) = p(xd |xd−3, xd−2, xd−1)p(x1, . . . , xd−1)
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Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models

4. Independencies in directed graphical models
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Program

1. Equivalence of factorisation and ordered Markov property
Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models

4. Independencies in directed graphical models
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Chain rule
Iteratively applying the product rule allows us to factorise any joint pdf
(pmf) p(x) = p(x1, x2, . . . , xd) into product of conditional pdfs.

p(x) = p(x1)p(x2, . . . , xd |x1)
= p(x1)p(x2|x1)p(x3, . . . , xd |x1, x2)
= p(x1)p(x2|x1)p(x3|x1, x2)p(x4, . . . , xd |x1, x2, x3)
...
= p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xd |x1, . . . xd−1)

= p(x1)
d∏

i=2
p(xi |x1, . . . , xi−1)

=
d∏

i=1
p(xi |prei)

with prei = pre(xi) = {x1, . . . , xi−1}, pre1 = ∅ and p(x1|∅) = p(x1)
The chain rule can be applied to any ordering xk1 , . . . xkd . Different
orderings give different factorisations.
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From (conditional) independence to factorisation
p(x) =

∏d
i=1 p(xi |prei) for the ordering x1, . . . , xd

I For each xi , we condition on all previous variables in the
ordering.

I Assume that, for each i , there is a minimal subset of variables
πi ⊆ prei such that p(x) satisfies

xi ⊥⊥ (prei \ πi) | πi

for all i . The distribution is then said to satisfy the ordered
Markov property .

I By definition of conditional independence:
p(xi |x1, . . . , xi−1) = p(xi |prei) = p(xi |πi)

I With the convention π1 = ∅, we obtain the factorisation

p(x1, . . . , xd) =
d∏

i=1
p(xi |πi)

I See later: the πi correspond to the parents of xi in graphs.
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From (conditional) independence to factorisation

I Assume the variables are ordered as x1, . . . , xd , let
prei = {x1, . . . xi−1} and πi ⊆ prei .

I We have seen that

if xi ⊥⊥ prei \ πi | πi for all i

then p(x1, . . . , xd) =
d∏

i=1
p(xi |πi)

I The chain rule corresponds to the case where πi = prei .
I Do we also have the reverse?

if p(x1, . . . , xd) =
d∏

i=1
p(xi |πi) with πi ⊆ prei

then xi ⊥⊥ prei \ πi | πi for all i ?
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From factorisation to (conditional) independence

I Let us first check whether xd ⊥⊥ pred \ πd | πd holds.
I We do that by checking whether

p(xd |
pred︷ ︸︸ ︷

x1, . . . , xd−1) = p(x |πd)

holds.
I Since

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)
p(x1, . . . , xd−1)

we start with computing p(x1, . . . , xd−1).
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From factorisation to (conditional) independence
Assume that the xi are ordered as x1, . . . , xd and that
p(x1, . . . , xd) =

∏d
i=1 p(xi |πi) with πi ⊆ prei .

We compute p(x1, . . . , xd−1) using the sum rule:

p(x1, . . . , xd−1) =
∫

p(x1, . . . , xd)dxd

=
∫ d∏

i=1
p(xi |πi)dxd

=
∫ d−1∏

i=1
p(xi |πi)p(xd |πd)dxd (xd /∈ πi , i < d)

=
d−1∏
i=1

p(xi |πi)
∫

p(xd |πd)dxd

=
d−1∏
i=1

p(xi |πi)
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From factorisation to (conditional) independence
Hence:

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)
p(x1, . . . , xd−1)

=
∏d

i=1 p(xi |πi)∏d−1
i=1 p(xi |πi)

= p(xd |πd)

And p(xd |x1, . . . , xd−1) = p(xd |πd) means that
xd ⊥⊥ pred \ πd | πd as desired.

p(x1, . . . , xd−1) has the same form as p(x1, . . . , xd): apply same
procedure to all p(x1, . . . , xk), for smaller and smaller k ≤ d − 1

Proves that
(1) p(x1, . . . , xk) =

∏k
i=1 p(xi |πi) and that

(2) factorisation implies xi ⊥⊥ prei \ πi | πi for all i
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Brief summary

I Let x = (x1, . . . , xd) be a d-dimensional random vector with
pdf/pmf p(x).

