

Literature

 Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning – Theory and Practice, chapter 13-14. Elsevier/Morgan Kaufmann, 2004.

Temporal Planning

Why Explicit Time?

- assumption A6: implicit time
 - actions and events have no duration
 - state transitions are instantaneous
- in reality:
 - actions and events do occur over a time span
 - preconditions not only at beginning
 - effects during or even after the action
 - actions may need to maintain partial states
 - events expected to occur in future time periods
 - goals must be achieved within time bound

Temporal Planning

3

4

Overview

- Actions and Time Points
- Interval Algebra and Quantitative Time
- Planning with Temporal Operators

Time

- mathematical structure:
 - set with transitive, asymmetric ordering operation
 - discrete, dense, or continuous
 - bounded or unbounded
 - totally ordered or branching
- temporal references:
 - time points (represented by real numbers)
 - time intervals (pair of real numbers)
- temporal relations:
 - examples: before, during

Temporal Planning

Causal vs. Temporal Analysis of Actions

• example: load(crane2, cont5, robot1, interval6)

- causal analysis (what propositions hold?):
 - what propositions will change (effects)
 - what propositions are required (preconditions)
- temporal analysis (when propositions hold?):
 - when other, related assertions can/cannot be true
 - reason over:
 - time periods during which propositions must hold
 - time points at which values of state variables change

Temporal Planning

6

Temporal Databases

- maintain temporal references for every domain proposition
 - when does it hold
 - when does it change value
- functionality:
 - assert new temporal relations
 - querying whether temporal relation holds
 - check for consistency
- planner attempts to assert relations among temporal references

Temporal Planning

Temporal References Example: Container Loading

• load container c onto robot r at location l

- t₁: instant at which robot r enters location I
- t₂: instant at which robot r stops at location I
 - $i_1 = [t_1, t_2]$: interval corresponding to r *entering* I
- *t*₃: instant at which the crane starts picking up c
- t_4 : instant at which crane finishes putting c on r
- $i_2 = [t_3, t_4]$: interval corresponding to *picking up and loading* c
- t₅: instant at which c begins to be loaded onto r
- t₆: instant at which c is no longer loaded onto r
 - $i_3 = [t_5, t_6]$: interval corresponding to c being loaded onto r

Temporal Planning

8

PA: Properties of Combined Constraints distributive • (*R*, U, •) is an algebra: R is closed under u • $(r \cup q) \cdot s = (r \cdot s) \cup (q \cdot s)$ and • • $s \cdot (r \cup q) = (s \cdot r) \cup (s \cdot q)$ • U is an associative and commutative operation symmetrical constraint r' of • identity element for u r: is Ø • $[t_1 r t_2]$ iff $[t_2 r' t_1]$ • is an associative • obtained by replacing in *r*. operation < with > and vice versa identity element for • is • $(r \bullet q)' = q' \bullet r'$ {=}

Temporal Planning

- A <u>binary PA constraint network</u> is a directed graph (*X*,*C*), where:
 - $X = \{t_1, \dots, t_n\}$ is a set of instant variables (nodes), and
 - $C \subseteq X \times X$ (the edges), c_{ij} is labelled by a constraint $r_{ij} \in R$ iff $[t_i r_{ij} t_j]$ holds.
- A tuple ⟨v₁,...,v_k⟩ of real numbers is a <u>solution</u> for (X,C) iff t_i=v_i satisfy all the constraints in C.
- (*X*,*C*) is <u>consistent</u> iff there exists at least one solution.

17

Temporal Planning

Redundant Networks

- A primitive p_{ij} ∈ r_{ij} is <u>redundant</u> if there is no solution in which [t_i p_{ij} t_j] holds.
- idea: filter out redundant primitives until
 - either: no more redundant primitives can be found
 - or: we find a constraint that is reduced to Ø (inconsistency)

Temporal Planning

Path Consistency: Pseudo Code pathConsistency(C) while $\neg C.$ is Stable() do for each $k : 1 \le k \le n$ do for each pair $i, j: 1 \le i < j \le n, i \ne k, j \ne k$ do $c_{ij} \leftarrow c_{ij} \cap [c_{ik} \cdot c_{kj}]$ if $c_{ij} = \emptyset$ then return inconsistent

