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Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions, 

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals 

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner
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STRIPS Planning Domains: 
Restricted State-Transition Systems

A restricted state-transition system is a triple 
Σ=(S,A,γ), where:
• S={s1,s2,…} is a set of states;
• A={a1,a2,…} is a set of actions;
• γ:S×A→S is a state transition function.

defining STRIPS planning domains:
• define STRIPS states
• define STRIPS actions
• define the state transition function
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States in the STRIPS 
Representation

Let L be a first-order language with finitely 
many predicate symbols, finitely many 
constant symbols, and no function symbols.
A state in a STRIPS planning domain is a set 
of ground atoms of L.
• (ground) atom p holds in state s iff p∈s
• s satisfies a set of (ground) literals g (denoted s ⊧ g) if:

• every positive literal in g is in s and
• every negative literal in g is not in s.
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DWR Example: STRIPS States
state = {attached(p1,loc1), 

attached(p2,loc1), 
in(c1,p1),in(c3,p1), 
top(c3,p1), on(c3,c1), 
on(c1,pallet), in(c2,p2), 
top(c2,p2), on(c2,pallet), 
belong(crane1,loc1), 
empty(crane1), 
adjacent(loc1,loc2), 
adjacent(loc2, loc1), 
at(r1,loc2), occupied(loc2), 
unloaded(r1)}

loc1

loc2

pallet

crane1

r1

pallet

c2

c1

p2

p1

c3

State-Space Search and the STRIPS Planner 8

Fluent Relations

Predicates that represent relations, the 
truth value of which can change from 
state to state, are called a fluent or 
flexible relations.
• example: at

A state-invariant predicate is called a 
rigid relation.
• example: adjacent
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Operators and Actions in 
STRIPS Planning Domains

A planning operator in a STRIPS planning 
domain is a triple 
o = (name(o), precond(o), effects(o)) where:
• the name of the operator name(o) is a syntactic 

expression of the form n(x1,…,xk) where n is a 
(unique) symbol and x1,…,xk are all the variables that 
appear in o, and

• the preconditions precond(o) and the effects effects(o) 
of the operator are sets of literals.

An action in a STRIPS planning domain is a 
ground instance of a planning operator.
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DWR Example: STRIPS 
Operators

move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

load(k,l,c,r)
• precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)
• effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

put(k,l,c,d,p)
• precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)
• effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d), 

¬top(d,p)
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Applicability and State 
Transitions

Let L be a set of literals. 
• L+ is the set of atoms that are positive literals in L and 
• L- is the set of all atoms whose negations are in L.

Let a be an action and s a state. Then a is 
applicable in s iff:
• precond+(a) ⊆ s; and
• precond-(a) ⋂ s = {}.

The state transition function γ for an applicable 
action a in state s is defined as:
• γ(s,a) = (s – effects-(a)) ∪ effects+(a)

State-Space Search and the STRIPS Planner 12

STRIPS Planning Domains

Let L be a function-free first-order language. A 
STRIPS planning domain on L is a restricted 
state-transition system Σ=(S,A,γ) such that:
• S is a set of STRIPS states, i.e. sets of ground atoms
• A is a set of ground instances of some STRIPS 

planning operators O
• γ:S×A→S where 

• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is applicable in s
• γ(s,a)=undefined otherwise

• S is closed under γ
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STRIPS Planning Problems

A STRIPS planning problem is a triple 
P=(Σ,si,g) where:
• Σ=(S,A,γ) is a STRIPS planning domain on 

some first-order language L
• si∈S is the initial state
• g is a set of ground literals describing the  

goal such that the set of goal states is: 
Sg={s∈S | s satisfies g}
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DWR Example: STRIPS Planning 
Problem
Σ: STRIPS planning domain for DWR domain
si: any state
• example: s0 = {attached(pile,loc1), 

in(cont,pile), top(cont,pile), 
on(cont,pallet), belong(crane,loc1), 
empty(crane), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(robot,loc2), 
occupied(loc2), unloaded(robot)}

g: any subset of L
• example: g = {¬unloaded(robot), 

at(robot,loc2)}, i.e. Sg={s5}

s0

loc1 loc2

palletcont.

crane

robot

s5

location1 location2

pallet

crane

robot
cont.
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Statement of a STRIPS Planning 
Problem

A statement of a STRIPS planning 
problem is a triple P=(O,si,g) where:
• O is a set of planning operators in an 

appropriate STRIPS planning domain 
Σ=(S,A,γ) on L

• si is the initial state in an appropriate STRIPS 
planning problem P=(Σ,si,g)

• g is a goal (set of ground literals) in the same 
STRIPS planning problem P
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Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉, 
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their 

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is 

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise
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Classical Solutions

Let P=(Σ,si,g) be a planning problem. A 
plan π is a solution for P if γ(si,π) 
satisfies g.
• A solution π is redundant if there is a proper 