I Denote the predecessors of xi in the ordering by
pre(xi) = prei = {x1, . . . , xi−1}, and let πi ⊆ prei .

p(x) =
d∏

i=1
p(xi |πi)⇐⇒ xi ⊥⊥ prei \ πi | πi for all i

I Equivalence of factorisation and ordered Markov property of
the pdf/pmf
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Why does it matter?

I Denote the predecessors of xi in the ordering by
prei = {x1, . . . , xi−1}, and let πi ⊆ prei .

p(x) =
d∏

i=1
p(xi |πi)⇐⇒ xi ⊥⊥ prei \ πi | πi for all i

I Why does it matter?
I Relatively strong result: It holds for sets of pdfs/pmfs and not

only single instances
I For all members of the set: Fewer numbers are needed for their

representation
I Given the independencies, we know what form p(x) must have.
I Increased understanding of the properties of the model

(independencies and data generation mechanism)
I Visualisation as a graph
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Program

1. Equivalence of factorisation and ordered Markov property
Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models

4. Independencies in directed graphical models
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Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation
Ancestral sampling
Visualisation as a directed graph
Description of directed graphs and topological orderings

3. Definition of directed graphical models

4. Independencies in directed graphical models
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Ancestral sampling

I Factorisation provides a recipe for data generation / sampling
from p(x)

I Example:
p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

I We can generate samples from the joint distribution
p(x1, x2, x3, x4, x5) by sampling
1. x1 ∼ p(x1)
2. x2 ∼ p(x2)
3. x3 ∼ p(x3|x1, x2)
4. x4 ∼ p(x4|x3)
5. x5 ∼ p(x5|x2)

I Note: Helps in modelling and understanding of the properties
of p(x) but may not reflect causal relationships.
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Visualisation as a directed graph

If p(x) =
∏d

i=1 p(xi |πi) with πi ⊆ prei we can visualise the model
as a graph with the random variables xi as nodes, and directed
edges that point from the xj ∈ πi to the xi . This results in a
directed acyclic graph (DAG).
Example:

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

x1 x2

x3

x4

x5
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Visualisation as a directed graph

Example:

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

x1 x2

x3

x4

Factorisation obtained by chain rule ≡ fully connected directed
acyclic graph.
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Graph concepts

I Directed graph: graph where all edges are directed
I Directed acyclic graph (DAG): by following the direction of

the arrows you will never visit a node more than once
I xi is a parent of xj if there is a (directed) edge from xi to xj .

The set of parents of xi in the graph is denoted by
pa(xi) = pai , e.g. pa(x3) = pa3 = {x1, x2}.

I xj is a child of xi if xi ∈ pa(xj), e.g. x3 and x5 are children of
x2.

x1 x2

x3

x4

x5
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Graph concepts

I A path or trail from xi to xj is a sequence of distinct connected
nodes starting at xi and ending at xj . The direction of the
arrows does not matter. For example: x5, x2, x3, x1 is a trail.

I A directed path is a sequence of connected nodes where we
follow the direction of the arrows. For example: x1, x3, x4 is a
directed path. But x5, x2, x3, x1 is not a directed path.

x1 x2

x3

x4

x5
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Graph concepts

I The ancestors anc(xi) of xi are all the nodes where a directed
path leads to xi . For example, anc(x4) = {x1, x3, x2}.

I The descendants desc(xi) of xi are all the nodes that can be
reached on a directed path from xi . For example,
desc(x1) = {x3, x4}.
(Note: sometimes, xi is included in the set of ancestors and
descendants)

I The non-descendents of xi are all the nodes in a graph
without xi and without the descendants of xi . For example,
nondesc(x3) = {x1, x2, x5}

x1 x2

x3

x4

x5
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Graph concepts

I Topological ordering: an ordering (x1, . . . , xd) of some
variables xi is topological relative to a graph if, whenever
there is a directed edge from xi to xj , xi occurs prior to xj in
the ordering (“parents come before the children”). There is
always at least one such ordering for DAGs.

I For a pdf p(x), assume you order the random variables xi in
some manner and compute the corresponding factorisation,
e.g. p(x) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

I When you visualise the factorised pdf
as a graph, the graph is always such
that the ordering used for the
factorisation is topological to it.

I The πi in the factorisation are equal to
the parents pai in the graph. We may
call both sets the “parents” of xi .

x1 x2

x3

x4

x5
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Summary

1. Equivalence of factorisation and ordered Markov property
Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation
Ancestral sampling
Visualisation as a directed graph
Description of directed graphs and topological orderings
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Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models
Via factorisation according to the graph
Via ordered Markov property
Derive independencies from the ordered Markov property

with different topological orderings

4. Independencies in directed graphical models
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Directed graphical model

I We started with a pdf/pdf, wrote it in factorised form
according to some ordering, and associated a DAG with it.

I We can also go the other way around and start with a DAG.
I Definition (via factorisation property) A directed graphical

model based on a DAG with d nodes and associated random
variables xi is the set of pdfs/pmfs that factorise as

p(x1, . . . , xd) =
d∏

i=1
p(xi |pai),

where pai denotes the parents of xi in the graph.
I Other names for directed graphical models: belief network,

Bayesian network, Bayes network.
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Example

DAG:

a z

q

e

h

Random variables: a, z , q, e, h

Parent sets: paa = paz = ∅,paq = {a, z},pae = {q},pah = {z}.

All models defined by the DAG factorise as:

p(a, z , q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)
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Alternative definition of directed graphical models

I For any DAG with d nodes we can always find a topological
ordering of the associated random variables. Re-label the
nodes accordingly as x1, . . . , xd .

I In a topological ordering the parents come before the children.
I Hence: pai ⊆ prei (recall: prei = {x1, . . . , xi−1})
I Previous result on equivalence of factorisation and ordered

Markov property gives

p(x) =
d∏

i=1
p(xi |pai)⇐⇒ xi ⊥⊥ prei \ pai | pai for all i

I Provides an alternative definition of directed graphical models

Michael Gutmann Directed Graphical Models 26 / 66



Directed graphical model

I Definition (via ordered Markov property) A directed graphical
model based on a DAG with d nodes and associated random
variables xi is the set of pdfs/pmfs that satisfy the ordered
Markov property

xi ⊥⊥ prei \ pai | pai for all i

for any topological ordering x1, . . . , xd of the xi .
I Remark: the notation is as before:

prei are the predecessors of xi in the topological ordering
chosen
pai are the parents of xi in the graph

I Remark: The missing edges in the graph cause the pai to be
smaller than the prei , and thus lead to the independencies.
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Example
DAG:

a z

q

e

h

Random variables: a, z , q, e, h
Ordering: (a, z , q, e, h) (meaning: x1 = a, x2 = z, x3 = q, x4 = e, x5 = h)

Predecessor sets for the ordering:
prea = ∅,prez = {a},preq = {a, z},pree = {a, z , q},preh = {a, z , q, e}
Parent sets: as before
paa = paz = ∅,paq = {a, z},pae = {q},pah = {z}
All models in the set defined by the DAG satisfy xi ⊥⊥ prei \ pai | pai :

z ⊥⊥ a e ⊥⊥ {a, z} | q h ⊥⊥ {a, q, e} | z
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Example (different topological ordering)
DAG:

a z

q

e

h

Ordering: (a, z , h, q, e)
Predecessor sets for the ordering:
prea = ∅,prez = {a},preh = {a, z},preq = {a, z , h},pree = {a, z , h, q}
Parent sets: as before
paa = paz = ∅,pah = {z},paq = {a, z},pae = {q}
All models in the set defined by the DAG satisfy xi ⊥⊥ prei \ pai | pai :

z ⊥⊥ a h ⊥⊥ a | z q ⊥⊥ h | a, z e ⊥⊥ {a, z , h} | q
Note: the models also satisfy those obtained with the previous ordering:

z ⊥⊥ a e ⊥⊥ {a, z} | q h ⊥⊥ {a, q, e} | z
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Remarks

