Temporal Planning

Planning with Temporal and
Concurrent Actions

Temporal Planning
*Planning with Temporal and Concurrent Actions

Literature

e Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning — Theory
and Practice, chapter 13-14.
Elsevier/Morgan Kaufmann, 2004.

Temporal Planning 2

Literature

*Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning —
Theory and Practice, chapter 13-14. Elsevier/Morgan Kaufmann, 2004.

Why Explicit Time?

e assumption A6: implicit time
¢ actions and events have no duration
¢ state transitions are instantaneous
e in reality:
¢ actions and events do occur over a time span
® preconditions not only at beginning
¢ effects during or even after the action
® actions may need to maintain partial states
® events expected to occur in future time periods
® goals must be achieved within time bound

Temporal Planning 3

Why Explicit Time?
sassumption A6: implicit time
«actions and events have no duration
state transitions are instantaneous
*in reality:
«actions and events do occur over a time span
*preconditions not only at beginning

*move action: destination must be unoccupied only
when robot arrives

-effects during or even after the action

*move action: origin is no longer occupied after robot
has left

epaint action: painted effect long after action is
completed

-actions may need to maintain partial states
-events expected to occur in future time periods
egoals must be achieved within time bound

Overview

*» Actions and Time Points
e Interval Algebra and Quantitative Time
e Planning with Temporal Operators

Temporal Planning 4

Overview
wActions and Time Points

®»now: maintaining consistency in a network of related time
points

Interval Algebra and Quantitative Time
*Planning with Temporal Operators

Time

e mathematical structure:
¢ set with transitive, asymmetric ordering operation
® discrete, dense, or continuous
® bounded or unbounded
¢ totally ordered or branching
e temporal references:
¢ time points (represented by real numbers)
® time intervals (pair of real numbers)
e temporal relations:
¢ examples: before, during

Temporal Planning 5

Time
mathematical structure:
set with transitive, asymmetric ordering operation
discrete, dense, or continuous
*bounded or unbounded
totally ordered or branching
temporal references:
time points (represented by real numbers)
time intervals (pair of real numbers)
temporal relations:
~examples: before, during

Causal vs. Temporal Analysis of
Actions

e example: load(crane2, cont5, robot1, interval6)

e causal analysis (what propositions hold?):
® what propositions will change (effects)
® what propositions are required (preconditions)

e temporal analysis (when propositions hold?):
® when other, related assertions can/cannot be true
® reason over:

¢ time periods during which propositions must hold
¢ time points at which values of state variables change

Temporal Planning 6

Causal vs. Temporal Analysis of Actions
-example: load(crane2, cont5, robot1, interval6)
.causal analysis (what propositions hold?):
what propositions will change (effects)
what propositions are required (preconditions)
-temporal analysis (when propositions hold?):
when other, related assertions can/cannot be true
‘reason over:
time periods during which propositions must hold

time points at which values of state variables
change

Temporal Databases

e maintain temporal references for every domain
proposition
® when does it hold
® when does it change value
o functionality:
® assert new temporal relations
® querying whether temporal relation holds
® check for consistency
e planner attempts to assert relations among
temporal references

Temporal Planning 7

Temporal Databases
*maintain temporal references for every domain proposition
when does it hold
when does it change value
functionality:
-assert new temporal relations
‘querying whether temporal relation holds
check for consistency

*planner attempts to assert relations among temporal
references

splanner uses temporal database like ordering constraints

Temporal References Example:
Container Loading

e load container c onto robot r at location |

e t,: instant at which robot r enters location |
e t,: instant at which robot r stops at location |
® i;=[t,,t,]: interval corresponding to r entering |
ety instant at which the crane starts picking up ¢
e {,: instant at which crane finishes putting con r
® i,=[t5,t,]: interval corresponding to picking up and loading c
e 5 instant at which c begins to be loaded onto r
e g instant at which c is no longer loaded onto r
® iy=[ts,t5]: interval corresponding to ¢ being loaded onto r

Temporal Planning

8

Temporal References Example: Container Loading

sJoad container ¢ onto robot r at location |
-t,: instant at which robot r enters location |

*t,: instant at which robot r stops at location |
i,=[t,,t,]: interval corresponding to r entering |
-f;: instant at which the crane starts picking up c
*t,: instant at which crane finishes puttingconr
*i,=[t;,t,]: interval corresponding to picking up and

loading c

*t;: instant at which c begins to be loaded onto r

*t;: instant at which c is no longer loaded onto r

i;=[ts,t;]: interval corresponding to c being loaded

ontor

sinstants ;... f{; and intervals /,... i; are temporal references that

specify when domain propositions are true

*may use just the intervals in this example
sintervals i; and i, refer to activities taking place, i; refers to a

proposition holding

Temporal Relations Example:
Container Loading

e assumption: crane is allowed to pick up container as soon
as robot has entered location

e possible temporal sequences:
¢t <ty<t,< t, =t <ts(see figure) or
¢ ti=tort,= tyort,<ty

t, entering t, s loaded ts

—_—
t; picking up Ly
and loading

Temporal Planning 9

Temporal Relations Example: Container Loading

«assumption: crane is allowed to pick up container as soon
as robot has entered location

*possible temporal sequences:
‘', <<t < t, =t <{(see figure) or
‘'t,=tort,= t;ort, <

*[figure]

*no absolute information about durations or time positions, only
binary constraints between instants or intervals

