
1

Temporal Planning

Planning with Temporal and
Concurrent Actions

Temporal Planning
•Planning with Temporal and Concurrent Actions

2

Temporal Planning 2

Literature

Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning – Theory
and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

Literature
•Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning –
Theory and Practice, chapter 13-14. Elsevier/Morgan Kaufmann, 2004.

3

Temporal Planning 3

Why Explicit Time?

assumption A6: implicit time
• actions and events have no duration
• state transitions are instantaneous

in reality:
• actions and events do occur over a time span
• preconditions not only at beginning
• effects during or even after the action
• actions may need to maintain partial states
• events expected to occur in future time periods
• goals must be achieved within time bound

Why Explicit Time?
•assumption A6: implicit time

•actions and events have no duration
•state transitions are instantaneous

•in reality:
•actions and events do occur over a time span
•preconditions not only at beginning

•move action: destination must be unoccupied only
when robot arrives

•effects during or even after the action
•move action: origin is no longer occupied after robot
has left
•paint action: painted effect long after action is
completed

•actions may need to maintain partial states
•events expected to occur in future time periods
•goals must be achieved within time bound

4

Temporal Planning 4

Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators

Overview
Actions and Time Points

now: maintaining consistency in a network of related time
points

•Interval Algebra and Quantitative Time
•Planning with Temporal Operators

5

Temporal Planning 5

Time

mathematical structure:
• set with transitive, asymmetric ordering operation
• discrete, dense, or continuous
• bounded or unbounded
• totally ordered or branching

temporal references:
• time points (represented by real numbers)
• time intervals (pair of real numbers)

temporal relations:
• examples: before, during

Time
•mathematical structure:

•set with transitive, asymmetric ordering operation
•discrete, dense, or continuous
•bounded or unbounded
•totally ordered or branching

•temporal references:
•time points (represented by real numbers)
•time intervals (pair of real numbers)

•temporal relations:
•examples: before, during

6

Temporal Planning 6

Causal vs. Temporal Analysis of
Actions

example: load(crane2, cont5, robot1, interval6)

causal analysis (what propositions hold?):
• what propositions will change (effects)
• what propositions are required (preconditions)

temporal analysis (when propositions hold?):
• when other, related assertions can/cannot be true
• reason over:

• time periods during which propositions must hold
• time points at which values of state variables change

Causal vs. Temporal Analysis of Actions
•example: load(crane2, cont5, robot1, interval6)
•causal analysis (what propositions hold?):

•what propositions will change (effects)
•what propositions are required (preconditions)

•temporal analysis (when propositions hold?):
•when other, related assertions can/cannot be true
•reason over:

•time periods during which propositions must hold
•time points at which values of state variables
change

7

Temporal Planning 7

Temporal Databases

maintain temporal references for every domain
proposition
• when does it hold
• when does it change value

functionality:
• assert new temporal relations
• querying whether temporal relation holds
• check for consistency

planner attempts to assert relations among
temporal references

Temporal Databases
•maintain temporal references for every domain proposition

•when does it hold
•when does it change value

•functionality:
•assert new temporal relations
•querying whether temporal relation holds
•check for consistency

•planner attempts to assert relations among temporal
references

•planner uses temporal database like ordering constraints

8

Temporal Planning 8

Temporal References Example:
Container Loading

load container c onto robot r at location l

t1: instant at which robot r enters location l
t2: instant at which robot r stops at location l
• i1=[t1,t2]: interval corresponding to r entering l

t3: instant at which the crane starts picking up c
t4: instant at which crane finishes putting c on r
• i2=[t3,t4]: interval corresponding to picking up and loading c

t5: instant at which c begins to be loaded onto r
t6: instant at which c is no longer loaded onto r
• i3=[t5,t6]: interval corresponding to c being loaded onto r

Temporal References Example: Container Loading
•load container c onto robot r at location l
•t1: instant at which robot r enters location l
•t2: instant at which robot r stops at location l

•i1=[t1,t2]: interval corresponding to r entering l
•t3: instant at which the crane starts picking up c
•t4: instant at which crane finishes putting c on r

•i2=[t3,t4]: interval corresponding to picking up and
loading c

•t5: instant at which c begins to be loaded onto r
•t6: instant at which c is no longer loaded onto r

•i3=[t5,t6]: interval corresponding to c being loaded
onto r

•instants t1… t6 and intervals i1… i3 are temporal references that
specify when domain propositions are true

•may use just the intervals in this example
•intervals i1 and i2 refer to activities taking place, i3 refers to a
proposition holding

9

Temporal Planning 9

Temporal Relations Example:
Container Loading

assumption: crane is allowed to pick up container as soon
as robot has entered location
possible temporal sequences:
• t1 < t3 < t2 < t4 = t5 < t6 (see figure) or
• t1 = t3 or t2 = t3 or t2 < t3

t1 t2entering

t3 t4picking up
and loading

t5 t6loaded

Temporal Relations Example: Container Loading
•assumption: crane is allowed to pick up container as soon
as robot has entered location
•possible temporal sequences:

•t1 < t3 < t2 < t4 = t5 < t6 (see figure) or
•t1 = t3 or t2 = t3 or t2 < t3

•[figure]
•no absolute information about durations or time positions, only
binary constraints between instants or intervals

10

Temporal Planning 10

Example: Temporal Relations as
Constraint Networks

t1 t2

t3

t5 t6

t4

<
<<

<

≤
=

i1

i2

i3
before

starts
before

meets

Example: Temporal Relations as Constraint Networks
•top left: instant constraint network

•variables: instants / domains: real numbers
•relations: <,=, … (relative positions of time points)

•bottom right: interval constraint network
•variables: intervals / domains: RxR
•relations: before, starts before, … (relative positions of
intervals)

