
1

State-Space Search and
the STRIPS Planner

Searching for a Path
through a Graph of Nodes
Representing World States

State-Space Search and the STRIPS Planner 2

Literature
Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter
2 and 4. Elsevier/Morgan Kaufmann, 2004.
Malik Ghallab, et al. PDDL–The Planning Domain
Definition Language, Version 1.x.
ftp://ftp.cs.yale.edu/pub/mcdermott/software/
pddl.tar.gz
S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach, chapters 3-4. Prentice Hall, 2nd

edition, 2003.
J. Pearl. Heuristics, chapters 1-2. Addison-Wesley,
1984.

2

State-Space Search and the STRIPS Planner 3

Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions,

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states

State-Space Search and the STRIPS Planner 4

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

3

State-Space Search and the STRIPS Planner 5

STRIPS Planning Domains:
Restricted State-Transition Systems

A restricted state-transition system is a triple
Σ=(S,A,γ), where:
• S={s1,s2,…} is a set of states;
• A={a1,a2,…} is a set of actions;
• γ:S×A→S is a state transition function.

defining STRIPS planning domains:
• define STRIPS states
• define STRIPS actions
• define the state transition function

State-Space Search and the STRIPS Planner 6

States in the STRIPS
Representation

Let L be a first-order language with finitely
many predicate symbols, finitely many
constant symbols, and no function symbols.
A state in a STRIPS planning domain is a set
of ground atoms of L.
• (ground) atom p holds in state s iff p∈s
• s satisfies a set of (ground) literals g (denoted s ⊧ g) if:

• every positive literal in g is in s and
• every negative literal in g is not in s.

4

State-Space Search and the STRIPS Planner 7

DWR Example: STRIPS States
state = {attached(p1,loc1),

attached(p2,loc1),
in(c1,p1),in(c3,p1),
top(c3,p1), on(c3,c1),
on(c1,pallet), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1),
empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2, loc1),
at(r1,loc2), occupied(loc2),
unloaded(r1)}

loc1

loc2

pallet

crane1

r1

pallet

c2

c1

p2

p1

c3

State-Space Search and the STRIPS Planner 8

Fluent Relations

Predicates that represent relations, the
truth value of which can change from
state to state, are called a fluent or
flexible relations.
• example: at

A state-invariant predicate is called a
rigid relation.
• example: adjacent

5

State-Space Search and the STRIPS Planner 9

Operators and Actions in
STRIPS Planning Domains

A planning operator in a STRIPS planning
domain is a triple
o = (name(o), precond(o), effects(o)) where:
• the name of the operator name(o) is a syntactic

expression of the form n(x1,…,xk) where n is a
(unique) symbol and x1,…,xk are all the variables that
appear in o, and

• the preconditions precond(o) and the effects effects(o)
of the operator are sets of literals.

An action in a STRIPS planning domain is a
ground instance of a planning operator.

State-Space Search and the STRIPS Planner 10

DWR Example: STRIPS
Operators

move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

load(k,l,c,r)
• precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)
• effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

put(k,l,c,d,p)
• precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)
• effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d),

¬top(d,p)

6

State-Space Search and the STRIPS Planner 11

Applicability and State
Transitions

Let L be a set of literals.
• L+ is the set of atoms that are positive literals in L and
• L- is the set of all atoms whose negations are in L.

Let a be an action and s a state. Then a is
applicable in s iff:
• precond+(a) ⊆ s; and
• precond-(a) ⋂ s = {}.