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains 

fewer actions than π.
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DWR Example: Solution Plan

plan π1 = 
• 〈 move(robot,loc2,loc1), 
• take(crane,loc1,cont,pallet,pile), 
• load(crane,loc1,cont,robot), 
• move(robot,loc1,loc2) 〉

|π1|=4
π1 is a minimal, non-redundant solution
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

State-Space Search and the STRIPS Planner 20

PDDL Basics

http://cs-www.cs.yale.edu/homes/dvm/
language features (version 1.x):
• basic STRIPS-style actions
• various extensions as explicit requirements

used to define:
• planning domains: requirements, types, 

predicates, possible actions
• planning problems: objects, rigid and fluent 

relations, initial situation, goal description
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PDDL 1.x Domains
<domain> ::= 

(define (domain <name>)
[<extension-def>]
[<require-def>]
[<types-def>]:typing

[<constants-def>]
[<domain-vars-def>]:expression−evaluation

[<predicates-def>]
[<timeless-def>]
[<safety-def>]:safety−constraints

<structure-def>*)

<extension-def> ::= 
(:extends <domain name>+)

<require-def> ::= 
(:requirements <require-key>+)

<require-key> ::= 
:strips | :typing | …

<types-def> ::= (:types <typed list (name)>)
<constants-def> ::= 

(:constants <typed list (name)>)
<domain-vars-def> ::= 

(:domain-variables
<typed list(domain-var-declaration)>)

<predicates-def> ::= 
(:predicates <atomic formula skeleton>+)

<atomic formula skeleton> ::= 
(<predicate> <typed list (variable)>)

<predicate> ::= <name>
<variable> ::= ?<name>
<timeless-def> ::= 

(:timeless <literal (name)>+)
<structure-def> ::= <action-def>
<structure-def> ::=:domain−axioms <axiom-def>
<structure-def> ::=:action−expansions <method-def>
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PDDL Types

PDDL types syntax
<typed list (x)> ::= x*
<typed list (x)> ::=:typing

x+ - <type> <typed list(x)>
<type> ::= <name>
<type> ::= (either <type>+)
<type> ::=:fluents (fluent <type>)
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Example: DWR Types
(define (domain dock-worker-robot)

(:requirements :strips :typing ) 

(:types 
location ;there are several connected locations 
pile ;is attached to a location, 

;it holds a pallet and a stack of containers 
robot ;holds at most 1 container, 

;only 1 robot per location 
crane ;belongs to a location to pickup containers 
container ) 

…)
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Example: DWR Predicates
(:predicates 

(adjacent ?l1 ?l2 - location) ;location ?l1 is adjacent to ?l2 
(attached ?p - pile ?l - location) ;pile ?p attached to location ?l 
(belong ?k - crane ?l - location) ;crane ?k belongs to location ?l 

(at ?r - robot ?l - location) ;robot ?r is at location ?l 
(occupied ?l - location) ;there is a robot at location ?l 
(loaded ?r - robot ?c - container ) ;robot ?r is loaded with container ?c 
(unloaded ?r - robot) ;robot ?r is empty 

(holding ?k - crane ?c - container) ;crane ?k is holding a container ?c 
(empty ?k - crane) ;crane ?k is empty 

(in ?c - container ?p - pile) ;container ?c is within pile ?p 
(top ?c - container ?p - pile) ;container ?c is on top of pile ?p 
(on ?c1 - container ?c2 - container) ;container ?c1 is on container ?c2 

) 
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PDDL Actions
<action-def> ::= 

(:action <action functor>
:parameters ( <typed list (variable)> )
<action-def body>)

<action functor> ::= <name>
<action-def body> ::= 

[:vars (<typed list(variable)>)]:existential-preconditions :conditional-effects

[:precondition <GD>]
[:expansion <action spec>]:action−expansions

[:expansion :methods]:action−expansions

[:maintain <GD>]:action−expansions

[:effect <effect>]
[:only-in-expansions <boolean>]:action−expansions
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PDDL Goal Descriptions
<GD> ::= <atomic formula(term)>
<GD> ::= (and <GD>+)
<GD> ::= <literal(term)>
<GD> ::=:disjunctive−preconditions (or <GD>+)
<GD> ::=:disjunctive−preconditions (not <GD>)
<GD> ::=:disjunctive−preconditions (imply <GD> <GD>)
<GD> ::=:existential−preconditions (exists (<typed list(variable)>) <GD> )
<GD> ::=:universal−preconditions (forall (<typed list(variable)>) <GD> )
<literal(t)> ::= <atomic formula(t)>
<literal(t)> ::= (not <atomic formula(t)>)
<atomic formula(t)> ::= (<predicate> t*)
<term> ::= <name>
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PDDL Effects