11

Temporal Planning 11

Point Algebra (PA): Relations
and Constraints

possible primitive relations P between instants
t1 and t2: P = {<,=,>}
• t1 before t2: [t1<t2]
• t1 equal to t2: [t1=t2]
• t1 after t2: [t1>t2]

possible qualitative constraints R between
instants:
• sets of the above relations (interpret as disjunction)
• R = 2P = {∅, {<}, {=}, {>}, {<,=}, {<,>}, {=,>}, P}

Point Algebra (PA): Relations and Constraints
•possible primitive relations P between instants t1 and t2: P =
{<,=,>}

•t1 before t2: [t1<t2]
•t1 equal to t2: [t1=t2]
•t1 after t2: [t1>t2]

•possible qualitative constraints R between instants:
•sets of the above relations (interpret as disjunction)
•R = 2P = {∅, {<}, {=}, {>}, {<,=}, {<,>}, {=,>}, P}

•empty set: no alternatives cannot be satisfied
•P: all possible relations; always satisfied

12

Temporal Planning 12

Container Loading Example: PA
Constraints

[t1 {<} t2]
[t1 {<,=} t3]
[t2 {<} t5]
[t3 {<} t4]
[t4 {=} t5]
[t5 {=} t4]
[t5 {<} t6]

t1 t2

t3

t5 t6

t4

{<}
{<}{<}

{<}

{<,=}
{=}

Container Loading Example: PA Constraints
•[figure]
•[t1 {<} t2]
•[t1 {<,=} t3]
•[t2 {<} t5]
•[t3 {<} t4]
•[t4 {=} t5]
•[t5 {=} t4]
•[t5 {<} t6]

13

Temporal Planning 13

PA: Combining Constraints

usual set operations:
• ∩, ∪ etc.

composition (noted ∙):
• let r, q ∈ R
• if [t1 r t2] and [t2 q t3]
• then [t1 r∙q t3]
• r∙q as defined in

composition table
>>P<

>=<=

P<<<

>=<∙

PA composition table

PA: Combining Constraints
•usual set operations:

•∩, ∪ etc.
•composition (noted ∙):

•composition operator handles transitivity
•let r, q ∈ R
•if [t1 r t2] and [t2 q t3]
•then [t1 r∙q t3]
•r∙q as defined in composition table

•[composition table]

14

Temporal Planning 14

PA: Properties of Combined
Constraints

distributive
• (r ∪ q) ∙ s = (r ∙ s) ∪ (q ∙ s)
• s ∙ (r ∪ q) = (s ∙ r) ∪ (s ∙ q)

symmetrical constraint r’ of
r:
• [t1 r t2] iff [t2 r’ t1]
• obtained by replacing in r:

< with > and vice versa
• (r ∙ q)’ = q’ ∙ r’

(R,∪,∙) is an algebra:
• R is closed under ∪

and ∙
• ∪ is an associative and

commutative operation
• identity element for ∪

is ∅
• is an associative

operation
• identity element for ∙ is

{=}

PA: Properties of Combined Constraints
•distributive

•(r ∪ q) ∙ s = (r ∙ s) ∪ (q ∙ s)
•s ∙ (r ∪ q) = (s ∙ r) ∪ (s ∙ q)

•symmetrical constraint r’ of r:
•[t1 r t2] iff [t2 r’ t1]
•obtained by replacing in r: < with > and vice versa
•(r ∙ q)’ = q’ ∙ r’

•(R,∪,∙) is an algebra:
•R is closed under ∪ and ∙
•∪ is an associative and commutative operation
•identity element for ∪ is ∅
•is an associative operation
•identity element for ∙ is {=}

15

Temporal Planning 15

PA: Constraint Propagation

given constraints:
• [t1 r t2]
• [t1 q t3]
• [t3 s t2]
implied constraint:
• [t1 r ∩ q∙s t2]

inconsistency:
• if r ∩ q∙s = ∅

t1

t3

t2
r

q s

q∙s

PA: Constraint Propagation
•given constraints:

•[t1 r t2]
•[t1 q t3]
•[t3 s t2]

•implied constraint:
•[t1 r ∩ q∙s t2]
•important operation: intersection, not union (algebra for
union)

•inconsistency:
•if r ∩ q∙s = ∅
•necessary condition!

16

Temporal Planning 16

Container Loading Example:
Constraint Propagation

path: t4-t5-t6: [t4=t5] ∙ [t5<t6] implies [t4<t6]
path: t2-t1-t3: [t2>t1] ∙ [t1≤t6] implies [t2Pt3]
path: t2-t5-t4: [t2<t5] ∙ [t5=t4] implies [t2<t4]
path: t2-t3-t4: [t2Pt3] ∙ [t3<t4] implies [t2Pt4]

t1 t2

t3

t5 t6

t4

{<}
{<}{<}

{<}

{<,=}
{=} {<}

{P} {<}
{P}

[t2<t4]

Container Loading Example: Constraint Propagation
•path: t4-t5-t6: [t4=t5] ∙ [t5<t6] implies [t4<t6]
•path: t2-t1-t3: [t2>t1] ∙ [t1≤t6] implies [t2Pt3]
•path: t2-t5-t4: [t2<t5] ∙ [t5=t4] implies [t2<t4]
•path: t2-t3-t4: [t2Pt3] ∙ [t3<t4] implies [t2Pt4]
•last two give: [t2<t4]

17

Temporal Planning 17

PA Constraint Networks

A binary PA constraint network is a directed
graph (X,C), where:
• X = {t1,…,tn} is a set of instant variables (nodes), and
• C ⊆ X×X (the edges), cij is labelled by a constraint

rij∈R iff [ti rij tj] holds.

A tuple 〈v1,…,vk〉 of real numbers is a solution
for (X,C) iff ti=vi satisfy all the constraints in C.
(X,C) is consistent iff there exists at least one
solution.