The state transition function γ for an applicable
action a in state s is defined as:
• γ(s,a) = (s – effects-(a)) ∪ effects+(a)

State-Space Search and the STRIPS Planner 12

STRIPS Planning Domains

Let L be a function-free first-order language. A
STRIPS planning domain on L is a restricted
state-transition system Σ=(S,A,γ) such that:
• S is a set of STRIPS states, i.e. sets of ground atoms
• A is a set of ground instances of some STRIPS

planning operators O
• γ:S×A→S where

• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is applicable in s
• γ(s,a)=undefined otherwise

• S is closed under γ

7

State-Space Search and the STRIPS Planner 13

STRIPS Planning Problems

A STRIPS planning problem is a triple
P=(Σ,si,g) where:
• Σ=(S,A,γ) is a STRIPS planning domain on

some first-order language L
• si∈S is the initial state
• g is a set of ground literals describing the

goal such that the set of goal states is:
Sg={s∈S | s satisfies g}

State-Space Search and the STRIPS Planner 14

DWR Example: STRIPS Planning
Problem
Σ: STRIPS planning domain for DWR domain
si: any state
• example: s0 = {attached(pile,loc1),

in(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}

g: any subset of L
• example: g = {¬unloaded(robot),

at(robot,loc2)}, i.e. Sg={s5}

s0

loc1 loc2

palletcont.

crane

robot

s5

location1 location2

pallet

crane

robot
cont.

8

State-Space Search and the STRIPS Planner 15

Statement of a STRIPS Planning
Problem

A statement of a STRIPS planning
problem is a triple P=(O,si,g) where:
• O is a set of planning operators in an

appropriate STRIPS planning domain
Σ=(S,A,γ) on L

• si is the initial state in an appropriate STRIPS
planning problem P=(Σ,si,g)

• g is a goal (set of ground literals) in the same
STRIPS planning problem P

State-Space Search and the STRIPS Planner 16

Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉,
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise

9

State-Space Search and the STRIPS Planner 17

Classical Solutions

Let P=(Σ,si,g) be a planning problem. A
plan π is a solution for P if γ(si,π)
satisfies g.
• A solution π is redundant if there is a proper

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains

fewer actions than π.

State-Space Search and the STRIPS Planner 18

DWR Example: Solution Plan

plan π1 =
• 〈 move(robot,loc2,loc1),
• take(crane,loc1,cont,pallet,pile),
• load(crane,loc1,cont,robot),
• move(robot,loc1,loc2) 〉

|π1|=4
π1 is a minimal, non-redundant solution

10

State-Space Search and the STRIPS Planner 19

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

State-Space Search and the STRIPS Planner 20

PDDL Basics

http://cs-www.cs.yale.edu/homes/dvm/
language features (version 1.x):
• basic STRIPS-style actions
• various extensions as explicit requirements

used to define:
• planning domains: requirements, types,

predicates, possible actions
• planning problems: objects, rigid and fluent

relations, initial situation, goal description

11

State-Space Search and the STRIPS Planner 21

PDDL 1.x Domains
<domain> ::=

(define (domain <name>)
[<extension-def>]
[<require-def>]
[<types-def>]:typing

[<constants-def>]
[<domain-vars-def>]:expression−evaluation

[<predicates-def>]
[<timeless-def>]
[<safety-def>]:safety−constraints

<structure-def>*)

<extension-def> ::=
(:extends <domain name>+)

<require-def> ::=
(:requirements <require-key>+)

<require-key> ::=
:strips | :typing | …

<types-def> ::= (:types <typed list (name)>)
<constants-def> ::=

(:constants <typed list (name)>)
<domain-vars-def> ::=

(:domain-variables
<typed list(domain-var-declaration)>)

<predicates-def> ::=
(:predicates <atomic formula skeleton>+)

<atomic formula skeleton> ::=
(<predicate> <typed list (variable)>)

<predicate> ::= <name>
<variable> ::= ?<name>
<timeless-def> ::=

(:timeless <literal (name)>+)
<structure-def> ::= <action-def>
<structure-def> ::=:domain−axioms <axiom-def>
<structure-def> ::=:action−expansions <method-def>

State-Space Search and the STRIPS Planner 22

PDDL Types

PDDL types syntax
<typed list (x)> ::= x*
<typed list (x)> ::=:typing

x+ - <type> <typed list(x)>
<type> ::= <name>
<type> ::= (either <type>+)
<type> ::=:fluents (fluent <type>)