<effect> ::= (and <effect>+)
<effect> ::= <atomic formula(term)>
<effect> ::= (not <atomic formula(term)>)
<effect> ::=:conditional−effects

(forall (<variable>*) <effect>)
<effect> ::=:conditional−effects

(when <GD> <effect>)
<effect> ::=:fluents (change <fluent> <expression>)
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Example: DWR Action

;; moves a robot between two adjacent locations 
(:action move 

:parameters (?r - robot ?from ?to - location) 
:precondition (and 

(adjacent ?from ?to) (at ?r ?from) 
(not (occupied ?to))) 

:effect (and 
(at ?r ?to) (occupied ?to) 
(not (occupied ?from)) (not (at ?r ?from)) )) 
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PDDL Problem Descriptions
<problem> ::= (define (problem <name>)

(:domain <name>)
[<require-def>]
[<situation> ]
[<object declaration> ]
[<init>]
<goal>+

[<length-spec> ])
<object declaration> ::= (:objects <typed list (name)>)
<situation> ::= (:situation <initsit name>)
<initsit name> ::= <name>
<init> ::= (:init <literal(name)>+)
<goal> ::= (:goal <GD>)
<goal> ::=:action−expansions (:expansion <action spec(action-term)>)
<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])
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Example: DWR Problem
;; a simple DWR problem with 1 robot and 2 
locations  
(define (problem dwrpb1) 

(:domain dock-worker-robot) 
(:objects 

r1 - robot 
l1 l2 - location 
k1 k2 - crane 
p1 q1 p2 q2 - pile 
ca cb cc cd ce cf pallet - container)

(:init 
(adjacent l1 l2) 
(adjacent l2 l1) 
(attached p1 l1)
(attached q1 l1)
(attached p2 l2)
(attached q2 l2)
(belong k1 l1)
(belong k2 l2) 

(in ca p1) (in cb p1) (in cc p1)
(on ca pallet) (on cb ca) (on cc cb)
(top cc p1)

(in cd q1) (in ce q1) (in cf q1) 
(on cd pallet) (on ce cd) (on cf ce) 
(top cf q1) 

(top pallet p2) 
(top pallet q2) 

(at r1 l1) 
(unloaded r1) 
(occupied l1) 

(empty k1) 
(empty k2))

;; task is to move all containers to locations l2 
;; ca and cc in pile p2, the rest in q2 
(:goal (and 

(in ca p2) (in cc p2) 
(in cb q2) (in cd q2) (in ce q2) (in cf q2)))) 
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
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Forward State-Space Search
Backward State-Space Search
The STRIPS Planner
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Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs
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Missionaries and Cannibals: 
Initial State and Actions

initial state:
• all missionaries, all 

cannibals, and the 
boat are on the left 
bank

5 possible actions:
• one missionary crossing
• one cannibal crossing
• two missionaries 

crossing
• two cannibals crossing
• one missionary and one 

cannibal crossing
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Missionaries and Cannibals: 
Successor Function

{<1m1c, (L:3m,3c,b-R:0m,0c)>, 
<1m, (L:3m,2c,b-R:0m,1c)>}

(L:2m,2c-R:1m,1c,b) 

{<2c, (L:3m,3c,b-R:0m,0c)>, 
<1c, (L:3m,2c,b-R:0m,1c)>}

(L:3m,1c-R:0m,2c,b) 

{<2c, (L:3m,1c-R:0m,2c,b)>, 
<1m1c, (L:2m,2c-R:1m,1c,b)>, 
<1c, (L:3m,2c-R:0m,1c,b)>}

(L:3m,3c,b-R:0m,0c) 

set of <action, state>state
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Missionaries and Cannibals: 
State Space

1c

1m
1c

2c
1c

2c

1c

2m

1m
1c

1m
1c

1c

2c

1m

2m

1c

2c

1c

1m
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Missionaries and Cannibals: 
Goal State and Path Cost

goal state:
• all missionaries, all 

cannibals, and the 
boat are on the right 
bank

path cost
• step cost: 1 for each 

crossing
• path cost: number of 

crossings = length of 
path

solution path:
• 4 optimal solutions
• cost: 11
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Real-World Problem:
Touring in Romania

Oradea

Bucharest

Fagaras

Pitesti

Neamt

Iasi

Vaslui

Urziceni
Hirsova

Eforie

Giurgiu
Craiova

Rimnicu Vilcea

Sibiu

Dobreta

Mehadia

Lugoj

Timisoara

Arad

Zerind

120

140

151

75

70

111

118

75

71

85

90

211

101

97

138

146

80
99

87

92

142

98

86
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Touring Romania:
Search Problem Definition

initial state:
• In(Arad)

possible Actions:
• DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara), 

etc.

goal state:
• In(Bucharest)

step cost:
• distances between cities
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Search Trees

search tree: tree structure defined by initial 
state and successor function
Touring Romania (partial search tree):