PA Constraint Networks
•A binary PA constraint network is a directed graph (X,C),
where:

•X = {t1,…,tn} is a set of instant variables (nodes), and
•C ⊆ X×X (the edges), cij is labelled by a constraint rij∈R
iff [ti rij tj] holds.

•if cij ∈ C labelled with rij ∈ R then cji must be labelled
with the symmetric constraint rij’
•if there is no cij ∈ C then we can add cij labelled with
rij = P

•A tuple 〈v1,…,vk〉 of real numbers is a solution for (X,C) iff ti=vi
satisfy all the constraints in C.
•(X,C) is consistent iff there exists at least one solution.

18

Temporal Planning 18

Primitives in Consistent
Networks

Proposition: A PA network (X,C) is
consistent iff
• there is a set of primitives pij ∈ rij for every

cij∈C such that
• for every k: pij ∈ (pik ∙ pkj)

note: not interested in solution, just
consistency (qualitative solution)

Primitives in Consistent Networks
•Proposition: A PA network (X,C) is consistent iff

•there is a set of primitives pij ∈ rij for every cij∈C such
that

•for every k: pij ∈ (pik ∙ pkj)
•note: in a solution every pair ti, tj will be related by a single
primitive relation pij ∈ rij

•note: not interested in solution, just consistency (qualitative
solution)

19

Temporal Planning 19

Redundant Networks

A primitive pij ∈ rij is redundant if there is
no solution in which [ti pij tj] holds.

idea: filter out redundant primitives until
• either: no more redundant primitives can be

found
• or: we find a constraint that is reduced to ∅

(inconsistency)

Redundant Networks
•A primitive pij ∈ rij is redundant if there is no solution in
which [ti pij tj] holds.
•idea: filter out redundant primitives until

•either: no more redundant primitives can be found
•or: we find a constraint that is reduced to ∅
(inconsistency)
•use path consistency algorithm for CSP problems

20

Temporal Planning 20

Path Consistency: Pseudo Code

pathConsistency(C)
while ¬C.isStable() do

for each k : 1≤k≤n do
for each pair i,j: 1≤i<j≤n,i≠k, j≠k do

cij cij ∩ [cik ∙ ckj]
if cij=∅ then return inconsistent

Path Consistency: Pseudo Code
•pathConsistency(C)

•given time point network
•while ¬C.isStable() do
•for each k : 1≤k≤n do

•“middle node”
•for each pair i,j: 1≤i<j≤n,i≠k, j≠k do

•surrounding nodes
•cij cij ∩ [cik ∙ ckj]

•update direct link using transitivity property
•if cij=∅ then return inconsistent

•use as constraint manager during planning: incremental version
of the algorithm

21

Temporal Planning 21

Path Consistency: Properties

algorithm pathConsistency(C) is:
• incomplete for general CSPs
• complete for PA networks

network (X,C) is minimal if it has no
redundant primitives in a constraint
algorithm pathConsistency(C) does not
guarantee a minimal network

Path Consistency: Properties
•algorithm pathConsistency(C) is:

•incomplete for general CSPs
•complete for PA networks

•network (X,C) is minimal if it has no redundant primitives in
a constraint
•algorithm pathConsistency(C) does not guarantee a minimal
network

22

Temporal Planning 22

Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators

Overview
Actions and Time Points

just done: maintaining consistency in a network of related
time points

•Interval Algebra and Quantitative Time
•now: reasoning about more complex structures

•Planning with Temporal Operators

23

Temporal Planning 23

Extended Example: Inspect and
Seal

every container must be inspected and sealed:
inspection:
• carried out by the crane
• must be performed before or after loading

sealing:
• carried out by robot
• before or after unloading, not while moving

corresponding intervals:
• iload, imove, iunload, iinspect, iseal

Extended Example: Inspect and Seal
•every container must be inspected and sealed:
•inspection:

•carried out by the crane
•must be performed before or after loading

•sealing:
•carried out by robot
•before or after unloading, not while moving

•corresponding intervals:
•iload, imove, iunload, iinspect, iseal

24

Temporal Planning 24

Inspect and Seal Example:
Interval Constraint Network

iload

iinspect

iseal

iunload

imove

before

before

before
or after

before before

before

before
or after

Inspect and Seal Example: Interval Constraint Network
•“before or after” = must not overlap

25

Temporal Planning 25

disjunction cannot be translated into binary PA constraint

Inspect and Seal Example:
Qualitative Instant Constraints

Let i be an interval.
• i.b and i.e denote two end time points
• [i.b ≤ i.e] constraint: beginning before end

[iload before imove]:
• [iload.b ≤ iload.e] and [imove.b ≤ imove.e] and
• [iload.e < imove.b]

[imove before-or-after iseal]:
• [imove.e < iseal.b] or
• [iseal.e < imove.b]

Inspect and Seal Example: Qualitative Instant Constraints
•Let i be an interval.

•i.b and i.e denote two end time points
•[i.b ≤ i.e] constraint: beginning before end

•[iload before imove]:
•[iload.b ≤ iload.e] and [imove.b ≤ imove.e] and
•[iload.e < imove.b]

•[imove before-or-after iseal]:
•[imove.e < iseal.b] or
•[iseal.e < imove.b]

•disjunction cannot be translated into binary PA constraint
•translation of interval constraint network into (binary) instant
constraint network not possible in general

26

Temporal Planning 26

Interval Algebra (IA): Relations
i1 before i2: [i1 b i2]

i1 meets i2: [i1 m i2]

i1 overlaps i2: [i1 o i2]

i1 starts i2: [i1 s i2]

i1 during i2: [i1 d i2]

i1 finishes i2: [i1 f i2]

i1
i2

i1
i2

i1
i2

i1
i2

i1
i2

i1
i2

Interval Algebra (IA): Relations
•interval algebra: similar to point algebra, but related objects are
intervals