12

State-Space Search and the STRIPS Planner 23

Example: DWR Types
(define (domain dock-worker-robot)

(:requirements :strips :typing)

(:types
location ;there are several connected locations
pile ;is attached to a location,

;it holds a pallet and a stack of containers
robot ;holds at most 1 container,

;only 1 robot per location
crane ;belongs to a location to pickup containers
container)

…)

State-Space Search and the STRIPS Planner 24

Example: DWR Predicates
(:predicates

(adjacent ?l1 ?l2 - location) ;location ?l1 is adjacent to ?l2
(attached ?p - pile ?l - location) ;pile ?p attached to location ?l
(belong ?k - crane ?l - location) ;crane ?k belongs to location ?l

(at ?r - robot ?l - location) ;robot ?r is at location ?l
(occupied ?l - location) ;there is a robot at location ?l
(loaded ?r - robot ?c - container) ;robot ?r is loaded with container ?c
(unloaded ?r - robot) ;robot ?r is empty

(holding ?k - crane ?c - container) ;crane ?k is holding a container ?c
(empty ?k - crane) ;crane ?k is empty

(in ?c - container ?p - pile) ;container ?c is within pile ?p
(top ?c - container ?p - pile) ;container ?c is on top of pile ?p
(on ?c1 - container ?c2 - container) ;container ?c1 is on container ?c2

)

13

State-Space Search and the STRIPS Planner 25

PDDL Actions
<action-def> ::=

(:action <action functor>
:parameters (<typed list (variable)>)
<action-def body>)

<action functor> ::= <name>
<action-def body> ::=

[:vars (<typed list(variable)>)]:existential-preconditions :conditional-effects

[:precondition <GD>]
[:expansion <action spec>]:action−expansions

[:expansion :methods]:action−expansions

[:maintain <GD>]:action−expansions

[:effect <effect>]
[:only-in-expansions <boolean>]:action−expansions

State-Space Search and the STRIPS Planner 26

PDDL Goal Descriptions
<GD> ::= <atomic formula(term)>
<GD> ::= (and <GD>+)
<GD> ::= <literal(term)>
<GD> ::=:disjunctive−preconditions (or <GD>+)
<GD> ::=:disjunctive−preconditions (not <GD>)
<GD> ::=:disjunctive−preconditions (imply <GD> <GD>)
<GD> ::=:existential−preconditions (exists (<typed list(variable)>) <GD>)
<GD> ::=:universal−preconditions (forall (<typed list(variable)>) <GD>)
<literal(t)> ::= <atomic formula(t)>
<literal(t)> ::= (not <atomic formula(t)>)
<atomic formula(t)> ::= (<predicate> t*)
<term> ::= <name>

14

State-Space Search and the STRIPS Planner 27

PDDL Effects

<effect> ::= (and <effect>+)
<effect> ::= <atomic formula(term)>
<effect> ::= (not <atomic formula(term)>)
<effect> ::=:conditional−effects

(forall (<variable>*) <effect>)
<effect> ::=:conditional−effects

(when <GD> <effect>)
<effect> ::=:fluents (change <fluent> <expression>)

State-Space Search and the STRIPS Planner 28

Example: DWR Action

;; moves a robot between two adjacent locations
(:action move

:parameters (?r - robot ?from ?to - location)
:precondition (and

(adjacent ?from ?to) (at ?r ?from)
(not (occupied ?to)))

:effect (and
(at ?r ?to) (occupied ?to)
(not (occupied ?from)) (not (at ?r ?from))))

15

State-Space Search and the STRIPS Planner 29

PDDL Problem Descriptions
<problem> ::= (define (problem <name>)

(:domain <name>)
[<require-def>]
[<situation>]
[<object declaration>]
[<init>]
<goal>+

[<length-spec>])
<object declaration> ::= (:objects <typed list (name)>)
<situation> ::= (:situation <initsit name>)
<initsit name> ::= <name>
<init> ::= (:init <literal(name)>+)
<goal> ::= (:goal <GD>)
<goal> ::=:action−expansions (:expansion <action spec(action-term)>)
<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

State-Space Search and the STRIPS Planner 30

Example: DWR Problem
;; a simple DWR problem with 1 robot and 2
locations
(define (problem dwrpb1)

(:domain dock-worker-robot)
(:objects

r1 - robot
l1 l2 - location
k1 k2 - crane
p1 q1 p2 q2 - pile
ca cb cc cd ce cf pallet - container)

(:init
(adjacent l1 l2)
(adjacent l2 l1)
(attached p1 l1)
(attached q1 l1)
(attached p2 l2)
(attached q2 l2)
(belong k1 l1)
(belong k2 l2)

(in ca p1) (in cb p1) (in cc p1)
(on ca pallet) (on cb ca) (on cc cb)
(top cc p1)

(in cd q1) (in ce q1) (in cf q1)
(on cd pallet) (on ce cd) (on cf ce)
(top cf q1)

(top pallet p2)
(top pallet q2)

(at r1 l1)
(unloaded r1)
(occupied l1)

(empty k1)
(empty k2))

;; task is to move all containers to locations l2
;; ca and cc in pile p2, the rest in q2
(:goal (and

(in ca p2) (in cc p2)
(in cb q2) (in cd q2) (in ce q2) (in cf q2))))

16

State-Space Search and the STRIPS Planner 31

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

State-Space Search and the STRIPS Planner 32

Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs

17

State-Space Search and the STRIPS Planner 33

Missionaries and Cannibals:
Initial State and Actions

initial state:
• all missionaries, all

cannibals, and the
boat are on the left
bank

5 possible actions:
• one missionary crossing
• one cannibal crossing
• two missionaries

crossing
• two cannibals crossing
• one missionary and one

cannibal crossing

State-Space Search and the STRIPS Planner 34

Missionaries and Cannibals:
Successor Function

{<1m1c, (L:3m,3c,b-R:0m,0c)>,
<1m, (L:3m,2c,b-R:0m,1c)>}

(L:2m,2c-R:1m,1c,b)

{<2c, (L:3m,3c,b-R:0m,0c)>,
<1c, (L:3m,2c,b-R:0m,1c)>}

(L:3m,1c-R:0m,2c,b)

{<2c, (L:3m,1c-R:0m,2c,b)>,
<1m1c, (L:2m,2c-R:1m,1c,b)>,
<1c, (L:3m,2c-R:0m,1c,b)>}

(L:3m,3c,b-R:0m,0c)

set of <action, state>state

18

State-Space Search and the STRIPS Planner 35

Missionaries and Cannibals:
State Space

1c

1m
1c

2c
1c

2c

1c

2m

1m
1c

1m
1c

1c

2c

1m

2m

1c

2c

1c

1m

State-Space Search and the STRIPS Planner 36

Missionaries and Cannibals:
Goal State and Path Cost

goal state:
• all missionaries, all

cannibals, and the
boat are on the right
bank

path cost
• step cost: 1 for each

crossing
• path cost: number of

crossings = length of
path

solution path:
• 4 optimal solutions
• cost: 11

19

State-Space Search and the STRIPS Planner 37

Real-World Problem:
Touring in Romania

Oradea

Bucharest

Fagaras

Pitesti

Neamt

Iasi

Vaslui

Urziceni
Hirsova

Eforie

Giurgiu
Craiova

Rimnicu Vilcea

Sibiu

Dobreta

Mehadia

Lugoj

Timisoara

Arad

Zerind

120

140

151

75

70

111

118

75

71

85

90

211

101

97

138

146

80
99

87

92

142

98

86

State-Space Search and the STRIPS Planner 38

Touring Romania:
Search Problem Definition

initial state:
• In(Arad)

possible Actions:
• DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara),

etc.

goal state:
• In(Bucharest)

step cost:
• distances between cities

20

State-Space Search and the STRIPS Planner 39

Search Trees

search tree: tree structure defined by initial
state and successor function
Touring Romania (partial search tree):

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)

State-Space Search and the STRIPS Planner 40

Search Nodes

search nodes: the nodes in the search tree
data structure:
• state: a state in the state space
• parent node: the immediate predecessor in the search

tree
• action: the action that, performed in the parent node’s

state, leads to this node’s state
• path cost: the total cost of the path leading to this

node
• depth: the depth of this node in the search tree

21

State-Space Search and the STRIPS Planner 41

Fringe Nodes
in Touring Romania Example

fringe nodes: nodes that have not been
expanded

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)

State-Space Search and the STRIPS Planner 42

Search (Control) Strategy

search or control strategy: an effective
method for scheduling the application of the
successor function to expand nodes
• selects the next node to be expanded from the fringe
• determines the order in which nodes are expanded
• aim: produce a goal state as quickly as possible

examples:
• LIFO/FIFO-queue for fringe nodes
• alphabetical ordering

22

State-Space Search and the STRIPS Planner 43

General Tree Search Algorithm
function treeSearch(problem, strategy)

fringe { new
searchNode(problem.initialState) }

loop
if empty(fringe) then return failure
node selectFrom(fringe, strategy)
if problem.goalTest(node.state) then

return pathTo(node)
fringe fringe + expand(problem, node)

State-Space Search and the STRIPS Planner 44

In(Arad) In(Oradea) In(Rimnicu Vilcea)

In(Zerind) In(Timisoara)

In(Sibiu) In(Bucharest)

In(Fagaras)

In(Sibiu)

General Search Algorithm:
Touring Romania Example

In(Arad)

fringe

selected

23

State-Space Search and the STRIPS Planner 45

Uninformed vs. Informed Search

uninformed search (blind search)
• no additional information about states beyond

problem definition
• only goal states and non-goal states can be

distinguished

informed search (heuristic search)
• additional information about how “promising”

a state is available

State-Space Search and the STRIPS Planner 46

de
pt

h
=

3
Breadth-First Search:
Missionaries and Cannibals

de
pt

h
=

0
de

pt
h

=
1

de
pt

h
=

2

24

State-Space Search and the STRIPS Planner 47

de
pt

h
=

3

Depth-First Search:
Missionaries and Cannibals

de
pt

h
=

0
de

pt
h

=
1

de
pt

h
=

2

State-Space Search and the STRIPS Planner 48

Iterative Deepening Search

strategy:
• based on depth-limited (depth-first) search
• repeat search with gradually increasing depth

limit until a goal state is found

implementation:
for depth 0 to ∞ do

result depthLimitedSearch(problem, depth)
if result ≠ cutoff then return result

25

State-Space Search and the STRIPS Planner 49

Discovering Repeated States:
Potential Savings

sometimes repeated states are unavoidable,
resulting in infinite search trees
checking for repeated states:
• infinite search tree ⇒ finite search tree
• finite search tree ⇒ exponential reduction

st
at

e
sp

ac
e

gr
ap

h

se
ar

ch
 tr

ee

st
at

e
sp

ac
e

gr
ap

h

State-Space Search and the STRIPS Planner 50

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

26

State-Space Search and the STRIPS Planner 51

Best-First Search
an instance of the general tree search or
graph search algorithm
• strategy: select next node based on an

evaluation function f: state space → ℝ
• select node with lowest value f(n)

implementation:
selectFrom(fringe, strategy)
• priority queue: maintains fringe in ascending

order of f-values

State-Space Search and the STRIPS Planner 52

Heuristic Functions

heuristic function h: state space → ℝ
h(n) = estimated cost of the cheapest
path from node n to a goal node
if n is a goal node then h(n) must be 0
heuristic function encodes problem-
specific knowledge in a problem-
independent way

