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Temporal Planning 2

Literature

Malik Ghallab, Dana Nau, and Paolo 
Traverso. Automated Planning – Theory 
and Practice, chapter 13-14. 
Elsevier/Morgan Kaufmann, 2004.



2

Temporal Planning 3

Why Explicit Time?

assumption A6: implicit time
• actions and events have no duration
• state transitions are instantaneous

in reality:
• actions and events do occur over a time span
• preconditions not only at beginning
• effects during or even after the action
• actions may need to maintain partial states
• events expected to occur in future time periods
• goals must be achieved within time bound
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Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators
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Time

mathematical structure:
• set with transitive, asymmetric ordering operation
• discrete, dense, or continuous
• bounded or unbounded
• totally ordered or branching

temporal references:
• time points (represented by real numbers)
• time intervals (pair of real numbers)

temporal relations:
• examples: before, during
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Causal vs. Temporal Analysis of 
Actions

example: load(crane2, cont5, robot1, interval6)

causal analysis (what propositions hold?):
• what propositions will change (effects)
• what propositions are required (preconditions)

temporal analysis (when propositions hold?):
• when other, related assertions can/cannot be true
• reason over:

• time periods during which propositions must hold
• time points at which values of state variables change
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Temporal Databases

maintain temporal references for every domain 
proposition
• when does it hold
• when does it change value

functionality:
• assert new temporal relations
• querying whether temporal relation holds
• check for consistency

planner attempts to assert relations among 
temporal references
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Temporal References Example: 
Container Loading

load container c onto robot r at location l

t1: instant at which robot r enters location l
t2: instant at which robot r stops at location l
• i1=[t1,t2]: interval corresponding to r entering l

t3: instant at which the crane starts picking up c
t4: instant at which crane finishes putting c on r
• i2=[t3,t4]: interval corresponding to picking up and loading c

t5: instant at which c begins to be loaded onto r
t6: instant at which c is no longer loaded onto r
• i3=[t5,t6]: interval corresponding to c being loaded onto r
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Temporal Relations Example: 
Container Loading

assumption: crane is allowed to pick up container as soon 
as robot has entered location
possible temporal sequences:
• t1 < t3 < t2 <  t4 = t5 < t6 (see figure) or
• t1 = t3 or t2 =  t3 or t2 < t3

t1 t2entering

t3 t4picking up 
and loading

t5 t6loaded
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Example: Temporal Relations as 
Constraint Networks

t1 t2

t3

t5 t6

t4

<
<<

<

≤
=

i1

i2

i3
before

starts
before

meets
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Point Algebra (PA): Relations 
and Constraints

possible primitive relations P between instants 
t1 and t2: P = {<,=,>}
• t1 before t2: [t1<t2]
• t1 equal to t2: [t1=t2]
• t1 after t2: [t1>t2]

possible qualitative constraints R between 
instants:
• sets of the above relations (interpret as disjunction)
• R = 2P = {∅, {<}, {=}, {>}, {<,=}, {<,>}, {=,>}, P}
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Container Loading Example: PA 
Constraints

[t1 {<} t2]
[t1 {<,=} t3]
[t2 {<} t5]
[t3 {<} t4]
[t4 {=} t5]
[t5 {=} t4]
[t5 {<} t6]

t1 t2

t3

t5 t6

t4

{<}
{<}{<}

{<}

{<,=}
{=}
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PA: Combining Constraints

usual set operations: 
• ∩, ∪ etc.

composition (noted ∙):
• let r, q ∈ R
• if [t1 r t2] and [t2 q t3]
• then [t1 r∙q t3] 
• r∙q as defined in 

composition table
>>P<

>=<=

P<<<

>=<∙

PA composition table
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PA: Properties of Combined 
Constraints

distributive
• (r ∪ q) ∙ s = (r ∙ s) ∪ (q ∙ s) 
• s ∙ (r ∪ q) = (s ∙ r) ∪ (s ∙ q)

symmetrical constraint r’ of 
r:
• [t1 r t2] iff [t2 r’ t1]
• obtained by replacing in r: 

< with > and vice versa
• (r ∙ q)’ = q’ ∙ r’