I The directed graphical model corresponds to a set of probability
distributions. Two views according to the two definitions: The set
includes all those distributions that you get

I by looping over all possible conditionals p(xi |pai),
I by retaining, from all possible joint distributions over the xi ,

those that satisfy the ordered Markov property
I A directed graphical model with specified conditionals is typically

also called a directed graphical model.
I By using different topological orderings you can generate possibly

different independence relations satisfied by the model.
I We will see that the directed Markov properties obtained from one

ordering induces all from the other orderings. This means that the
directed graphical model can be specified via the directed Markov
properties for one topological ordering only.
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Example: Markov model

DAG:

x1 x2 x3 x4 x5

All models in the set factorise as
p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)
There is only one topological ordering: (x1, x2, . . . , x5)
By ordered Markov property: all models in the set satisfy:
xi+1 ⊥⊥ x1, . . . , xi−1 | xi
(future independent of the past given the present)
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Example: Hidden Markov model
DAG:

y1 y2 y3 y4

x1 x2 x3 x4

Called “hidden” Markov model because we typically assume to only
observe the yi and not the xi that follow a Markov model.

All models in the set factorise as p(x1, y1, x2, y2, . . . , x4, y4) =
p(x1)p(y1|x1)p(x2|x1)p(y2|x2)p(x3|x2)p(y3|x3)p(x4|x3)p(y4|x4)
With topological ordering (x1, y1, x2, y2, . . .), the models in the set
satisfy:

yi ⊥⊥ x1, y1, . . . , xi−1, yi−1 | xi xi ⊥⊥ x1, y1, . . . , xi−2, yi−2, yi−1 | xi−1
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Example: Hidden Markov model

DAG:

y1 y2 y3 y4

x1 x2 x3 x4

With topological ordering (x1, x2, . . . , x4, y1, . . . , y4), the models in
the set satisfy:

yi ⊥⊥ x1, . . . , xi−1, y1, . . . , yi−1 | xi xi ⊥⊥ x1, . . . , xi−2 | xi−1

Independence relations obtained before:

yi ⊥⊥ x1, y1, . . . , xi−1, yi−1 | xi xi ⊥⊥ x1, y1, . . . , xi−2, yi−2, yi−1 | xi−1
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Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)

DAG: x1 x2 x3

y1 y2 y3 y4 y5

Explains properties of (observed) yi through fewer (unobserved) xi .
Different further assumptions lead to different methods (more
later).

All models in the set factorise as p(x1, x2, x3, y1, . . . , y5) =
p(x1)p(x2)p(x3)p(y1|x1, x2, x3)p(y2|x1, x2, x3) . . . p(y5|x1, x2, x3)
With the ordering (x1, x2, x3, y1, . . . , y5): All satisfy:
xi ⊥⊥ xj y2 ⊥⊥ y1 | x1, x2, x3 y3 ⊥⊥ y1, y2 | x1, x2, x3
y4 ⊥⊥ y1, y2, y3 | x1, x2, x3 y5 ⊥⊥ y1, y2, y3, y4|x1, x2, x3
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Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models
Via factorisation according to the graph
Via ordered Markov property
Derive independencies from the ordered Markov property

with different topological orderings

4. Independencies in directed graphical models

Michael Gutmann Directed Graphical Models 35 / 66



Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models

4. Independencies in directed graphical models
Three canonical connections in a DAG and their properties
D-separation and I-map
Directed local Markov property
Equivalences of the different Markov properties and the

factorisation
Markov blanket
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Further independence properties?