27

Temporal Planning 27

IA: Relations and Constraints
possible primitive relations P between intervals i1
and i2:
• just described: [i1 b i2], [i1 m i2], [i1 o i2], [i1 s i2], [i1 d i2], [i1 f i2]
• symmetrical: [i1 b’ i2], [i1 m’ i2], [i1 o’ i2], [i1 s’ i2], [i1 d’ i2], [i1 f’ i2]
• i1 equals i2: [i1 e i2]

possible qualitative constraints R between instants:
• sets of the above relations (interpret as disjunction)
• R = 2P = {∅, {b}, {m}, {o},…, {b,m}, {b,o},…, {b,m,o},…, P}
• examples: while = {s,d,f}; disjoint = {b,b’}

i1
i2

IA: Relations and Constraints
•possible primitive relations P between intervals i1 and i2:

•just described: [i1 b i2], [i1 m i2], [i1 o i2], [i1 s i2], [i1 d i2], [i1 f
i2]
•symmetrical: [i1 b’ i2], [i1 m’ i2], [i1 o’ i2], [i1 s’ i2], [i1 d’ i2], [i1 f’
i2]
•i1 equals i2: [i1 e i2]
•13 possible ways of relating the two end points

•possible qualitative constraints R between instants:
•sets of the above relations (interpret as disjunction)
•R = 2P = {∅, {b}, {m}, {o},…, {b,m}, {b,o},…,
{b,m,o},…, P}
•constraints: 213 possible constraints

•empty set: no alternatives cannot be satisfied
•P: all possible relations; always satisfied

•examples: while = {s,d,f}; disjoint = {b,b’}

28

Temporal Planning 28

Operations on Relations
set operations: ∩, ∪ etc.
composition: ∙

u∪vPb’dddu∪vbbd

uu’∪w’b’ddsubbs

uu’∪w’u’∪v’vvoubbo

bbu’∪v’vvmbbbm

bbPu∪vu∪vbbbbb

f’d’b’fdsomb∙

Operations on Relations
•set operations: ∩, ∪ etc.
•composition: ∙
•[table]
•u={b,m,o}; v={o,s,d}; w={d,f}
•composition is transitive and distributive

29

Temporal Planning 29

Properties of Composition
transitive
• if [i1 r i2] and [i2 q i3] then [i1 (r ∙ q) i3]

distributive
• (r ∪ q) ∙ s = (r ∙ s) ∪ (q ∙ s)
• s ∙ (r ∪ q) = (s ∙ r) ∪ (s ∙ q)

not commutative
• [i1 (r ∙ q) i2] does not imply [i1 (q ∙ r) i2] • example: d ∙b = {b}; b ∙ d = {b,m,o,s,d}

i1
i2

i3

i1
i2

i3
i3

[i1 (d ∙ b) i3] [i1 (b ∙ d) i3]

Properties of Composition
•transitive

•if [i1 r i2] and [i2 q i3] then [i1 (r ∙ q) i3]
•distributive

•(r ∪ q) ∙ s = (r ∙ s) ∪ (q ∙ s)
•s ∙ (r ∪ q) = (s ∙ r) ∪ (s ∙ q)

•not commutative
•[i1 (r ∙ q) i2] does not imply [i1 (q ∙ r) i2]
•example: d ∙b = {b}; b ∙ d = {b,m,o,s,d}

•[figure]
•for [i1 (b · d) i3]: i3 could start before, at the same time as, during,
at the end of, or after i2

30

Temporal Planning 30

Inspect and Seal Example:
Interval Constraint Propagation

iinspect-imove-iunload: [iinspect {b} ∙ {b} iunload] = [iinspect {b} iunload]
iinspect-iload-iseal: [iinspect {b,b’} ∙ {b} iseal] = [iinspect P iseal]

iload

iinspect

iseal

iunload

imove

{b}

{b}

{b,b’} {b}
{b,b’}

{b}

{b}
{b}

P

Inspect and Seal Example: Interval Constraint Propagation
•[figure]
•iinspect-imove-iunload: [iinspect {b} ∙ {b} iunload] = [iinspect {b} iunload]
•iinspect-iload-iseal: [iinspect {b,b’} ∙ {b} iseal] = [iinspect P iseal]

31

Temporal Planning 31

IA Constraint Networks
A binary IA constraint network is a directed
graph (X,C), where:
• X = {i1,…,in} is a set of interval variables ij=(ij.b, ij.e),

where ij.b≤ij.e, and
• C ⊆ X×X (the edges), cij is labelled by a constraint

rij∈R iff [ii rij ij] holds.
A tuple 〈v1,…,vk〉 of pairs of real numbers
(vi.b, vi.e) is a solution for (X,C) iff vi.b≤vi.e
ii=vi satisfy all the constraints in C.
(X,C) is consistent iff there exists at least one
solution.

IA Constraint Networks
•A binary IA constraint network is a directed graph (X,C), where:

•X = {i1,…,in} is a set of interval variables ij=(ij.b, ij.e), where
ij.b≤ij.e, and

•domain of each interval variable is a half plane due to
ij.b≤ij.e

•C ⊆ X×X (the edges), cij is labelled by a constraint rij∈R iff [ii rij
ij] holds.

•A tuple 〈v1,…,vk〉 of pairs of real numbers (vi.b, vi.e) is a solution for
(X,C) iff vi.b≤vi.e ii=vi satisfy all the constraints in C.
•(X,C) is consistent iff there exists at least one solution.