(R,∪,∙) is an algebra:
• R is closed under ∪

and ∙
• ∪ is an associative and 

commutative operation
• identity element for ∪

is ∅
• is an associative 

operation
• identity element for ∙ is 

{=}
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PA: Constraint Propagation

given constraints:
• [t1 r t2]
• [t1 q t3]
• [t3 s t2]
implied constraint:
• [t1 r ∩ q∙s t2]

inconsistency:
• if r ∩ q∙s = ∅

t1

t3

t2
r

q s

q∙s
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Container Loading Example:  
Constraint Propagation

path: t4-t5-t6: [t4=t5] ∙ [t5<t6] implies [t4<t6]
path: t2-t1-t3: [t2>t1] ∙ [t1≤t6] implies [t2Pt3]
path: t2-t5-t4: [t2<t5] ∙ [t5=t4] implies [t2<t4]
path: t2-t3-t4: [t2Pt3] ∙ [t3<t4] implies [t2Pt4]

t1 t2

t3

t5 t6

t4

{<}
{<}{<}

{<}

{<,=}
{=} {<}

{P} {<}
{P}

[t2<t4]
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PA Constraint Networks

A binary PA constraint network is a directed 
graph (X,C), where:
• X = {t1,…,tn} is a set of instant variables (nodes), and
• C ⊆ X×X (the edges), cij is labelled by a constraint 

rij∈R iff [ti rij tj] holds.

A tuple 〈v1,…,vk〉 of real numbers is a solution 
for (X,C) iff ti=vi satisfy all the constraints in C.
(X,C) is consistent iff there exists at least one 
solution.
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Primitives in Consistent 
Networks

Proposition: A PA network (X,C) is 
consistent iff
• there is a set of primitives pij ∈ rij for every 

cij∈C such that
• for every k: pij ∈ (pik ∙ pkj)

note: not interested in solution, just 
consistency (qualitative solution)
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Redundant Networks

A primitive pij ∈ rij is redundant if there is 
no solution in which [ti pij tj] holds.

idea: filter out redundant primitives until
• either: no more redundant primitives can be 

found
• or: we find a constraint that is reduced to ∅

(inconsistency)
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Path Consistency: Pseudo Code

pathConsistency(C)
while ¬C.isStable() do

for each k : 1≤k≤n do
for each pair i,j: 1≤i<j≤n,i≠k, j≠k do

cij cij ∩ [cik ∙ ckj]
if cij=∅ then return inconsistent
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Path Consistency: Properties

algorithm pathConsistency(C) is:
• incomplete for general CSPs
• complete for PA networks

network (X,C) is minimal if it has no 
redundant primitives in a constraint
algorithm pathConsistency(C) does not 
guarantee a minimal network
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Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators
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Extended Example: Inspect and 
Seal

every container must be inspected and sealed:
inspection:
• carried out by the crane
• must be performed before or after loading

sealing:
• carried out by robot
• before or after unloading, not while moving

corresponding intervals:
• iload, imove, iunload, iinspect, iseal
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Inspect and Seal Example: 
Interval Constraint Network

iload

iinspect

iseal

iunload

imove

before

before

before
or after

before before

before

before
or after
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disjunction cannot be translated into binary PA constraint

Inspect and Seal Example: 
Qualitative Instant Constraints

Let i be an interval. 
• i.b and i.e denote two end time points
• [i.b ≤ i.e] constraint: beginning before end

[iload before imove]:
• [iload.b ≤ iload.e] and [imove.b ≤ imove.e] and
• [iload.e < imove.b]

[imove before-or-after iseal]:
• [imove.e < iseal.b] or
• [iseal.e < imove.b]
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Interval Algebra (IA): Relations
i1 before i2: [i1 b i2]

i1 meets i2: [i1 m i2]

i1 overlaps i2: [i1 o i2]

i1 starts i2: [i1 s i2]

i1 during i2: [i1 d i2]

i1 finishes i2: [i1 f i2]

i1
i2

i1
i2

i1
i2

i1
i2

i1
i2

i1
i2
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IA: Relations and Constraints
possible primitive relations P between intervals i1
and i2: 
• just described: [i1 b i2], [i1 m i2], [i1 o i2], [i1 s i2], [i1 d i2], [i1 f i2] 
• symmetrical: [i1 b’ i2], [i1 m’ i2], [i1 o’ i2], [i1 s’ i2], [i1 d’ i2], [i1 f’ i2]
• i1 equals i2: [i1 e i2]

possible qualitative constraints R between instants:
• sets of the above relations (interpret as disjunction)
• R = 2P = {∅, {b}, {m}, {o},…, {b,m}, {b,o},…, {b,m,o},…, P}
• examples: while = {s,d,f}; disjoint = {b,b’}

i1
i2
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Operations on Relations
set operations: ∩, ∪ etc.
composition: ∙