I Parent-child links in the graph encode (conditional)
independence properties.

I Ordered Markov property yields sets of independence
assertions.

I Questions:
I Does the graph induce or impose additional independencies on

any probability distribution that factorises over the graph?
I For specific (x , y , z), can we determine whether x ⊥⊥ y |z

holds?
I Important because

I it yields increased understanding of the properties of the model
I we can exploit the independencies e.g. for inference and

learning
I Approach: Investigate how probabilistic evidence that

becomes available at a node can “flow” through the DAG and
influence our belief about another node (d-separation).
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Three canonical connections in a DAG

In a DAG, two nodes x , y can be connected via a third node z in
three ways:
1. Serial connection (chain, head-tail or tail-head)

x z y

2. Diverging connection (fork, tail-tail)

x z y

3. Converging connection (collider, head-head, v-structure)

x z y

Note: in any case, the sequence x , z , y forms a trail
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Serial connection x z y

I Markov model is made up of serial connections
I Graph: x influences z , which in turn influences y but no direct

influence from x to y .
I Factorisation: p(x , z , y) = p(x)p(z |x)p(y |z)
I Ordered Markov property: y ⊥⊥ x | z

If the state or value of z is known (i.e. if the random variable
z is “instantiated”), evidence about x will not change our
belief about y , and vice versa.

We say that the z node is “closed” and that the trail between
x and y is “blocked” by the instantiated z . In other words,
knowing the value of z blocks the flow of evidence between x
and y .

Michael Gutmann Directed Graphical Models 39 / 66



Serial connection x z y

I What can we say about the marginal distribution of (x , y)?
I By sum rule, joint probability distribution of (x , y) is

p(x , y) =
∫

p(x)p(z |x)p(y |z)dz

= p(x)
∫

p(z |x)p(y |z)dz

6= p(x)p(y)

I In a serial connection, if the state of z is unknown, then
evidence or information about x will influence our belief about
y , and the other way around. Evidence can flow through z
between x and y .

I We say that the z node is “open” and the trail between x and
y is “active”.
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Diverging connection x z y

I Graph for probabilistic PCA, factor analysis, ICA has such
connections (z correspond to the latents, x and y to the
observed)

I Graph: z influences both x and y . No directed connection
between x and y .

I Factorisation: p(x , y , z) = p(z)p(x |z)p(y |z)
I Ordered Markov property (with ordering z , x , y): y ⊥⊥ x | z

If the state or value z is known, evidence about x will not
change our belief about y , and vice versa.

I As in serial connection, knowing z closes the z node, which
blocks the trail between x and y .
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Diverging connection x z y

I What can we say about the marginal distribution of (x , y)?
I By sum rule, joint probability distribution of (x , y) is

p(x , y) =
∫

p(z)p(x |z)p(y |z)dz

6= p(x)p(y)

I In a diverging connection, as in the serial connection, if the
state of z is unknown, then evidence or information about x
will influence our belief about y , and the other way around.
Evidence can flow through z between x and y .

I The z node is open and the trail between x and z is active.
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Converging connection x z y

I Graph for probabilistic PCA, factor analysis, ICA has such
connections (z corresponds to an observed, x and y to two
latents)

I Graph: x and y influence z . No direction connection between
x and y .

I Factorisation: p(x , y , z) = p(x)p(y)p(z |x , y)
I Ordered Markov property: x ⊥⊥ y

If nothing is known about z , except what might follow from
knowledge of x and y , then evidence about x will not change
our belief about y , and vice versa.