32

Temporal Planning 32

Primitives in Consistent
Networks

Proposition: A IA network (X,C) is consistent
iff
• there is a set of primitives pij ∈ rij for every cij∈C such

that
• for every k: pij ∈ (pik ∙ pkj)

idea: filter out redundant primitives using path
consistency algorithm until
• either: no more redundant primitives can be found
• or: we find a constraint that is reduced to ∅

(inconsistency)
note: path consistency not complete for IA
networks

Primitives in Consistent Networks
•Proposition: A IA network (X,C) is consistent iff

•there is a set of primitives pij ∈ rij for every cij∈C such
that

•for every k: pij ∈ (pik ∙ pkj)
•idea: filter out redundant primitives using path consistency
algorithm until

•either: no more redundant primitives can be found
•or: we find a constraint that is reduced to ∅
(inconsistency)

•note: path consistency not complete for IA networks
•consistency checking for IP networks is an NP-complete
problem

33

Temporal Planning 33

Example: Quantitative Temporal
Relations

ship: Uranus
• arrives within 1 or 2 days
• will leave either with

• light cargo (stay docked 3 to 4 days) or
• full load (stay docked at least six days)

ship: Rigel
• to be serviced on

• express dock (stay docked 2 to 3 days)
• normal dock (stay docked 4 to 5 days)

• must depart 6 to 7 days from now
Uranus must depart 1 to 2 days after Rigel arrives

Example: Quantitative Temporal Relations
•ship: Uranus

•arrives within 1 or 2 days
•will leave either with

•light cargo (stay docked 3 to 4 days) or
•full load (stay docked at least six days)

•ship: Rigel
•to be serviced on

•express dock (stay docked 2 to 3 days)
•normal dock (stay docked 4 to 5 days)

•must depart 6 to 7 days from now
•Uranus must depart 1 to 2 days after Rigel arrives

34

Temporal Planning 34

Example: Quantitative Temporal
Constraint Network

5 instants related by quantitative constraints
• e.g. (2 ≤ DRigel-ARigel ≤ 3) ⋁ (4 ≤ DRigel-ARigel ≤ 5)

possible questions:
• When should the Rigel arrive?
• Can it be serviced on a normal dock?
• Can the Uranus take a full load?

AUranus

now ARigel

DRigel

DUranus

[2,3] or [4,5]

[1,2]
[1,2]

[6,7]

[3,4] or [6,∞]

Example: Quantitative Temporal Constraint Network
•5 instants related by quantitative constraints

•e.g. (2 ≤ DRigel-ARigel ≤ 3) ⋁ (4 ≤ DRigel-ARigel ≤ 5)
•possible questions:

•When should the Rigel arrive?
•Can it be serviced on a normal dock?
•Can the Uranus take a full load?

35

Temporal Planning 35

Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators

Overview
Actions and Time Points

•Interval Algebra and Quantitative Time
•just done: reasoning about more complex structures

•Planning with Temporal Operators
•now: integrating reasoning about time into a planning
algorithm

36

Temporal Planning 36

Temporally Qualified
Expressions (tqe)

tqe: expression of the form:
p(o1,…,ok)@[tb,te[

where:
• p is a flexible relation in the planning domain,
• o1,…,ok are object constants or variables, and
• tb,te are temporal variables such that tb<te.

tqe p(o1,…,ok)@[tb,te[asserts that:
• for every time point t: tb≤t<te implies that p(o1,…,ok)

holds
• [tb,te[is semi-open to avoid inconsistencies

Temporally Qualified Expressions (tqe)
•tqe: expression of the form:

p(o1,…,ok)@[tb,te[
where:

•p is a flexible relation in the planning domain,
•o1,…,ok are object constants or variables, and

•object constants: objects in the planning domain:
robots, containers, etc.
•object variables: (possibly typed) variables with object
constants as possible values

•tb,te are temporal variables such that tb<te.
•tqe p(o1,…,ok)@[tb,te[asserts that:

•for every time point t: tb≤t<te implies that p(o1,…,ok)
holds
•[tb,te[is semi-open to avoid inconsistencies
•semi-open interval:

•asserted relation holds at tb, but not at te
•suppose two tqes with inconsistent relations meet at
time point t; inconsistency at t!

37

Temporal Planning 37

Temporal Database

A temporal database is a pair Φ=(F,C)
where:
• F is a finite set of tqes,
• C is a finite set of temporal and object

constraints, and
• C has to be consistent, i.e. there exist

possible values for the variables that meet all
the constraints.

Temporal Database
•A temporal database is a pair Φ=(F,C) where:

•Φ - phi
•F is a finite set of tqes,
•C is a finite set of temporal and object constraints, and

•temporal constraints: see time point algebra
•object constraints: rigid relations

•C has to be consistent, i.e. there exist possible values
for the variables that meet all the constraints.

38

Temporal Planning 38

Temporal Database: Example
robot r1 is at location loc1
robot r2 moves from location loc2 to location loc3

Φ = ({
at(r1,loc1)@[t0,t1[,
at(r2,loc2)@[t0,t2[,
at(r2,path)@[t2,t3[,
at(r2,loc3)@[t3,t4[,
free(loc3)@[t0,t5[,
free(loc2)@[t6,t7[},

{ adjacent(loc2,loc3),
t2<t6<t5<t3 })

at(r1,loc1)

at(r2,loc2)
at(r2,path)

at(r2,loc3)

free(loc3)

free(loc2)

t1

t2 t3 t4

t0

t0

t0

t5
t6 t7

<

<

<

Temporal Database: Example
•robot r1 is at location loc1
•robot r2 moves from location loc2 to location loc3
•[figure]
•Φ = (
•{at(r1,loc1)@[t0,t1[, at(r2,loc2)@[t0,t2[, at(r2,path)@[t2,t3[,
at(r2,loc3)@[t3,t4[, free(loc3)@[t0,t5[, free(loc2)@[t6,t7[},
•{adjacent(loc2,loc3), t2<t6<t5<t3 })

39

Temporal Planning 39

Inference over tqes
A set F of tqes supports a (single) tqe
e=p(v1,…,vk)@[tb,te[iff: • there is a tqe p(o1,…,ok)@[t1,t2[in F and
• there is a substitution σ such that:

• σ(p(v1,…,vk)) = p(o1,…,ok).

An enabling condition for e in F is the
conjunction of the following constraints:
• t1≤tb, te≤t2 and
• the variable binding constraints in σ.