Temporal Planning

20

- every container must be inspected and sealed:
- inspection:
 - carried out by the crane
 - must be performed before or after loading
- sealing:
 - carried out by robot
 - before or after unloading, not while moving
- corresponding intervals:
 - *i_{load}, i_{move}, i_{unload}, i_{inspect}, i_{seal}*

23

24

Inspect and Seal Example: Interval Constraint Network I_{move} before i_{load} before before, before before (i_{unload} or after or after before before linspect İ_{seal}

Temporal Planning

- $[i.b \le i.e]$ constraint: beginning before end
- [*i_{load}* before *i_{move}*]:
 - $[i_{load}.b \le i_{load}.e]$ and $[i_{move}.b \le i_{move}.e]$ and
 - [*i_{load}.e < i_{move}.b*]
- [*i_{move}* before-or-after *i_{seal}*]:
 - [*i_{move}.e < i_{seal}.b*] or
 - [*i_{seal}*.*e* < *i_{move}.b*]

disjunction cannot be translated into binary PA constraint

Temporal Planning

27

Operations on Relations									
• S	et ope	eration	s: ∩, ∪	etc.					
• C	ompo	sition:	•						
•	b	m	0	s	d	f	b'	ď	ť
b	b	b	b	b	uuv	uυv	Р	b	b
т	b	b	b	т	v	v	u'uv'	b	b
0	b	b	u	0	v	v	u'uv'	u'uw'	и
s	b	b	u	s	d	d	b'	u'Uw'	и
d	b	b	uuv	d	d	d	b'	Р	u∪v

Temporal Planning

Example: Quantitative Temporal Relations

- ship: Uranus
 - arrives within 1 or 2 days
 - will leave either with
 - light cargo (stay docked 3 to 4 days) or
 - full load (stay docked at least six days)
- ship: Rigel
 - to be serviced on
 - express dock (stay docked 2 to 3 days)
 - normal dock (stay docked 4 to 5 days)
 - must depart 6 to 7 days from now
- Uranus must depart 1 to 2 days after Rigel arrives

Temporal Planning

Example: Quantitative Temporal Constraint Network [3,4] or [6,∞] A_{Uranus} D_{Uranus} [1,2] [1,2] A_{Rigel} now [2,3] or [4,5] [6,7]D_{Rigel} 5 instants related by quantitative constraints • e.g. $(2 \le D_{Rigel} A_{Rigel} \le 3) \lor (4 \le D_{Rigel} A_{Rigel} \le 5)$ • possible questions: • When should the Rigel arrive? Can it be serviced on a normal dock? Can the Uranus take a full load?

Temporal Planning

- A <u>temporal database</u> is a pair Φ=(𝔅,𝔅) where:
 - 7 is a finite set of *tqes*,
 - *ℓ* is a finite set of temporal and object constraints, and
 - C has to be consistent, i.e. there exist possible values for the variables that meet all the constraints.

Temporal Database: Example robot r1 is at location loc1 robot r2 moves from location loc2 to location loc3 Φ = ({ at(r1,loc1) at(r1,loc1)@[t_0, t_1 [, t_1 t_0 at(r2,loc2)@[t_0, t_2 [, at(r2,loc2) at(r2,path)@[t_2,t_3 [, at(r2,path) t_0 at(r2,loc3) at(r2,loc3)@[t_3, t_4 [, free(loc3)@[t_0, t_5 [, free(lod3) free(loc2)@[t_6, t_7 [}, t_0 t_7 { adjacent(loc2,loc3), free(loc2) $t_2 < t_6 < t_5 < t_3$ })

Temporal Planning

 $TPS(\Omega)$ *flaws* $\leftarrow \Omega$.getFlaws() if *flaws*= \emptyset then return Ω $flaw \leftarrow flaws.chooseOne()$ *resolvers* \leftarrow *flaw*.getResolvers(Ω) if resolvers=Ø then return failure $resolver \leftarrow resolvers.selectOne()$ $\Omega' \leftarrow \Omega.refine(resolver)$ return TPS(Ω')

Temporal Planning

53

- Actions and Time Points
- Interval Algebra and Quantitative Time
- Planning with Temporal Operators