If no evidence about z is available, the z node is closed, which
blocks the trail between x and y .
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Converging connection x z y

I This means that the marginal distribution of (x , y) factorises:
p(x , y) = p(x)p(y)

I Conditional distribution of (x , y) given z?

p(x , y |z) = p(x , y , z)
p(z) = p(x)p(y)p(z |x , y)∫

p(x)p(y)p(z |x , y)dxdy
6= p(x |z)p(y |z)

This means that x 6⊥⊥ y | z .
I If evidence or information about z is available, evidence about

x will influence the belief about y , and vice versa.
I Information about z opens the z-node, and evidence can flow

between x and y .
I Note: information about z means that z or one of its

descendents is observed (see tutorials).
(A node w is a descendant of z if there is a directed path from z to
w .)
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Explaining away
Example: cpu power

pc

I One day your computer does not start and you bring it to a
repair shop. You think the issue could be the power unit or
the cpu.

I Investigating the power unit shows that it is damaged. Is the
cpu fine?

I Without further information, finding out that the power unit is
damaged typically reduces our belief that the cpu is damaged

power 6⊥⊥ cpu | pc
I Finding out about the damage to the power unit explains

away the observed start-issues of the computer.
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Summary

Connection z node p(x , y) p(x , y |z)
x z y default: open x 6⊥⊥ y x ⊥⊥ y | z

instantiated: closed
x z y default: open x 6⊥⊥ y x ⊥⊥ y | z

instantiated: closed
x z y default: closed x ⊥⊥ y x 6⊥⊥ y | z

with evidence: opens

Think of the z node as a valve or gate through which evidence
(probability mass) can flow. Depending on the type of the connection,
it’s default state is either open or closed. Instantiation/evidence acts as a
switch on the valve.



I-equivalence

I Same independence assertions for
x z y x z y x z y

I The graphs have different causal interpretations
Consider e.g. x ≡ rain; z ≡ street wet; y ≡ car accident

I This means that based on statistical dependencies
(observational data) alone, we cannot select among the
graphs and thus determine what causes what.

I The three directed graphs are said to be
independence-equivalent (I-equivalent).
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Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation

3. Definition of directed graphical models

4. Independencies in directed graphical models
Three canonical connections in a DAG and their properties
D-separation and I-map
Directed local Markov property
Equivalences of the different Markov properties and the

factorisation
Markov blanket
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Further independence relations

I Given the DAG below, what can we say about the
independencies for the set of probability distributions that
factorise over the graph?

I Is x1 ⊥⊥ x2? x1 ⊥⊥ x2 | x6? x2 ⊥⊥ x3 | {x1, x4}?
I Ordered Markov properties give some independencies.
I Limitation: only allows us to condition on parent sets.
I Directed separation (d-separation) gives further

independencies.

x1

x2

x3

x4

x5

x6
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D-separation

Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zr} be
three disjoint sets of nodes in the graph. Assume all zi are
observed (instantiated).

I Two nodes xi and yj are said to be d-separated by Z if all
trails between them are blocked by Z .

I The sets X and Y are said to be d-separated by Z if every trail
from any variable in X to any variable in Y is blocked by Z .
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D-separation

A trail is blocked by Z if there is a node on it such that
1. either the node is part of a tail-tail or head-tail connection

along the trail and the node is in Z ,

x z y x z y

2. or the node is part of a head-head (collider) connection along
the trail and neither the node itself nor any of its descendants
are in Z .
x z y
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D-separation and conditional independence

Theorem: If X and Y are d-separated by Z
then X ⊥⊥ Y | Z for all probability distributions that factorise over
the DAG.

For those interested: A proof can be found in Section 2.8 of Bayesian Networks
– An Introduction by Koski and Noble (not examinable)

Important because:
1. the theorem allows us to read out (conditional)

independencies from the graph
2. no restriction on the sets X ,Y ,Z
3. the theorem shows that d-separation does not indicate false

independence relations. It’s independence assertions are sound
(“soundness of d-separation”).
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D-separation and conditional independence

Theorem: If X and Y are not d-separated by Z
then X 6⊥⊥ Y | Z in some probability distributions that factorise
over the DAG.