Example: Temporal Relations as
Constraint Networks

before

Temporal Planning 10

Example: Temporal Relations as Constraint Networks
top left: instant constraint network

variables: instants / domains: real numbers

relations: <,=, ... (relative positions of time points)
*bottom right: interval constraint network

variables: intervals / domains: RxR

relations: before, starts before, ... (relative positions of
intervals)

10

Point Algebra (PA): Relations
and Constraints

e possible primitive relations P between instants
tyand t,: P = {<,=>}
® t, before t,: [t;<t)]
® t, equal to t,: [t,=t)]
® t, after t,: [t;>t,]
e possible qualitative constraints R between
instants:
¢ sets of the above relations (interpret as disjunction)
* R=2P={g,{<}, =}, L {<7) (<2 =20 P

Temporal Planning 1"

Point Algebra (PA): Relations and Constraints

‘possible primitive relations P between instants t, and t,: P =
{<’=’>}

*t, before t,: [t,<t,]

t, equal to t,: [t,=t,]

ot, after t,: [t,>L,]
*possible qualitative constraints R between instants:

sets of the above relations (interpret as disjunction)

‘R=2F={0, {<}, (=}, >}, {<,=}, {<,>}, {=>}, P}
empty set: no alternatives cannot be satisfied
*P: all possible relations; always satisfied

11

Container Loading Example: PA
Constraints

Temporal Planning

o [t {<}t)]
o [t {<,=} t;]
o [t {<} ts]
o [t;{<} 1]
o [t, {=} t:]
o [ts {=} 1]
o [t5 {<} te]

Container Loading Example: PA Constraints

*[figure]
[ty {<} ;]
[ty {<,=} ;]
°[t; {<} ;]
°[t; {<} ;]
[ty {=} ;]
°[t; (=} t4]
°[t; {<} te]

12

PA: Combining Constraints

e usual set operations:
® n, U etc.

<

e composition (noted ¢):
®letr,geR

<

<

P

®if[t, rt,] and [t, g t;]
® then [t, req t;]

<

>

® req as defined in

<

P

>

composition table

Temporal Planning

PA composition table

PA: Combining Constraints
-usual set operations:

‘N, U etc.
scomposition (noted °):

scomposition operator handles transitivity

sletr,qeR
“if [t, r t,] and [t, q t;]
then [t, req t;]

‘req as defined in composition table

[composition table]

13

PA: Properties of Combined
Constraints

o distributive e (R,u,*)is an algebra:
® (ruqg)es=(res)u(ges) ® Ris closed under u
*se(rug)=(s+nNu(s+q) and «

® uis an associative and
commutative operation

e symmetrical constraint r’ of * identity element for U

r. is @
¢ [ty ra]iff[t, rt] ® is an associative
¢ obtained by replacing in r: operation
< with > and vice versa ¢ identity element for ¢ is
®(reqr=gq-r =
Temporal Planning 14

PA: Properties of Combined Constraints

«distributive
“(ruq)es=(res)u(q-s)
*se(rug)=(s+ru(s+q)

symmetrical constraint r’ of r:
'[t, rt,]iff[t, r't]
-obtained by replacing in r: < with > and vice versa
(reqy=q’-r

(R,U,) is an algebra:
‘R is closed under u and

*U is an associative and commutative operation
sidentity element foruis g

*is an associative operation

*identity element for ¢ is {=}

14

PA: Constraint Propagation

e given constraints:
[t rt)
*ltqt)
[ty st)]

e implied constraint:
®[t,rngest,)

e inconsistency:
¢ifrnges=9

Temporal Planning 15

PA: Constraint Propagation
.given constraints:

[ty rt)]

‘[t q t;]

‘[t; s t,]
simplied constraint:

‘[t rnges 8]

simportant operation: intersection, not union (algebra for
union)

sinconsistency:
‘ifrnges=J
*necessary condition!

15

Container Loading Example:
Constraint Propagation

o path: f,-ts-t;: [t,=t5] [t5<ts] implies [t,<t]
o path: t,-t,-t;: [t,>1,] * [t,<ts] implies [t,Pt;]
o path: ty-ts-t,: [t,<ts] * [ts=t,] implies [t,<t,] } [t,<t,]
o path: t,-t,-t,: [t,Pt] * [t,<t,] implies [t,Pt,]] "2
16

Temporal Planning

Container Loading Example: Constraint Propagation
‘path: t,-t-t;: [{,=t:] * [t;<ts] implies [t,<tg]

‘path: t,-t,-t;: [,>t,] [t,<t;] implies [t,Pt;]

‘path: t,-t;-t,: [{,<t;] * [t5=1,] implies [{,<{,]

‘path: t,-t;-1,: [,Pt;] * [t;<t,] implies [t,Pt,]

last two give: [(2<t4]

16

PA Constraint Networks

e A binary PA constraint network is a directed
graph (X,C), where:
® X={t,....t,} is a set of instant variables (nodes), and
¢ C & XxX (the edges), ¢; is labelled by a constraint
reR iff [t; r; t] holds.
e Atuple (vy,...,v,) of real numbers is a solution

for (X.C) iff t=v; satisfy all the constraints in C.

e (X,C) is consistent iff there exists at least one
solution.

Temporal Planning 17

PA Constraint Networks

A binary PA constraint network is a directed graph (X,C),
where:

X={t,,....t,} is a set of instant variables (nodes), and

C € XxX (the edges), ¢; is labelled by a constraint r,cR
iff [t; r; £] holds.

if ¢; € C labelled with r; € R then ¢; must be labelled
with the symmetric constraint r;’

«if there is no Cj € C then we can add Cj labelled with

ry=P

*A tuple (v,,...,v,) of real numbers is a solution for (X,C) iff t=v;
satisfy all the constraints in C.