Inference over tqes
•A set F of tqes supports a (single) tqe e=p(v1,…,vk)@[tb,te[
iff:

•there is a tqe p(o1,…,ok)@[t1,t2[in F and
•there is a substitution σ such that:

•σ(p(v1,…,vk)) = p(o1,…,ok).
•An enabling condition for e in F is the conjunction of the
following constraints:

•t1≤tb, te≤t2 and
•the variable binding constraints in σ.

•note: if p(o1,…,ok) holds during [t1,t2[it must also hold over any
sub-interval

40

Temporal Planning 40

Inference over tqes: Example

F = {at(r1,loc1)@[t0,t1[, at(r2,loc2)@[t0,t2[,
at(r2,path)@[t2,t3[, at(r2,loc3)@[t3,t4[,
free(loc3)@[t0,t5[, free(loc2)@[t6,t7[}

• F supports free(l)@[t,t’[
• with enabling conditions:

• t0≤t, t’≤t5, and l=loc3, or
• t6≤t, t’≤t7, and l=loc2.

Inference over tqes: Example
•F = {at(r1,loc1)@[t0,t1[, at(r2,loc2)@[t0,t2[, at(r2,path)@[t2,t3[,
at(r2,loc3)@[t3,t4[, free(loc3)@[t0,t5[, free(loc2)@[t6,t7[}

•F supports free(l)@[t,t’[
•with enabling conditions:

•t0≤t, t’≤t5, and l=loc3, or
•t6≤t, t’≤t7, and l=loc2.

•note: enabling conditions are not necessarily unique

41

Temporal Planning 41

Inference over Sets of tqes

A set F of tqes supports a set E of tqes iff:
• there is a substitution σ such that:

• F supports every tqe e∈E using substitution σ.

The set of enabling conditions for a single tqe
e in F is denoted Θ(e/F).
The set of enabling conditions for a set of tqes
E in F is denoted Θ(E/F).

Inference over Sets of tqes
•A set F of tqes supports a set E of tqes iff:

•there is a substitution σ such that:
•F supports every tqe e∈E using substitution σ.

•The set of enabling conditions for a single tqe e in F is
denoted Θ(e/F).
•The set of enabling conditions for a set of tqes E in F is
denoted Θ(E/F).

•Θ = theta

42

Temporal Planning 42

Inference over Temporal
Databases

A temporal database Φ=(F,C) supports a set E of tqes iff:
• F supports E and
• there is an enabling condition c∈Θ(E/F) that is consistent

with C.
A temporal database Φ=(F,C) supports another temporal
database Φ’=(F’,C’) iff:
• F supports F’ and
• there is an enabling condition c∈Θ(F’/F) such that

• C’∪c is consistent with C.
A temporal database Φ=(F,C) entails another temporal
database Φ’=(F’,C’) iff:
• F supports F’ and
• there is an enabling condition c∈Θ(F’/F) such that

• C entails C’∪c.

Inference over Temporal Databases
•A temporal database Φ=(F,C) supports a set E of tqes iff:

•F supports E and
•there is an enabling condition c∈Θ(E/F) that is consistent
with C.

•A temporal database Φ=(F,C) supports another temporal database
Φ’=(F’,C’) iff:

•F supports F’ and
•there is an enabling condition c∈Θ(F’/F) such that

•C’∪c is consistent with C.
•A temporal database Φ=(F,C) entails another temporal database
Φ’=(F’,C’) iff:

•F supports F’ and
•there is an enabling condition c∈Θ(F’/F) such that

•C entails C’∪c.

43

Temporal Planning 43

Temporal Planning Operators:
Example

move(r,l,l’)@[tb,te[
• preconditions: at(r,l)@[t1,tb[, free(l’)@[t2,te[
• effects: at(r,path)@[tb,te[, at(r,l’)@[te,t3[, free(l’)@[t4,t5[
• constraints: tb<t4<t2, adjacent(l,l’)

at(r,l)

at(r,path)
at(r,l’)

free(l)

free(l’)

move(r,l,l’)

t1 tb

t2
t3

t4 t5

Temporal Planning Operators: Example
•move(r,l,l’)@[tb,te[

•preconditions: at(r,l)@[t1,tb[, free(l’)@[t2,te[
•effects: at(r,path)@[tb,te[, at(r,l’)@[te,t3[, free(l’)@[t4,t5[
•constraints: tb<t4<t2, adjacent(l,l’)

44

Temporal Planning 44

Temporal Planning Operators
A temporal planning operator o is a tuple
(name(o), precond(o), effects(o), constr(o)), where:
• name(o) is an expression of the form a(x1,…,xk,tb,te) such

that:
• a is a unique operator symbol,
• x1,…,xk are the object variables appearing in o, and
• tb,te are temporal variables in o,

• precond(o) and effects(o) are sets of tqes, and
• constr(o) is a conjunction of the following constraints:

• temporal constraints on tb,te and possibly further time points,
• rigid relations between objects, and
• binding constraints of the form x=y, x≠y, or x∈D.

Temporal Planning Operators
•A temporal planning operator o is a tuple
(name(o), precond(o), effects(o), constr(o)), where:

•name(o) is an expression of the form a(x1,…,xk,tb,te) such
that:

•a is a unique operator symbol,
•x1,…,xk are the object variables appearing in o, and
•tb,te are temporal variables in o,

•precond(o) and effects(o) are sets of tqes, and
•constr(o) is a conjunction of the following constraints:

•temporal constraints on tb,te and possibly further time
points,
•rigid relations between objects, and
•binding constraints of the form x=y, x≠y, or x∈D.

•note: operators are usually written as in the example in the
previous slide
•no negative effects: handled by domain axioms or state-variable
representation

45

Temporal Planning 45

Applicability of Temporal
Planning Operators

A temporal planning operator o is applicable to
a temporal database Φ=(F,C) iff:
• precond(o) is supported by F and
• there is an enabling condition c in Θ(precond(o)/F)

such that:
• C ∪ constr(o) ∪ c is consistent.

The result of applying an applicable action a to
Φ is a set of possible temporal databases
• γ0(Φ,a) = { (F ∪ effects(a), C ∪ constr(a) ∪ c) |

c ∈ Θ(precond(a)/F) }

Applicability of Temporal Planning Operators
•A temporal planning operator o is applicable to a temporal
database Φ=(F,C) iff:

•precond(o) is supported by F and
•there is an enabling condition c in Θ(precond(o)/F) such
that:

•C ∪ constr(o) ∪ c is consistent.
•The result of applying an applicable action a to Φ is a set of
possible temporal databases

•action: partially instantiated operator
•γ0(Φ,a) = { (F ∪ effects(a), C ∪ constr(a) ∪ c) |

c ∈ Θ(precond(a)/F) }
•provisional definition; see Automated Planning book for complete
definition
•result is set: not due to non-determinism but different ways in
which a can be inserted
•note: applying an action a does not remove anything from the
temporal database

46

Temporal Planning 46

Applicable Operator: Example
operator:
move(r,l,l’)@[tb,te[• at(r1,loc1)@[t0,t1[

supports at(r,l)@[t’1,tb[• free(loc2)@[t6,t7[supports
free(l’)@[t’2,te[• enabling condition:
{r=rob1, l=loc1, l=loc1,
t0≤t’1, tb≤t1, t6≤t’2, te≤t7}• consistent

move(r1,loc1,loc2) is
applicable

at(r1,loc1)

at(r2,loc2)
at(r2,path)

at(r2,loc3)

free(loc3)

free(loc2)

t1

t2 t3 t4

t0

t0

t0

t5
t6 t7

<

<

<

Applicable Operator: Example
•[figure]
•operator: move(r,l,l’)@[tb,te[

•time points with prime are from operator definition
•at(r1,loc1)@[t0,t1[supports at(r,l)@[t’1,tb[
•free(loc2)@[t6,t7[supports free(l’)@[t’2,te[
•enabling condition: {r=rob1, l=loc1, l=loc1, t0≤t’1, tb≤t1,
t6≤t’2, te≤t7}
•consistent

•move(r1,loc1,loc2) is applicable
•other possibility: move(r2,loc3,loc2)

47

Temporal Planning 47

Domain Axioms: Example

no object can be in two places at the
same time:
{at(r,l)@[tb,te[, at(r’,l’)@[t’b,t’e[} →

(r≠r’) ⋁ (l=l’) ⋁ (te≤t’b) ⋁ (t’e≤tb)
every location can be occupied by one
robot only:
{at(r,l)@[t1,t’1[, free(l’)@[t2,t’2[} →

(l≠l’) ⋁ (t’1≤t2) ⋁ (t’2≤t1)

Domain Axioms: Example
•no object can be in two places at the same time:
{at(r,l)@[tb,te[, at(r’,l’)@[t’b,t’e[} →

(r≠r’) ⋁ (l=l’) ⋁ (te≤t’b) ⋁ (t’e≤tb)
•every location can be occupied by one robot only:
{at(r,l)@[t1,t’1[, free(l’)@[t2,t’2[} →

(l≠l’) ⋁ (t’1≤t2) ⋁ (t’2≤t1)

48

Temporal Planning 48

Domain Axioms

A domain axiom α is an expression of the
form: cond(α) → disj(α) where:
• cond(α) is a set of tqes and
• disj(α) is a disjunction of temporal and object

constraints.
A temporal database Φ=(F,C) is consistent
with α iff:
• cond(α) is supported by F and
• for every enabling condition c1 ∈ Θ(cond(α)/F)

• there is at least one disjuct c2 ∈ disj(α) such that
• C ∪ c1 ∪ c2 is consistent.

Domain Axioms
•A domain axiom α is an expression of the form: cond(α) →
disj(α) where:

•cond(α) is a set of tqes and
•disj(α) is a disjunction of temporal and object
constraints.

•A temporal database Φ=(F,C) is consistent with α iff:
•cond(α) is supported by F and
•for every enabling condition c1 ∈ Θ(cond(α)/F)

•there is at least one disjuct c2 ∈ disj(α) such that
•C ∪ c1 ∪ c2 is consistent.

49

Temporal Planning 49

Temporal Planning Domains

A temporal planning domain is a triple
D = (SΦ,O,X) where:
• SΦ is the set of all temporal databases that

can be defined with the constraints and the
constant, variable, and relation symbols in our
representation,

• O is the set of temporal planning operators,
and

• X is a set of domain axioms.

Temporal Planning Domains
•A temporal planning domain is a triple
D = (SΦ,O,X) where:

•SΦ is the set of all temporal databases that can be
defined with the constraints and the constant, variable,
and relation symbols in our representation,
•O is the set of temporal planning operators, and
•X is a set of domain axioms.

50

Temporal Planning 50

Temporal Planning Problems
A temporal planning problem in D is a triple
P = (D,Φ0,Φg) where:
• D = (SΦ,O,X) is a temporal planning domain,
• Φ0=(F,C) is a database in SΦ that satisfies the axioms

in X.
• represents the initial scenario including:

• initial state of the world
• predicted evolution independent of planned actions

• Φg=(G,Cg) is a database in SΦ where:
• G is a set of tqes representing the goals of the problem
• Cg are object and temporal constraints on variables in G.

Temporal Planning Problems
•A temporal planning problem in D is a triple
P = (D,Φ0,Φg) where:

•D = (SΦ,O,X) is a temporal planning domain,
•Φ0=(F,C) is a database in SΦ that satisfies the axioms in
X.

•represents the initial scenario including:
•initial state of the world
•predicted evolution independent of planned
actions

•Φg=(G,Cg) is a database in SΦ where:
•G is a set of tqes representing the goals of the
problem
•Cg are object and temporal constraints on variables
in G.