u∪vPb’dddu∪vbbd

uu’∪w’b’ddsubbs

uu’∪w’u’∪v’vvoubbo

bbu’∪v’vvmbbbm

bbPu∪vu∪vbbbbb

f’d’b’fdsomb∙
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Properties of Composition
transitive
• if [i1 r i2] and [i2 q i3] then [i1 (r ∙ q) i3] 

distributive
• (r ∪ q) ∙ s = (r ∙ s) ∪ (q ∙ s) 
• s ∙ (r ∪ q) = (s ∙ r) ∪ (s ∙ q)

not commutative
• [i1 (r ∙ q) i2] does not imply [i1 (q ∙ r) i2] • example: d ∙b = {b}; b ∙ d = {b,m,o,s,d}

i1
i2

i3

i1
i2

i3
i3

[i1 (d ∙ b) i3] [i1 (b ∙ d) i3]
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Inspect and Seal Example: 
Interval Constraint Propagation

iinspect-imove-iunload: [iinspect {b} ∙ {b} iunload] = [iinspect {b} iunload] 
iinspect-iload-iseal: [iinspect {b,b’} ∙ {b} iseal] = [iinspect P iseal] 

iload

iinspect

iseal

iunload

imove

{b}

{b}

{b,b’} {b}
{b,b’}

{b}

{b}
{b}

P
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IA Constraint Networks
A binary IA constraint network is a directed 
graph (X,C), where:
• X = {i1,…,in} is a set of interval variables ij=(ij.b, ij.e), 

where ij.b≤ij.e, and
• C ⊆ X×X (the edges), cij is labelled by a constraint 

rij∈R iff [ii rij ij] holds.
A tuple 〈v1,…,vk〉 of pairs of real numbers 
(vi.b, vi.e) is a solution for (X,C) iff vi.b≤vi.e
ii=vi satisfy all the constraints in C.
(X,C) is consistent iff there exists at least one 
solution.
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Primitives in Consistent 
Networks

Proposition: A IA network (X,C) is consistent 
iff
• there is a set of primitives pij ∈ rij for every cij∈C such 

that
• for every k: pij ∈ (pik ∙ pkj)

idea: filter out redundant primitives using path 
consistency algorithm until
• either: no more redundant primitives can be found
• or: we find a constraint that is reduced to ∅

(inconsistency)
note: path consistency not complete for IA 
networks
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Example: Quantitative Temporal 
Relations

ship: Uranus
• arrives within 1 or 2 days
• will leave either with

• light cargo (stay docked 3 to 4 days) or 
• full load (stay docked at least six days)

ship: Rigel
• to be serviced on

• express dock (stay docked 2 to 3 days)
• normal dock (stay docked 4 to 5 days)

• must depart 6 to 7 days from now
Uranus must depart 1 to 2 days after Rigel arrives
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Example: Quantitative Temporal 
Constraint Network

5 instants related by quantitative constraints
• e.g. (2 ≤ DRigel-ARigel ≤ 3) ⋁ (4 ≤ DRigel-ARigel ≤ 5) 

possible questions:
• When should the Rigel arrive?
• Can it be serviced on a normal dock?
• Can the Uranus take a full load?

AUranus

now ARigel

DRigel

DUranus

[2,3] or [4,5]

[1,2]
[1,2]

[6,7]

[3,4] or [6,∞]
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Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators
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Temporally Qualified 
Expressions (tqe)

tqe: expression of the form:
p(o1,…,ok)@[tb,te[

where:
• p is a flexible relation in the planning domain,
• o1,…,ok are object constants or variables, and
• tb,te are temporal variables such that tb<te.

tqe p(o1,…,ok)@[tb,te[ asserts that:
• for every time point t: tb≤t<te implies that p(o1,…,ok) 

holds
• [tb,te[ is semi-open to avoid inconsistencies
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Temporal Database

A temporal database is a pair Φ=(F,C) 
where:
• F is a finite set of tqes,
• C is a finite set of temporal and object 

constraints, and
• C has to be consistent, i.e. there exist 

possible values for the variables that meet all 
the constraints.
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Temporal Database: Example
robot r1 is at location loc1
robot r2 moves from location loc2 to location loc3

Φ = ({
at(r1,loc1)@[t0,t1[,
at(r2,loc2)@[t0,t2[,
at(r2,path)@[t2,t3[,
at(r2,loc3)@[t3,t4[,
free(loc3)@[t0,t5[,
free(loc2)@[t6,t7[ }, 

{ adjacent(loc2,loc3),
t2<t6<t5<t3 })

at(r1,loc1)

at(r2,loc2)
at(r2,path)

at(r2,loc3)

free(loc3)

free(loc2)

t1

t2 t3 t4

t0

t0

t0

t5
t6 t7

<

<

<
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Inference over tqes
A set F of tqes supports a (single) tqe
e=p(v1,…,vk)@[tb,te[ iff: • there is a tqe p(o1,…,ok)@[t1,t2[  in F and 
• there is a substitution σ such that:

• σ(p(v1,…,vk)) = p(o1,…,ok).