27

State-Space Search and the STRIPS Planner 53

Greedy Best-First Search

use heuristic function as evaluation
function: f(n) = h(n)
• always expands the node that is closest to the

goal node
• eats the largest chunk out of the remaining

distance, hence, “greedy”

State-Space Search and the STRIPS Planner 54

Touring in Romania: Heuristic

hSLD(n) = straight-line distance to Bucharest

77
176
161
242
160

0
366

Pitesti
Oradea
Neamt
Mehadia
Lugoj
Iasi
Hirsova

374Zerind100Giurgiu
199Vaslui380Fagaras
80Urziceni234Eforie

329Timisoara241Dobreta
253Sibiu244Craiova

226Bucharest
193Rimnicu

Vilcea
151Arad

28

State-Space Search and the STRIPS Planner 55

Greediness

greediness is susceptible to false starts

repeated states may lead to infinite oscillation

initial state
goal state

State-Space Search and the STRIPS Planner 56

A* Search

best-first search where
f(n) = h(n) + g(n)

• h(n) the heuristic function (as before)
• g(n) the cost to reach the node n

evaluation function:
f(n) = estimated cost of the cheapest

solution through n
A* search is optimal if h(n) is admissible

29

State-Space Search and the STRIPS Planner 57

Admissible Heuristics

A heuristic h(n) is admissible if it never
overestimates the distance from n to the nearest
goal node.

example: hSLD

A* search: If h(n) is admissible then f(n) never
overestimates the true cost of a solution
through n.

State-Space Search and the STRIPS Planner 58

d
=

3
A* (Best-First) Search:
Touring Romania

Arad
(646)

Rimnicu Vilcea
(413)

Fagaras
(415)

Oradea
(671)

Zerind
(449)

Sibiu
(393)

Timisoara
(447)

Arad
(366) d

=
0

d
=

2
d

=
1

d
=

4

fringe

selected

Sibiu
(591)

Bucharest
(450)

Craiova
(526)

Pitesti
(417)

Sibiu
(553)

Bucharest
(418)

Craiova
(615)

Rimnicu Vilcea
(607)

30

State-Space Search and the STRIPS Planner 59

Optimality of A* (Tree Search)

Theorem:
A* using tree search is optimal if the
heuristic h(n) is admissible.

State-Space Search and the STRIPS Planner 60

A*: Optimally Efficient

A* is optimally efficient for a given
heuristic function:
no other optimal algorithm is guaranteed
to expand fewer nodes than A*.
any algorithm that does not expand all
nodes with f(n) < C* runs the risk of
missing the optimal solution

31

State-Space Search and the STRIPS Planner 61

A* and Exponential Space

A* has worst case time and space
complexity of O(bl)
exponential growth of the fringe is
normal
• exponential time complexity may be

acceptable
• exponential space complexity will exhaust any

computer’s resources all too quickly

State-Space Search and the STRIPS Planner 62

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

32

State-Space Search and the STRIPS Planner 63

State-Space Search

idea: apply standard search algorithms
(breadth-first, depth-first, A*, etc.) to
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan

State-Space Search and the STRIPS Planner 64

s0

DWR Example: State Space

location1 location2

palletcont.

crane s2

location1 location2

palletcont.

crane

s1

location1 location2

pallet

cont.

crane s3

location1 location2

pallet

cont.

crane s4

location1 location2

pallet

crane

robot robot

robot

robot

robot

cont.

s5

location1 location2

pallet

crane

robot
cont.