*(X,C) is consistent iff there exists at least one solution.

17

Primitives in Consistent
Networks

e Proposition: A PA network (X,C) is
consistent iff

® there is a set of primitives p; € r; for every
¢;€C such that

® for every k: pj € (Dj ® Pyj)

e note: not interested in solution, just
consistency (qualitative solution)

Temporal Planning 18

Primitives in Consistent Networks
‘Proposition: A PA network (X,C) is consistent iff
‘there is a set of primitives p; € r; for every ¢;€C such
that
“for every k: p;; € (P * Py;)
*note: in a solution every pair {;, {; will be related by a single
primitive relation p; € r;

‘note: not interested in solution, just consistency (qualitative
solution)

18

Redundant Networks

e A primitive p;; € r; is redundant if there is
no solution in which [f; p; t] holds.

e idea: filter out redundant primitives until

® either: no more redundant primitives can be
found

¢ or: we find a constraint that is reduced to &
(inconsistency)

Temporal Planning 19

Redundant Networks

*A primitive p; € r; is redundant if there is no solution in
which [¢; p; t] holds.
sidea: filter out redundant primitives until

either: no more redundant primitives can be found

-or: we find a constraint that is reduced to &
(inconsistency)

suse path consistency algorithm for CSP problems

19

Path Consistency: Pseudo Code

pathConsistency(C)
while —C.isStable() do
for each k : 1<k<n do
for each pair ij: 1<i<j<n,i#k, j#k do
c;j € ¢;ncy e ¢yl
if ;=@ then return inconsistent

Temporal Planning

20

Path Consistency: Pseudo Code
*pathConsistency(C)
given time point network
while ~C.isStable() do
for each k : 1sksn do
*“middle node”
for each pair i,j: 1Si<j<n,i¥k, j#k do
*surrounding nodes
c;; € c;in[cy * ¢yl
supdate direct link using transitivity property
*if ¢;=J then return inconsistent

suse as constraint manager during planning: incremental version

of the algorithm

20

Path Consistency: Properties

e algorithm pathConsistency(C) is:
® incomplete for general CSPs
® complete for PA networks

e network (X,C) is minimal if it has no
redundant primitives in a constraint

e algorithm pathConsistency(C) does not
guarantee a minimal network

Temporal Planning 21

Path Consistency: Properties

«algorithm pathConsistency(C) is:
sincomplete for general CSPs
complete for PA networks

‘network (X,C) is minimal if it has no redundant primitives in
a constraint

«algorithm pathConsistency(C) does not guarantee a minimal
network

21

Overview

e Actions and Time Points
* Interval Algebra and Quantitative Time
e Planning with Temporal Operators

Temporal Planning 22

Overview
wActions and Time Points

®just done: maintaining consistency in a network of related
time points

Interval Algebra and Quantitative Time
*now: reasoning about more complex structures
*Planning with Temporal Operators

22

Extended Example: Inspect and
Seal

e every container must be inspected and sealed:

e inspection:
® carried out by the crane
® must be performed before or after loading

e sealing:
® carried out by robot
® before or after unloading, not while moving

e corresponding intervals:

I [} I

o i .
’/oad’ Imove’ unload® ‘inspect’ 'seal

Temporal Planning 23

Extended Example: Inspect and Seal
~every container must be inspected and sealed:
sinspection:

carried out by the crane

‘must be performed before or after loading
sealing:

carried out by robot

*before or after unloading, not while moving
scorresponding intervals:

I inspect’ I

°l load’ 'move! I unload’ seal

23

Inspect and Seal Example:
Interval Constraint Network

Temporal Planning

24

Inspect and Seal Example: Interval Constraint Network

*“before or after” = must not overlap

24

Inspect and Seal Example:
Qualitative Instant Constraints

e Letibe an interval.

® j.b and i.e denote two end time points

® [i.b < i.e] constraint: beginning before end
° [i,oad‘ beforg imovel: ‘ .

® [iioag-b < lipag-€] @nd [ipoue-0 < ipover e] and

° [iload'e < imove'b]
o [0 Defore-or-after i I:

° [/mavs'e < Iseal'b] or

® lsear® < imove-b]

\disjunction cannot be translated into binary PA constraint\

Temporal Planning 25

Inspect and Seal Example: Qualitative Instant Constraints
*Let i be an interval.
*i.b and i.e denote two end time points
*[i.b = i.e] constraint: beginning before end
*[i\,.q LefoOrei . I
lipaq:f S ijpag-€] @nd [i 0.0 S i -€] @nd

['Ioad e< 'move b]
before-or-after i]:

.b] or

[seal'e <i Imove- b]
«disjunction cannot be translated into binary PA constraint

translation of interval constraint network into (binary) instant
constraint network not possible in general

°li
move

.e<ij

[]
[move seal”

25

Interval Algebra (I1A): Relations

o i, before iy: [i; b iy o |, starts iy: [iy S i)
—h . —_—

‘—‘2 0+0

o iy meets iy: [i; miy) o |, during iy: [i; d i)

Iy I

e i, overlaps i,: [i; 0 i) o |, finishes i,: [i; fi)]
—h ; oll—1o
—_— —_—,

Temporal Planning

26

Interval Algebra (IA): Relations

sinterval algebra: similar to point algebra, but related objects are

intervals

26

IA: Relations and Constraints

e possible primitive relations P between intervals i,
and iy
* just described: [i; b iy], [i; m i), [iy 0 iy), [iy 8), [iy d iy), [iy fip)
* symmetrical: [i, b ip], [iy m’ i), [iy 0 ipl, [iy 8 i), [iy d”ip], iy £ i)
® iy equals iy: [iy e iy] i
0,.—0
0—20
e possible qualitative constraints R between instants:
¢ sets of the above relations (interpret as disjunction)
* R=2P={@, {b}, {m}, {0}...., {b,m}, {b,0}...., {b,m,0}...., P}
® examples: while = {s,d,f}; disjoint = {b,b?}

Temporal Planning 27

IA: Relations and Constraints

‘possible primitive relations P between intervals i; and i,:
“just described: [i, b i,], [i, m i,], [i, 0 i,], [i, s i,], [y d iy], [iy f
i)
symmetrical: [i; b’], [iy m’ L], [iy 0 i), [iy s’ ip], [iy d’ iy, [iy F°
i

i, equals i,: [i, e i,]

*13 possible ways of relating the two end points

*possible qualitative constraints R between instants:
sets of the above relations (interpret as disjunction)
‘R = 2P = {1, {b}, {m}, {0},..., {b,m}, {b,0},...,
{b,m,o0},..., P}

constraints: 213 possible constraints

~empty set: no alternatives cannot be satisfied
*P: all possible relations; always satisfied

examples: while = {s,d,f}; disjoint = {b,b?"}

27

Operations on Relations

e set operations: n, U etc.
e composition: ©

. b m o s d f b ad f
b b b b b uwv | uuv P b b
m b b b m v v uuv’'| b b
o b b u o v v uuv uuw’ | u
S b b u s d d b uuw’' | u
d b b uuv d d d b’ P uuv

Temporal Planning

28

Operations on Relations

*set operations: n, U etc.
scomposition: ¢

*[table]

u={b,m,o}; v={o,s,d}; w={d,f}
scomposition is transitive and distributive

28

Properties of Composition

e transitive
® if[iy riy] and [i, q is] then [i; (r e q) is]
e distributive
®(rug)es=(res)u(ge=s)
® se(rug)=(senu(s+q
e not commutative
® [iy (re q) ip] does notimply [i; (q * r) i;]
® example: d *b ={b}; b * d ={b,m,o0,s,d}

[iy (d * b) i3] [iy (b *d)ig]
Properties of Composition
transitive
*if [i; r iy] and [i, q i5] then [i, (r q) i3]
distributive

(ruq)es=(res)u(q-s)
*se(ruq)=(s+ru(s-q)
*not commutative
*[i; (r * q) i,] does not imply [i, (q ¢ r) i,]
example: d *b ={b}; b+ d ={b,m,o,s,d}
*[figure]
«for [i; (b - d) i5]: i3 could start before, at the same time as, during,
at the end of, or after i,

Inspect and Seal Example:
Interval Constraint Propagation

i ’inspect_’move_iunload: [iinspect {b} * {b} iunload] = [iinspect {b} iun/oad]
hd ’inspect"load"seal: [’inspect {b’b} * {b} ’seal] = [’inspect P Iseal]

Temporal Planning 30

Inspect and Seal Example: Interval Constraint Propagation
*[figure]

'iinspect'imove'iunload: [iinspect {b} * {b} i,p0ad] = [iinspect {b} i,ni0ad]
*linspect-ioad Isear Uinspect {00} * {B} Iseall = linspect P Iseall

IA Constraint Networks

e A binary IA constraint network is a directed
graph (X,C), where:
® X ={i,....I,} is a set of interval variables i=(i..b, i.e),
where i.bsi.e, and
¢ C< XxX (the edges), c; is labelled by a constraint
rieR iff [i; r; i] holds.
o A tuple (V4,..., of pairs of real numbers
(v;-b, v,.e) is a solution for (X,C) iff v.bsv,.e
I=v; satlsfy all the constraints in C.

) (X,C) is consistent iff there exists at least one
solution.

Temporal Planning 31

IA Constraint Networks
A binary IA constraint network is a directed graph (X,C), where:

X ={i,,...,i.} is a set of interval variables i=(i.b, i;.e), where
ij.bsij.e, and
domain of each interval variable is a half plane due to
i.bsi.e
*C S XxX (the edges), ¢; is labelled by a constraint r,eR iff [i; r;
i] holds.

*A tuple (v,,...,v,) of pairs of real numbers (v,.b, v.e) is a solution for
(X.C) iff v.b=<v.e i=v, satisfy all the constraints in C.

*(X,C) is consistent iff there exists at least one solution.

31

Primitives in Consistent
Networks

. _I;’froposition: A lA network (X,C) is consistent
|
° me{e is a set of primitives p;; € r; for every ¢;eC such
a
® for every k: p;€ (P ij)
e idea: filter out redundant primitives using path
consistency algorithm until
® either: no more redundant primitives can be found
¢ or: we find a constraint that is reduced to &
(inconsistency)
e note: path consistency not complete for IA
networks

Temporal Planning 32

Primitives in Consistent Networks
‘Proposition: A IA network (X,C) is consistent iff
‘there is a set of primitives p; € r; for every ¢;C such
that
“for every k: pj; € (P ® ij)

idea: filter out redundant primitives using path consistency
algorithm until

-either: no more redundant primitives can be found

.or: we find a constraint that is reduced to &
(inconsistency)

‘note: path consistency not complete for IA networks

sconsistency checking for IP networks is an NP-complete
problem

32

Example: Quantitative Temporal
Relations

e ship: Uranus
® arrives within 1 or 2 days
¢ will leave either with
® light cargo (stay docked 3 to 4 days) or
¢ full load (stay docked at least six days)
e ship: Rigel
® to be serviced on
® express dock (stay docked 2 to 3 days)
® normal dock (stay docked 4 to 5 days)
® must depart 6 to 7 days from now
e Uranus must depart 1 to 2 days after Rigel arrives

Temporal Planning 33

Example: Quantitative Temporal Relations
*ship: Uranus
«arrives within 1 or 2 days
will leave either with
light cargo (stay docked 3 to 4 days) or
full load (stay docked at least six days)
*ship: Rigel
to be serviced on
sexpress dock (stay docked 2 to 3 days)
*normal dock (stay docked 4 to 5 days)
*‘must depart 6 to 7 days from now
*Uranus must depart 1 to 2 days after Rigel arrives

33

Example: Quantitative Temporal
Constraint Network

[3,4] or [6,]
D
[1 ’2] Uranu:

[2,3] or [4,5]

6.7]

e 5instants related by quantitative constraints
® €.9. (2 = DgigerAriges < 3) V (4 = DpigerAriger < 5)
e possible questions:
® When should the Rigel arrive?
® Can it be serviced on a normal dock?
® Can the Uranus take a full load?

Temporal Planning 34

Example: Quantitative Temporal Constraint Network
*5 instants related by quantitative constraints

*€.9. (2 = Dgjge/Ariger < 3) V (4 = DgigerARriger <)
*possible questions:

‘When should the Rigel arrive?

*Can it be serviced on a normal dock?

«Can the Uranus take a full load?

34

Overview

e Actions and Time Points
e Interval Algebra and Quantitative Time
» Planning with Temporal Operators

Temporal Planning 35

Overview
»Actions and Time Points
Interval Algebra and Quantitative Time
just done: reasoning about more complex structures
‘Planning with Temporal Operators

*now: integrating reasoning about time into a planning
algorithm

35

Temporally Qualified
Expressions (tge)

e fqge: expression of the form:
p(0y,...,0,) @Ity t,[
where:
® pis a flexible relation in the planning domain,
® 04y o, are object constants or variables, and
® t,,t, are temporal variables such that t,<t,.
o fqe p(0y4,...,0,)@It,.t[asserts that:
¢ for every time point t: t,<t<t_, implies that p(o,,...,0,)
holds
® [t,.t[is semi-open to avoid inconsistencies

Temporal Planning 36

Temporally Qualified Expressions (tqe)

tge: expression of the form:

p(°1 ¥ !ok)@[tb’ te[
where:

p is a flexible relation in the planning domain,
*0,,...,0, are object constants or variables, and

*object constants: objects in the planning domain:
robots, containers, etc.

*object variables: (possibly typed) variables with object
constants as possible values

-t,,t, are temporal variables such that t,<t..
tqge p(0,,...,0,)@[t,,t.[asserts that:

for every time point t: {,<t<t, implies that p(o,,...,0,)
holds

[t,,t.[is semi-open to avoid inconsistencies
*semi-open interval:
~asserted relation holds at t,, but not at {,

*suppose two tges with inconsistent relations meet at
time point t; inconsistency at ¢!

36

Temporal Database

e A temporal database is a pair ®=(7,¢#)
where:
® Zis a finite set of fqes,
® ¢is afinite set of temporal and object
constraints, and
® @ has to be consistent, i.e. there exist

possible values for the variables that meet all
the constraints.

Temporal Planning 37

Temporal Database

A temporal database is a pair ®=(7,¢) where:
*® - phi
7 is a finite set of tqges,

¢ is a finite set of temporal and object constraints, and

«temporal constraints: see time point algebra

*object constraints: rigid relations

¢ has to be consistent, i.e. there exist possible values
for the variables that meet all the constraints.

37

Temporal Database: Example

e robot r1 is at location loc1
e robot r2 moves from location loc2 to location loc3

®=({
at(r1,loc1) at(r1,loc1)@[ty.t [
b b at(r2,loc2)@lt,.t,],
at120002) | 1o ath) at(r2,path)@[t,.t;[,

¢ eiizioca) a(r2,1003) @It
3 4

<,

free(loda) free(loc3)@]t,. 45,
t =T free(loc2)@][t. 5[},
A free(loc2) [{ adjacent(loc2,loc3),

ty<tg<tz<t3})

Temporal Planning 38

Temporal Database: Example

‘robot r1 is at location loc1

‘robot r2 moves from location loc2 to location loc3
*[figure]

® = (

«{at(r1,loc1)@]I{t,,t,[, at(r2,loc2)@It,,t,[, at(r2,path)@[t,,t;],
at(r2,loc3)@|t;,t,[, free(loc3)@[t,,t;[, free(loc2)@[t,,t;[},

-{adjacent(loc2,loc3), t,<t;<t.<t,})

38

Inference over tges

e A set 7 of fges supports a (single) tqge
e=p(v,,.... V)@t L] iff
¢ there is a tqe p(0y,...,0,)@I[t.t,[in Zand
® there is a substitution o such that:
® o(p(vs,...,Vi)) = p(Oy,...,0p).

e An enabling condition for e in Z is the
conjunction of the following constraints:
¢ t<t, t,<t,and
¢ the variable binding constraints in o.

Temporal Planning 39

Inference over tqes
A set Z of tges supports a (single) tge e=p(vy,...,v,)@[t,, L[
iff:

there is a tqe p(0,,...,0,)@[t;,,[in Z and
there is a substitution o such that:
*0(p(Vq;---5Vg)) = P(O4;---,04).

*An enabling condition for e in Z is the conjunction of the
following constraints:

t,<t,, t.<t, and
the variable binding constraints in o.

*note: if p(oy,...,0,) holds during [t,,t[it must also hold over any
sub-interval

39

Inference over tges: Example

o 7 = {at(r1,loc1)@][t,.t[, at(r2,loc2)@If,.t,l,
at(r2,path)@lt,,t;[, at(r2,loc3)@|t;,t[.
free(loc3)@][t,.ts[, free(loc2)@[fs.t/[}

® 7 supports free(@[t,t]
¢ with enabling conditions:
® f,<t, t'<ts, and I=loc3, or
® tg<t, t'<t;, and /=loc2.

Temporal Planning 40

Inference over tqes: Example

'7 = {at(r1!IOC1)@[t0!t1 [! at(r2,|oc2)@[t0,t2[, at(r2,path)@[t2,t3[,
at(r2,loc3)@It,,t,[, free(loc3)@[t,,t;[, free(loc2)@[t;,t;[}

«7Z supports free(/)@[t,t

‘with enabling conditions:
t,<t, t’st;, and /=loc3, or
t;<t, t'st;, and /=loc2.

*note: enabling conditions are not necessarily unique

40

Inference over Sets of tges

e A set 7 of tges supports a set € of tges iff:

® there is a substitution o such that:
® 7 supports every tqe ec£ using substitution o.

e The set of enabling conditions for a single tge
e in 7 is denoted O(e/7).

e The set of enabling conditions for a set of tqes
gin Zis denoted O(£/7).

Temporal Planning 41

Inference over Sets of fges
A set 7 of tges supports a set £ of tges iff:

there is a substitution o such that:

«7Z supports every tge e<£ using substitution o.

*The set of enabling conditions for a single tqe e in 7 is
denoted O(e/7).

*The set of enabling conditions for a set of tges £in Z is
denoted O(E/7).

*©@ = theta

41

Inference over Temporal
Databases
e A temporal database ®=(7,¢#) supports a set £ of fges iff:

® Zsupports € and
¢ there is an enabling condition ceO(£/7) that is consistent

with @.
e A temporal database ®=(2.¢) supports another temporal
database ®’'=(7".#) iff:

® Zsupports 72" and
¢ there is an enabling condition ce©(7/7) such that
® @#'uc is consistent with ¢.
e A temporal database ®=(Zz.¢) entails another temporal
database ®'=(Z".#)) iff:
® Zsupports 7" and
® there is an enabling condition ce©(7/7) such that
® (¢entails ¢'uc.

Temporal Planning 42

Inference over Temporal Databases
*A temporal database ®=(7,#) supports a set £ of tges iff:

«7Z supports £ and

there is an enabling condition ce©(£/7?) that is consistent
with ¢.

*A temporal database ®=(7.#) supports another temporal database
o’=(7.2) iff:

«Z supports 7' and

there is an enabling condition ce©(7'/7) such that

*2’Uc is consistent with ¢.
A temporal database ®=(Z.#) entails another temporal database
O’=(7.¢2) iff:
«7Z supports 7' and
there is an enabling condition ce©(7/7) such that
¢ entails ¢'uc.

42

Temporal Planning Operators:
Example

e move(r,/,@[t,.t[
® preconditions: at(r,)@[t,.t,[, free(@I[t,.t,[

¢ effects: at(r,path)@][t,.t.[, at(r.")@It..t[, free(/)@It,,t5[
® constraints: t,<t,<t,, adjacent(/,/’)

move(r,,I)

at(r,/)
—_—
4 t at(r,path)

t, free(l)

free(/)
i, t;

Temporal Planning 43

Temporal Planning Operators: Example
‘move(r,l,I’)@[t,,t.[
‘preconditions: at(r,/)@I[t,,t,[, free(I)@[t,,t[
-effects: at(r,path)@[t,.t.[, at(r,/")@[t..t;[, free(/")@[t,,ts[
~constraints: {,<t,<t,, adjacent(/,/’)

43

Temporal Planning Operators

e A temporal planning operator o is a tuple
(name(0), precond(o), effects(o), constr(o)), where:
® name(0) is an expression of the form a(xy,...,x,.t,,t,) such
that:
® ais a unique operator symbol,
® Xy.....X, are the object variables appearing in o, and

® t,t, are temporal variables in o,
¢ precond(o) and effects(o) are sets of tqes, and
® constr(o) is a conjunction of the following constraints:
¢ temporal constraints on t,,t, and possibly further time points,
® rigid relations between objects, and
® binding constraints of the form x=y, x#y, or xeD.

Temporal Planning 44

Temporal Planning Operators

*A temporal planning operator o is a tuple
(name(0), precond(o), effects(o), constr(o)), where:

*name(o) is an expression of the form a(x,,...,x,,t,,t.) such
that:

*a is a unique operator symbol,
*X,,...,X; are the object variables appearing in o, and
*t,,t, are temporal variables in o,
*precond(o) and effects(o) are sets of tqes, and
sconstr(o) is a conjunction of the following constraints:

‘temporal constraints on t,,f, and possibly further time
points,

-rigid relations between objects, and
*binding constraints of the form x=y, x#y, or xeD.

*note: operators are usually written as in the example in the
previous slide

*no negative effects: handled by domain axioms or state-variable
representation

44

Applicability of Temporal
Planning Operators

e A temporal planning operator o is applicable to
a temporal database ®=(7,¢) iff:
® precond(o) is supported by 7 and
® there is an enabling condition ¢ in ©(precond(0)/7)
such that:
® ¢ U constr(o) U c is consistent.
e The result of applying an applicable action a to
@ is a set of possible temporal databases
® yo(®,a) = { (7 effects(a), ¢ U constr(a) U c) |
¢ € O(precond(a)/7?) }

Temporal Planning 45

Applicability of Temporal Planning Operators

A temporal planning operator o is applicable to a temporal
database ®=(7,¢) iff:

*precond(o) is supported by 7 and

there is an enabling condition ¢ in O(precond(0)/?) such
that:

¢ U constr(o) U c is consistent.

*The result of applying an applicable action a to ® is a set of
possible temporal databases

action: partially instantiated operator

*vo(®,a) = { (7 U effects(a), ¢ U constr(a) u c) |
c € O(precond(a)/?) }

provisional definition; see Automated Planning book for complete
definition

result is set: not due to non-determinism but different ways in
which a can be inserted

*note: applying an action a does not remove anything from the
temporal database

45

Applicable Operator: Example

e operator:

move(rl/)@[tb e[
at(r1,loc1) ¢ at(r1,loc1)@]t

& 7 supports at(r, B@U NA|
¢ free(loc2)@|ts,t,[supports
R azpaty | o free(N@[toL]

0 > : ® enabling condition:
AT & . {r=rob1, Isloct, Floct,
oSty LSty tSt,, t<t)

° con3|stent
e move(ri,loc1,loc2) is
applicable

to < 5
tg free(loc2) t;

Temporal Planning 46

Applicable Operator: Example

*[figure]

~operator: move(r,l,')@[t,,t.[
«time points with prime are from operator definition
-at(r1,loc1)@[f,,t,[supports at(r,)@[t’;,t,[
free(loc2)@[t,,t;[supports free(l")@[t’,,t.[

‘enabling condition: {r=rob1, I=loc1, I=loc1, {,<t’,, t,<t,,
tesSt'y, tStr}

sconsistent
‘move(ri,loc1,loc2) is applicable
other possibility: move(r2,loc3,loc2)

Domain Axioms: Example

e no object can be in two places at the
same time:
{at(r.@lty. L[, at(r.")@I[t "t e[} —
(FFr) Vv (IFN) V (tsty) V (EeSty)
e every location can be occupied by one
robot only:
{at(r.N@lt,.t4[, free(@lt,. 15[} —
() v (t'ty) v (Fsty)

Temporal Planning 47

Domain Axioms: Example
*no object can be in two places at the same time:

{at(ral)@[tbste[! at(r’al,)@[t’bst’e[} -
() v (I=P) v (t.St,) v (P .St,)

every location can be occupied by one robot only:

{at(r,)@[t,,t’4[, free(P)@IL,, [} —
() V (£,St) V (£,5t,)

47

Domain Axioms

e A domain axiom a is an expression of the
form: cond(a) — disj(a) where:
® cond(a) is a set of tqges and
® disj(a) is a disjunction of temporal and object
constraints.
e A temporal database ®=(7.¢) is consistent
with a iff:
® cond(a) is supported by 7 and
¢ for every enabling condition ¢, € ©(cond(a)/7)

¢ there is at least one disjuct ¢, € disj(a) such that
® @Uc, Uc,is consistent.

Temporal Planning 48

Domain Axioms
A domain axiom a is an expression of the form: cond(a) —
disj(a) where:

-cond(a) is a set of tges and

disj(a) is a disjunction of temporal and object
constraints.

A temporal database ®=(7.¢) is consistent with a iff:
.cond(a) is supported by 7 and
for every enabling condition ¢, € ©(cond(a)/7)
there is at least one disjuct c, € disj(a) such that
@V ¢, U C, is consistent.

Temporal Planning Domains

e A temporal planning domain is a triple
D = (S¢,0,X) where:

® S, is the set of all temporal databases that
can be defined with the constraints and the
constant, variable, and relation symbols in our
representation,

® ¢ is the set of temporal planning operators,
and

® Xis a set of domain axioms.

Temporal Planning 49

Temporal Planning Domains
*A temporal planning domain is a triple
D = (S¢,0,X) where:

Sy is the set of all temporal databases that can be
defined with the constraints and the constant, variable,
and relation symbols in our representation,

0 is the set of temporal planning operators, and

X is a set of domain axioms.

49

Temporal Planning Problems

e A temporal planning problem in 2 is a triple
2= (ZD,(DO,(DQ) where:
® D =(S4,0,X) is a temporal planning domain,
® ®y=(7.¢) is a database in S,, that satisfies the axioms
in X.
® represents the initial scenario including:
*® initial state of the world
® predicted evolution independent of planned actions
® ®,=(4,¢) is a database in S, where:
® gis a set of tges representing the goals of the problem
® ¢, are object and temporal constraints on variables in 4.

Temporal Planning

50

Temporal Planning Problems

*A temporal planning problem in 2 is a triple

P =(D,9,,®,) where:
D = (Sg,0,X) is a temporal planning domain,

‘®,=(7,¢) is a database in S, that satisfies the axioms in

X.

*initial state of the world

‘®,=(4,¢) is a database in S, where:

‘represents the initial scenario including:

predicted evolution independent of planned
actions

4 is a set of tqges representing the goals of the
problem

*¢, are object and temporal constraints on variables

50

Statement of a Planning
Problem

e A statement of a planning problem is a
tuple P = (0,X,CDO,CDg) where:

® is a set of temporal planning operators,

® is a set of domain axioms,

® ©,=(7,,&,) is a database in S, representing
the initial scenario, and

° <Dg=(¢,éy) is a database in S, representing the
goals of the problem.

Temporal Planning 51

Statement of a Planning Problem
A statement of a planning problem is a tuple P = (0,X,<Do,¢g)
where:

* is a set of temporal planning operators,

* is a set of domain axioms,

“P,=(75,6,) is a database in Sy, representing the initial
scenario, and

-¢g=(¢,@?) is a database in Sy, representing the goals of
the problem.

Concurrent Actions

e problem: swap locations of two robots
¢ only one robot at each location at any time
¢ path may hold multiple robots

e move(r1,loc1,loc2): not applicable
e move(r2,loc2,loc1): not applicable
e apply both at the same time: applicable

e temporal planning can handle such concurrent
actions

Temporal Planning 52

Concurrent Actions
sproblem: swap locations of two robots
-only one robot at each location at any time
*path may hold multiple robots
‘move(ri,loc1,loc2): not applicable
‘move(r2,loc2,loc1): not applicable
«apply both at the same time: applicable
temporal planning can handle such concurrent actions
*higher expressiveness!

52

Temporal Planning Procedure

TPS(Q)
flaws < Q.getFlaws()
if flaws=2 then return Q
flaw € flaws.chooseOne()
resolvers < flaw.getResolvers(Q)
if resolvers=< then return failure
resolver < resolvers.selectOne()
Q' €& Q.refine(resolver)
return TPS(Q’)

Temporal Planning

53

Temporal Planning Procedure
*TPS(Q)

flaws < Q.getFlaws()

if flaws=2 then return Q

flaw < flaws.chooseOne()
‘resolvers € flaw.getResolvers(Q)
*if resolvers=J then return failure
sresolver € resolvers.selectOne()
*Q’ & Q.refine(resolver)

‘return TPS(Q’)

53

Structure of Q

Structure of Q

e O =(d,4,%,m): current processing stage of the
planning problem, where:
® ® = (7,¢): current temporal database, initially ®,
® g set of current open goals, initially taken from
d=(4.0)
* x={C,,...,C}: set of pending conditions (initially
empty):
¢ sets of enabling conditions of actions and
¢ sets of consistency conditions of axioms,
® 1 set of actions in the current plan, initially empty.

Temporal Planning

54

‘Q = (P,4,%X,m): current processing stage of the planning

problem, where:

® = (7,¢): current temporal database, initially ®,,

. set of current open goals, initially taken from

®,~(4.0)

X ={C,,...,C;}: set of pending conditions (initially

empty):

sets of enabling conditions of actions and

sets of consistency conditions of axioms,

1r: set of actions in the current plan, initially empty.

54

Flaw Type: Open Goal
Resolver: Existing tge

e goal: unsupported fqe e in ¢
e assumption:

® tge in 7 that can support e
e resolver:

* x & zUu{O(el7)}

*g< g—{e}

Temporal Planning

55

Flaw Type: Open Goal
Resolver: Existing tge

.goal: unsupported tge e in g

sassumption:
tge in Z that can support e

‘resolver:
X € % U {O(el?)}
¢ < g—{e}

55

Flaw Type: Open Goal
Resolver: New Action

e goal: unsupported tge e in ¢

e assumption:
® action a (instance of operator 0)
¢ has effects(a) that support e and and
® constr(a) are consistent with ¢
e resolver:
* mé& mu{a}
* 2 & 72U effects(a)
® ¢ € ¢ U constr(a)
® g < (4—{e}) U precond(a)
® z & % U {O(precond(a)/®P)}

Temporal Planning 56

Flaw Type: Open Goal
Resolver: New Action

.goal: unsupported tge e in g
sassumption:

«action a (instance of operator o)
*has effects(a) that support e and and
sconstr(a) are consistent with ¢

‘resolver:

ot € U {a}

7 & 7 U effects(a)

¢ € ¢ VU constr(a)

¢ & (4 —{e}) U precond(a)

% € % U {O(precond(a)/®)}

56

Flaw Type: Unsatisfied Axiom
Resolver: Add Conditions

e axiom a: cond(a) — disj(a) and
® cond(a) is supported by 7
¢ disj(a) is not supported by 7
e assumption:
® there are consistency conditions O(a/®)
such that disj(a) is supported by 7
e resolver:
* % & R U {O(a/D)}

Temporal Planning

57

Flaw Type: Unsatisfied Axiom
Resolver: Add Conditions

«axiom a: cond(a) — disj(a) and
.cond(a) is supported by 7
disj(a) is not supported by 7

sassumption:

there are consistency conditions O(a/®) such that

disj(a) is supported by 7
‘resolver:
X & XU {O(a/D)}

57

Flaw Type: Threat
Resolver: Add Constraints

e consistency condition CeX that is not
entailed by ©
e assumption:
® ceC; is consistent with @
e resolver:
*¢&@uc
*x & x-{C}

Temporal Planning 58

Flaw Type: Threat
Resolver: Add Constraints

~consistency condition CeX that is not entailed by ®
sassumption:

«ceC; is consistent with ¢
‘resolver:

YA SNAN-

XK€ X-{C}

58

Overview

e Actions and Time Points
e Interval Algebra and Quantitative Time
e Planning with Temporal Operators

Temporal Planning 59

Overview

»Actions and Time Points

Interval Algebra and Quantitative Time
*Planning with Temporal Operators

just now: integrating reasoning about time into a planning
algorithm

59