For those interested: A proof sketch can be found in Section 3.3.1 of
Probabilistic Graphical Models by Koller and Friedman (not examinable).

“not d-separated” is also called “d-connected”
6⊥⊥ means statistically dependent
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D-separation and conditional independence

I It can also be that d-connected variables are independent for
some distributions.

I Example (Koller, Example 3.3): p(x , y) with x , y ∈ {0, 1} and

p(y = 0|x = 0) = a p(y = 0|x = 1) = a

for a > 0 and some non-zero p(x = 0).
I Graph has arrow from x to y . Variables are not d-separated.

x y

I p(y = 0) = ap(x = 0) + ap(x = 1) = a,
which is p(y = 0|x) for all x .

I p(y = 1) = (1− a)p(x = 0) + (1− a)p(x = 1) = 1− a,
which is p(y = 1|x) for all x .

I Hence: p(y |x) = p(y) so that x ⊥⊥ y .
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D-separation and conditional independence

I This means that d-separation does generally not reveal all
independencies in all probability distributions that factor over
the graph.

I In other words, individual probability distributions that factor
over the graph may have further independencies not included
in the set obtained by d-separation.

I We say that d-separation is not “complete”.
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I-map

I A graph is said to be an independency map (I-map) for a set
of independencies I if the independencies asserted by the
graph are part of I.

I For a directed graph G , let I(G) be all the independencies
that we can derive via d-separation.

I Denote the independencies that a distribution p satisfies by
I(p).

I The previous results on d-separation can thus be written as

I(G) ⊆ I(p) for all p that factorise over G

I As we have seen, we generally do not have I(G) = I(p). If
we have equality, the graph is said to be a perfect map
(P-map) for I(p).
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Recipe to determine whether two nodes are d-separated

1. Determine all trails between x and y (note: direction of the
arrows does here not matter).

2. For each trail:
i Determine the default state of all nodes on the trail.

I open if part of a tail-head or a tail-tail connection
I closed if part of a head-head connection

ii Check whether the set of observed nodes Z switches the state of
the nodes on the trail.

iii The trail is blocked if it contains a closed node.
3. The nodes x and y are d-separated if all trails between them

are closed.
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Example: Are x1 and x2 d-separated?

Follows from ordered Markov property, but let us answer it with d-separation.
1. Determine all trails between x1

and x2
2. For trail x1, x4, x2

i default state
ii conditioning set is empty
iii ⇒ Trail is blocked
For trail x1, x3, x5, x4, x2
i default state
ii conditioning set is empty
iii ⇒ Trail is blocked
Trail x1, x3, x5, x6, x4, x2 is
blocked too (same arguments).

3. ⇒ x1 and x2 are d-separated.

x1

x2

x3

x4

x5

x6

closed

open

closed

open

x1 ⊥⊥ x2 for all probabil-
ity distributions that factor-
ise over the graph.
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Example: Are x1 and x2 d-separated by x6?

1. Determine all trails between x1
and x2

2. For trail x1, x4, x2
i default state
ii influence of x6
iii ⇒ Trail not blocked
No need to check the other
trails: x1 and x2 are not
d-separated by x6

x1

x2

x3

x4

x5

x6

closedopened by x6

x1 ⊥⊥ x2 | x6 does generally
not hold for probability dis-
tributions that factorise over
the graph.
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Example: Are x2 and x3 d-separated by x1 and x4?

1. Determine all trails between x2
and x3

2. For trail x3, x1, x4, x2
i default state
ii influence of {x1, x4}
iii ⇒ Trail blocked
For trail x3, x5, x4, x2
i default state
ii influence of {x1, x4}
iii ⇒ Trail blocked
Trail x3, x5, x6, x4, x2 is blocked
too (same arguments).

3. ⇒ x2 and x3 are d-separated by
x1 and x4.

x1

x2

x3

x4

x5

x6

open

closed

closed

open

closed

open

closed

closed

x2 ⊥⊥ x3 | {x1, x4} for all
probability distributions that
factorise over the graph.
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Directed local Markov property

I The independencies from the ordered Markov property depend
on the topological ordering chosen.