33

State-Space Search and the STRIPS Planner 65

Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs

State-Space Search and the STRIPS Planner 66

State-Space Planning as a
Search Problem

given: statement of a planning problem
P=(O,si,g)
define the search problem as follows:
• initial state: si

• goal test for state s: s satisfies g
• path cost function for plan π: |π|
• successor function for state s: Γ(s)

34

State-Space Search and the STRIPS Planner 67

Reachable Successor States

The successor function Γm:2S→2S for a
STRIPS domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

State-Space Search and the STRIPS Planner 68

Solution Existence

Proposition: A STRIPS planning
problem P=(Σ,si,g) (and a statement of
such a problem P=(O,si,g)) has a
solution iff Sg ⋂ Γ>({si}) ≠ {}.

35

State-Space Search and the STRIPS Planner 69

Forward State-Space Search
Algorithm
function fwdSearch(O,si,g)

state si
plan 〈〉
loop

if state.satisfies(g) then return plan
applicables

{ground instances from O applicable in state}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
state γ(state,action)
plan plan ∙ 〈action〉

State-Space Search and the STRIPS Planner 70

DWR Example: Forward Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan =

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)

36

State-Space Search and the STRIPS Planner 71

Finding Applicable Actions:
Algorithm
function addApplicables(A, op, precs, σ, s)

if precs+.isEmpty() then
for every np in precs- do

if s.falsifies(σ(np)) then return
A.add(σ(op))

else
pp precs+.chooseOne()
for every sp in s do

σ’ σ.extend(sp, pp)
if σ’.isValid() then

addApplicables(A, op, (precs - pp), σ’, s)

State-Space Search and the STRIPS Planner 72

Properties of Forward Search
Proposition: fwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.
• proof idea: show (by induction) state=γ(si,plan) at the

beginning of each iteration of the loop

Proposition: fwdSearch is complete, i.e. if there exists
solution plan then there is an execution trace of the
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace

for which plan is a prefix of the sought plan

37

State-Space Search and the STRIPS Planner 73

Making Forward Search
Deterministic

idea: use depth-first search
• problem: infinite branches
• solution: prune repeated states

pruning: cutting off search below certain
nodes
• safe pruning: guaranteed not to prune every solution
• strongly safe pruning: guaranteed not to prune every

optimal solution
• example: prune below nodes that have a

predecessor that is an equal state (no repeated
states)

State-Space Search and the STRIPS Planner 74

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

38

State-Space Search and the STRIPS Planner 75

The Problem with Forward
Search

number of actions applicable in any
given state is usually very large
branching factor is very large
forward search for plans with more than
a few steps not feasible

idea: search backwards from the goal
problem: many goal states

State-Space Search and the STRIPS Planner 76

Relevance and Regression Sets

Let P=(Σ,si,g) be a STRIPS planning
problem. An action a∈A is relevant for g
if
• g ⋂ effects(a) ≠ {} and
• g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}.

The regression set of g for a relevant
action a∈A is:
• γ -1(g,a)=(g - effects(a)) ∪ precond(a)

39

State-Space Search and the STRIPS Planner 77

Regression Function

The regression function Γ-m for a STRIPS
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn}

• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

The transitive closure of Γ-1 defines the set of
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

State-Space Search and the STRIPS Planner 78

State-Space Planning as a
Search Problem

given: statement of a planning problem
P=(O,si,g)
define the search problem as follows:
• initial search state: g
• goal test for state s: si satisfies s
• path cost function for plan π: |π|
• successor function for state s: Γ-1(s)

40

State-Space Search and the STRIPS Planner 79

Solution Existence

Proposition: A propositional planning
problem P=(Σ,si,g) (and a statement of
such a problem P=(O,si,g)) has a
solution iff ∃s∈Γ<({g}) : si satisfies s.

State-Space Search and the STRIPS Planner 80

Ground Backward State-Space
Search Algorithm
function groundBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if si.satisfies(subgoal) then return plan
applicables

{ground instances from O relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(subgoal, action)
plan 〈action〉 ∙ plan

41

State-Space Search and the STRIPS Planner 81

DWR Example: Backward
Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan =

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)

State-Space Search and the STRIPS Planner 82

Example: Regression with
Operators

goal: at(robot,loc1)
operator: move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

actions: move(robot,l,loc1)
• l=?
• many options increase branching factor

lifted backward search: use partially
instantiated operators instead of actions

42

State-Space Search and the STRIPS Planner 83

Lifted Backward State-Space
Search Algorithm
function liftedBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan)
applicables

{(o,σ) | o∈O and σ(o) relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(σ(subgoal), σ(o))
plan σ(〈action〉) ∙ σ(plan)

State-Space Search and the STRIPS Planner 84

DWR Example: Lifted Backward
Search

initial state: s0 = {attached(pile,loc1),
in(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}
operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l),

¬occupied(m)
• effects: at(r,m), occupied(m),

¬occupied(l), ¬at(r,l)

liftedBwdSearch(
{move(r,l,m)}, s0, {at(robot,loc1)})

∃σ:si.satisfies(σ(subgoal)): no
applicables =
{(move(r1,l1,m1),{r1←robot,
m1←loc1})}
subgoal =
{adjacent(l1,loc1), at(robot,l1),
¬occupied(loc1)}
plan = 〈move(robot,l1,loc1)〉

∃σ:si.satisfies(σ(subgoal)): yes
σ = {l1←loc1}

s0

loc1 loc2

palletcont.

crane

robot

43

State-Space Search and the STRIPS Planner 85

Properties of Backward Search
Proposition: liftedBwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.
• proof idea: show (by induction) subgaol=γ -1(g,plan) at the

beginning of each iteration of the loop

Proposition: liftedBwdSearch is complete, i.e. if there
exists solution plan then there is an execution trace of the
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace

for which plan is a suffix of the sought plan

State-Space Search and the STRIPS Planner 86

Avoiding Repeated States

search space:
• let gi and gk be sub-goals where gi is an

ancestor of gk in the search tree
• let σ be a substitution such that σ(gi) ⊆ gk

pruning:
• then we can prune all nodes below gk

44

State-Space Search and the STRIPS Planner 87

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

State-Space Search and the STRIPS Planner 88

Problems with Backward Search

state space still too large to search
efficiently
STRIPS idea:
• only work on preconditions of the last operator

added to the plan
• if the current state satisfies all of an operator’s

preconditions, commit to this operator

45

State-Space Search and the STRIPS Planner 89

Ground-STRIPS Algorithm
function groundStrips(O,s,g)

plan 〈〉
loop

if s.satisfies(g) then return plan
applicables

{ground instances from O relevant for g-s}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subplan groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s γ(s, subplan ∙ 〈action〉)
plan plan ∙ subplan ∙ 〈action〉

State-Space Search and the STRIPS Planner 90

Problems with STRIPS

STRIPS is incomplete:
• cannot find solution for some problems, e.g.

interchanging the values of two variables
• cannot find optimal solution for others, e.g. Sussman

anomaly:

Table

A B

C

Table

A

B

C

46

State-Space Search and the STRIPS Planner 91

STRIPS and the Sussman
Anomaly (1)

achieve on(A,B)
• put C from A onto table
• put A onto B

achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C A

BC

A
BC A

B
C

A
B
C

A
B
C

State-Space Search and the STRIPS Planner 92

STRIPS and the Sussman
Anomaly (2)

achieve on(B,C)
• put B onto C

achieve on(A,B)
• put B from C onto table
• put C from A onto table
• put A onto B

re-achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C

A

B
C

A

B
C A

B C

A
B C A

B
C

A
B
C

A
B
C

47

State-Space Search and the STRIPS Planner 93

Interleaving Plans for an
Optimal Solution

shortest solution
achieving on(A,B):

shortest solution
achieving on(B,C):

shortest solution for
on(A,B) and on(B,C):

put C from A onto table

put B onto C

put A onto B

put C from A onto table

put B onto C

put A onto B

State-Space Search and the STRIPS Planner 94

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