An enabling condition for e in F is the 
conjunction of the following constraints:
• t1≤tb, te≤t2 and
• the variable binding constraints in σ.
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Inference over tqes: Example

F = {at(r1,loc1)@[t0,t1[, at(r2,loc2)@[t0,t2[, 
at(r2,path)@[t2,t3[, at(r2,loc3)@[t3,t4[, 
free(loc3)@[t0,t5[, free(loc2)@[t6,t7[ }

• F supports free(l)@[t,t’[ 
• with enabling conditions:

• t0≤t, t’≤t5, and l=loc3, or
• t6≤t, t’≤t7, and l=loc2.
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Inference over Sets of tqes

A set F of tqes supports a set E of tqes iff: 
• there is a substitution σ such that:

• F supports every tqe e∈E using substitution σ.

The set of enabling conditions for a single tqe
e in F is denoted Θ(e/F).
The set of enabling conditions for a set of tqes
E in F is denoted Θ(E/F).
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Inference over Temporal 
Databases

A temporal database Φ=(F,C) supports a set E of tqes iff: 
• F supports E and
• there is an enabling condition c∈Θ(E/F) that is consistent 

with C.
A temporal database Φ=(F,C) supports another temporal 
database Φ’=(F’,C’) iff: 
• F supports F’ and
• there is an enabling condition c∈Θ(F’/F) such that 

• C’∪c is consistent with C.
A temporal database Φ=(F,C) entails another temporal 
database Φ’=(F’,C’) iff:
• F supports F’ and
• there is an enabling condition c∈Θ(F’/F) such that 

• C entails C’∪c.
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Temporal Planning Operators: 
Example

move(r,l,l’)@[tb,te[
• preconditions: at(r,l)@[t1,tb[, free(l’)@[t2,te[
• effects: at(r,path)@[tb,te[, at(r,l’)@[te,t3[, free(l’)@[t4,t5[
• constraints: tb<t4<t2, adjacent(l,l’)

at(r,l)

at(r,path)
at(r,l’)

free(l)

free(l’)

move(r,l,l’)

t1 tb

t2
t3

t4 t5
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Temporal Planning Operators
A temporal planning operator o is a tuple 
(name(o), precond(o), effects(o), constr(o)), where:
• name(o) is an expression of the form a(x1,…,xk,tb,te) such 

that:
• a is a unique operator symbol,
• x1,…,xk are the object variables appearing in o, and
• tb,te are temporal variables in o,

• precond(o) and effects(o) are sets of tqes, and
• constr(o) is a conjunction of the following constraints:

• temporal constraints on tb,te and possibly further time points,
• rigid relations between objects, and
• binding constraints of the form x=y, x≠y, or x∈D.
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Applicability of Temporal 
Planning Operators

A temporal planning operator o is applicable to 
a temporal database Φ=(F,C) iff:
• precond(o) is supported by F and 
• there is an enabling condition c in Θ(precond(o)/F) 

such that:
• C ∪ constr(o) ∪ c is consistent.

The result of applying an applicable action a to 
Φ is a set of possible temporal databases 
• γ0(Φ,a) = { (F ∪ effects(a), C ∪ constr(a) ∪ c) | 

c ∈ Θ(precond(a)/F) }
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Applicable Operator: Example
operator: 
move(r,l,l’)@[tb,te[• at(r1,loc1)@[t0,t1[ 

supports at(r,l)@[t’1,tb[• free(loc2)@[t6,t7[ supports 
free(l’)@[t’2,te[• enabling condition: 
{r=rob1, l=loc1, l=loc1, 
t0≤t’1, tb≤t1, t6≤t’2, te≤t7}• consistent

move(r1,loc1,loc2) is 
applicable

at(r1,loc1)

at(r2,loc2)
at(r2,path)

at(r2,loc3)

free(loc3)

free(loc2)

t1

t2 t3 t4

t0

t0

t0

t5
t6 t7

<

<

<
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Domain Axioms: Example

no object can be in two places at the 
same time:
{at(r,l)@[tb,te[, at(r’,l’)@[t’b,t’e[} →