I We now use d-separation to derive a similarly local Markov
property that does not depend on the ordering, and show the
equivalence for any topological ordering:

xi ⊥⊥ prei \ pai |pai ⇐⇒ xi ⊥⊥ nondesc(xi) \ pai |pai

where nondesc(xi) denotes the non-descendants of xi .

xi ≡ x7
pa7 = {x4, x5, x6}

pre7 = {x1, x2, . . . , x6}
nondesc(x7) in blue

x1 x2

x4

x5
x6

x8 x7 x9
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Directed local Markov property

xi ⊥⊥ prei \ pai |pai ⇐ xi ⊥⊥ nondesc(xi) \ pai |pai follows because
{x1, . . . , xi−1} ⊆ nondesc(xi) for all topological orderings

For ⇒ consider all trails from xi to {nondesc(xi) \ pai}.

Two cases: move against or with the arrows:

(1) upward trails are blocked by the parents
(2) downward trails must contain a head-
head (collider) connection because xj is a
non-descendant. These paths are blocked
because the collider node or its descendants
are never part of pai .

The result now follows because all paths from
xi to all elements in {nondesc(xi) \ pai} are
blocked.

x1 x2

x4

x5
x6

x8 x7 x9
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Remarks

I The local Markov independencies do not depend on a
topological ordering. They can be directly read from the
graph.

I The direction “local Markov property ⇒ ordered Markov
property” explains why models that satisfy one ordered
Markov property also have to satisfy all other ordered Markov
properties obtained with different topological orderings.

I The union of all ordered Markov independencies is generally
not equal to the set of directed Markov independencies.
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Summary of the equivalences

Factorisation p(x) =
∏d

i=1 p(xi |pai)
m

ordered Markov property xi ⊥⊥ prei \ pai |pai
m

local directed Markov property xi ⊥⊥ nondesc(xi) \ pai |pai
m

global directed Markov property all independencies by d-separation

Broadly speaking, the graph serves two related purposes:

1. it tells us how distributions factorise

2. it represents the independence assumptions made
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Markov blanket
What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From d-separation:
I Isolate x from its

ancestors
⇒ condition on parents

I Isolate x from its
descendants
⇒ condition on children

I Deal with collider
connection
⇒ condition on
co-parents
(other parents of the
children of x)

x

In a directed graphical model, the par-
ents, children, and co-parents of x are
called its Markov blanket, denoted by
MB(x). We have
x ⊥⊥ {all variables \ x \ MB(x)} |
MB(x).

Michael Gutmann Directed Graphical Models 65 / 66



Program recap
1. Equivalence of factorisation and ordered Markov property

Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation
Ancestral sampling
Visualisation as a directed graph
Description of directed graphs and topological orderings

3. Definition of directed graphical models
Via factorisation according to the graph
Via ordered Markov property
Derive independencies from the ordered Markov property with different

topological orderings
4. Independencies in directed graphical models

Three canonical connections in a DAG and their properties
D-separation and I-map
Directed local Markov property
Equivalences of the different Markov properties and the factorisation
Markov blanket

Michael Gutmann Directed Graphical Models 66 / 66


	Equivalence of factorisation and ordered Markov property
	Chain rule
	Ordered Markov property implies factorisation
	Factorisation implies ordered Markov property

	Understanding models from their factorisation
	Ancestral sampling
	Visualisation as a directed graph
	Description of directed graphs and topological orderings

	Definition of directed graphical models
	Via factorisation according to the graph
	Via ordered Markov property
	Derive independencies from the ordered Markov property with different topological orderings

	Independencies in directed graphical models
	Three canonical connections in a DAG and their properties
	D-separation and I-map
	Directed local Markov property
	Equivalences of the different Markov properties and the factorisation
	Markov blanket