51

Temporal Planning 51

Statement of a Planning
Problem

A statement of a planning problem is a
tuple P = (O,X,Φ0,Φg) where:
• is a set of temporal planning operators,
• is a set of domain axioms,
• Φ0=(F0,C0) is a database in SΦ representing

the initial scenario, and
• Φg=(G,Cg) is a database in SΦ representing the

goals of the problem.

Statement of a Planning Problem
•A statement of a planning problem is a tuple P = (O,X,Φ0,Φg)
where:

• is a set of temporal planning operators,
• is a set of domain axioms,
•Φ0=(F0,C0) is a database in SΦ representing the initial
scenario, and
•Φg=(G,Cg) is a database in SΦ representing the goals of
the problem.

52

Temporal Planning 52

Concurrent Actions

problem: swap locations of two robots
• only one robot at each location at any time
• path may hold multiple robots

move(r1,loc1,loc2): not applicable
move(r2,loc2,loc1): not applicable
apply both at the same time: applicable

temporal planning can handle such concurrent
actions

Concurrent Actions
•problem: swap locations of two robots

•only one robot at each location at any time
•path may hold multiple robots

•move(r1,loc1,loc2): not applicable
•move(r2,loc2,loc1): not applicable
•apply both at the same time: applicable
•temporal planning can handle such concurrent actions

•higher expressiveness!

53

Temporal Planning 53

Temporal Planning Procedure
TPS(Ω)

flaws Ω.getFlaws()
if flaws=∅ then return Ω
flaw flaws.chooseOne()
resolvers flaw.getResolvers(Ω)
if resolvers=∅ then return failure
resolver resolvers.selectOne()
Ω’ Ω.refine(resolver)
return TPS(Ω’)

Temporal Planning Procedure
•TPS(Ω)
•flaws Ω.getFlaws()
•if flaws=∅ then return Ω
•flaw flaws.chooseOne()
•resolvers flaw.getResolvers(Ω)
•if resolvers=∅ then return failure
•resolver resolvers.selectOne()
•Ω’ Ω.refine(resolver)
•return TPS(Ω’)

54

Temporal Planning 54

Structure of Ω

Ω = (Φ,G,K,π): current processing stage of the
planning problem, where:
• Φ = (F,C): current temporal database, initially Φ0

• G: set of current open goals, initially taken from
Φg=(G,Cg)

• K = {C1,…,Ci}: set of pending conditions (initially
empty):
• sets of enabling conditions of actions and
• sets of consistency conditions of axioms,

• π: set of actions in the current plan, initially empty.

Structure of Ω
•Ω = (Φ,G,K,π): current processing stage of the planning
problem, where:

•Φ = (F,C): current temporal database, initially Φ0

•G: set of current open goals, initially taken from
Φg=(G,Cg)
•K = {C1,…,Ci}: set of pending conditions (initially
empty):

•sets of enabling conditions of actions and
•sets of consistency conditions of axioms,

•π: set of actions in the current plan, initially empty.

55

Temporal Planning 55

Flaw Type: Open Goal
Resolver: Existing tqe

goal: unsupported tqe e in G
assumption:
• tqe in F that can support e

resolver:
• K K ∪ {Θ(e/F)}
• G G – {e}

Flaw Type: Open Goal
Resolver: Existing tqe
•goal: unsupported tqe e in G
•assumption:

•tqe in F that can support e
•resolver:

•K K ∪ {Θ(e/F)}
•G G – {e}

56

Temporal Planning 56

Flaw Type: Open Goal
Resolver: New Action

goal: unsupported tqe e in G
assumption:
• action a (instance of operator o)

• has effects(a) that support e and and
• constr(a) are consistent with C

resolver:
• π π ∪ {a}
• F F ∪ effects(a)
• C C ∪ constr(a)
• G (G – {e}) ∪ precond(a)
• K K ∪ {Θ(precond(a)/Φ)}

Flaw Type: Open Goal
Resolver: New Action
•goal: unsupported tqe e in G
•assumption:

•action a (instance of operator o)
•has effects(a) that support e and and
•constr(a) are consistent with C

•resolver:
•π π ∪ {a}
•F F ∪ effects(a)
•C C ∪ constr(a)
•G (G – {e}) ∪ precond(a)
•K K ∪ {Θ(precond(a)/Φ)}

57

Temporal Planning 57

Flaw Type: Unsatisfied Axiom
Resolver: Add Conditions

axiom α: cond(α) → disj(α) and
• cond(α) is supported by F
• disj(α) is not supported by F

assumption:
• there are consistency conditions Θ(α/Φ)

such that disj(α) is supported by F
resolver:
• K K ∪ {Θ(α/Φ)}

Flaw Type: Unsatisfied Axiom
Resolver: Add Conditions
•axiom α: cond(α) → disj(α) and

•cond(α) is supported by F
•disj(α) is not supported by F

•assumption:
•there are consistency conditions Θ(α/Φ) such that
disj(α) is supported by F

•resolver:
•K K ∪ {Θ(α/Φ)}

58

Temporal Planning 58

Flaw Type: Threat
Resolver: Add Constraints

consistency condition Ci∈K that is not
entailed by Φ
assumption:
• c∈Ci is consistent with C

resolver:
• C C ∪ c
• K K - {Ci}

Flaw Type: Threat
Resolver: Add Constraints
•consistency condition Ci∈K that is not entailed by Φ
•assumption:

•c∈Ci is consistent with C
•resolver:

•C C ∪ c
•K K - {Ci}

59

Temporal Planning 59

Overview

Actions and Time Points
Interval Algebra and Quantitative Time
Planning with Temporal Operators

Overview
Actions and Time Points

•Interval Algebra and Quantitative Time
•Planning with Temporal Operators

•just now: integrating reasoning about time into a planning
algorithm