(r≠r’) ⋁ (l=l’) ⋁ (te≤t’b) ⋁ (t’e≤tb)
every location can be occupied by one 
robot only:
{at(r,l)@[t1,t’1[, free(l’)@[t2,t’2[} →

(l≠l’) ⋁ (t’1≤t2) ⋁ (t’2≤t1)
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Domain Axioms

A domain axiom α is an expression of the 
form: cond(α) → disj(α) where:
• cond(α) is a set of tqes and 
• disj(α) is a disjunction of temporal and object 

constraints.
A temporal database Φ=(F,C) is consistent 
with α iff:
• cond(α) is supported by F and
• for every enabling condition c1 ∈ Θ(cond(α)/F) 

• there is at least one disjuct c2 ∈ disj(α) such that
• C ∪ c1 ∪ c2 is consistent.
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Temporal Planning Domains

A temporal planning domain is a triple 
D = (SΦ,O,X) where:
• SΦ is the set of all temporal databases that 

can be defined with the constraints and the 
constant, variable, and relation symbols in our 
representation,

• O is the set of temporal planning operators, 
and

• X is a set of domain axioms.
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Temporal Planning Problems
A temporal planning problem in D is a triple 
P = (D,Φ0,Φg) where:
• D = (SΦ,O,X) is a temporal planning domain,
• Φ0=(F,C) is a database in SΦ that satisfies the axioms 

in X. 
• represents the initial scenario including:

• initial state of the world
• predicted evolution independent of planned actions

• Φg=(G,Cg) is a database in SΦ where:
• G is a set of tqes representing the goals of the problem
• Cg are object and temporal constraints on variables in G.
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Statement of a Planning 
Problem

A statement of a planning problem is a 
tuple P = (O,X,Φ0,Φg) where:
• is a set of temporal planning operators,
• is a set of domain axioms,
• Φ0=(F0,C0) is a database in SΦ representing 

the initial scenario, and
• Φg=(G,Cg) is a database in SΦ representing the 

goals of the problem.
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Concurrent Actions

problem: swap locations of two robots
• only one robot at each location at any time
• path may hold multiple robots

move(r1,loc1,loc2): not applicable
move(r2,loc2,loc1): not applicable
apply both at the same time: applicable

temporal planning can handle such concurrent 
actions
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Temporal Planning Procedure
TPS(Ω)

flaws Ω.getFlaws()
if flaws=∅ then return Ω
flaw flaws.chooseOne()
resolvers flaw.getResolvers(Ω)
if resolvers=∅ then return failure
resolver resolvers.selectOne()
Ω’ Ω.refine(resolver)
return TPS(Ω’)
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Structure of Ω

Ω = (Φ,G,K,π): current processing stage of the 
planning problem, where:
• Φ = (F,C): current temporal database, initially Φ0

• G: set of current open goals, initially taken from 
Φg=(G,Cg) 

• K = {C1,…,Ci}: set of pending conditions (initially 
empty):
• sets of enabling conditions of actions and
• sets of consistency conditions of axioms,

• π: set of actions in the current plan, initially empty.
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Flaw Type: Open Goal
Resolver: Existing tqe

goal: unsupported tqe e in G
assumption:
• tqe in F that can support e

resolver:
• K K ∪ {Θ(e/F)}
• G G – {e}
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Flaw Type: Open Goal
Resolver: New Action

goal: unsupported tqe e in G
assumption:
• action a (instance of operator o) 

• has effects(a) that support e and and
• constr(a) are consistent with C

resolver:
• π π ∪ {a}
• F F ∪ effects(a)
• C C ∪ constr(a)
• G (G – {e}) ∪ precond(a)
• K K ∪ {Θ(precond(a)/Φ)}
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Flaw Type: Unsatisfied Axiom
Resolver: Add Conditions

axiom α: cond(α) → disj(α) and 
• cond(α) is supported by F
• disj(α) is not supported by F

assumption:
• there are consistency conditions Θ(α/Φ) 

such that disj(α) is supported by F
resolver:
• K K ∪ {Θ(α/Φ)}
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Flaw Type: Threat
Resolver: Add Constraints

consistency condition Ci∈K that is not 
entailed by Φ
assumption:
• c∈Ci is consistent with C

resolver:
• C C ∪ c
• K K - {Ci}
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Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators