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)
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Search Nodes

search nodes: the nodes in the search tree
data structure:
• state: a state in the state space
• parent node: the immediate predecessor in the search 

tree
• action: the action that, performed in the parent node’s 

state, leads to this node’s state
• path cost: the total cost of the path leading to this 

node
• depth: the depth of this node in the search tree
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Fringe Nodes
in Touring Romania Example

fringe nodes: nodes that have not been 
expanded

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)
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Search (Control) Strategy

search or control strategy: an effective 
method for scheduling the application of the 
successor function to expand nodes
• selects the next node to be expanded from the fringe
• determines the order in which nodes are expanded
• aim: produce a goal state as quickly as possible

examples: 
• LIFO/FIFO-queue for fringe nodes
• alphabetical ordering
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General Tree Search Algorithm
function treeSearch(problem, strategy)

fringe { new
searchNode(problem.initialState) }

loop
if empty(fringe) then return failure
node selectFrom(fringe, strategy)
if problem.goalTest(node.state) then

return pathTo(node)
fringe fringe + expand(problem, node) 
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In(Arad) In(Oradea) In(Rimnicu Vilcea)

In(Zerind) In(Timisoara)

In(Sibiu) In(Bucharest)

In(Fagaras)

In(Sibiu)

General Search Algorithm:
Touring Romania Example

In(Arad)

fringe

selected
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Uninformed vs. Informed Search

uninformed search (blind search)
• no additional information about states beyond 

problem definition
• only goal states and non-goal states can be 

distinguished

informed search (heuristic search)
• additional information about how “promising”

a state is available
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Depth-First Search:
Missionaries and Cannibals
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Iterative Deepening Search

strategy:
• based on depth-limited (depth-first) search
• repeat search with gradually increasing depth 

limit until a goal state is found

implementation:
for depth 0 to ∞ do

result depthLimitedSearch(problem, depth)
if result ≠ cutoff then return result
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Discovering Repeated States: 
Potential Savings

sometimes repeated states are unavoidable, 
resulting in infinite search trees
checking for repeated states:
• infinite search tree ⇒ finite search tree
• finite search tree ⇒ exponential reduction
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(PDDL)
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Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner
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Best-First Search
an instance of the general tree search or 
graph search algorithm
• strategy: select next node based on an 

evaluation function f: state space → ℝ
• select node with lowest value f(n)

implementation: 
selectFrom(fringe, strategy)
• priority queue: maintains fringe in ascending 

order of f-values
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Heuristic Functions

heuristic function h: state space → ℝ
h(n) = estimated cost of the cheapest 
path from node n to a goal node
if n is a goal node then h(n) must be 0
heuristic function encodes problem-
specific knowledge in a problem-
independent way
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Greedy Best-First Search

use heuristic function as evaluation 
function: f(n) = h(n)
• always expands the node that is closest to the 

goal node
• eats the largest chunk out of the remaining 

distance, hence, “greedy”

State-Space Search and the STRIPS Planner 54

Touring in Romania: Heuristic

hSLD(n) = straight-line distance to Bucharest

77
176
161
242
160

0
366

Pitesti
Oradea
Neamt
Mehadia
Lugoj
Iasi
Hirsova

374Zerind100Giurgiu
199Vaslui380Fagaras
80Urziceni234Eforie

329Timisoara241Dobreta
253Sibiu244Craiova

226Bucharest
193Rimnicu

Vilcea
151Arad
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Greediness

greediness is susceptible to false starts

repeated states may lead to infinite oscillation

initial state
goal state

State-Space Search and the STRIPS Planner 56

A* Search

best-first search where
f(n) = h(n) + g(n)

• h(n) the heuristic function (as before)
• g(n) the cost to reach the node n

evaluation function: 
f(n) = estimated cost of the cheapest

solution through n
A* search is optimal if h(n) is admissible
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Admissible Heuristics

A heuristic h(n) is admissible if it never 
overestimates the distance from n to the nearest 
goal node.

example: hSLD

A* search: If h(n) is admissible then f(n) never 
overestimates the true cost of a solution 
through n.
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d
= 

3
A* (Best-First) Search:
Touring Romania

Arad
(646)

Rimnicu Vilcea
(413)
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d
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1

d
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selected

Sibiu
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Pitesti
(417)
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(418)

Craiova
(615)

Rimnicu Vilcea
(607)
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Optimality of A* (Tree Search)

Theorem:
A* using tree search is optimal if the 
heuristic h(n) is admissible.
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A*: Optimally Efficient

A* is optimally efficient for a given 
heuristic function:
no other optimal algorithm is guaranteed 
to expand fewer nodes than A*.
any algorithm that does not expand all 
nodes with f(n) < C* runs the risk of 
missing the optimal solution
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A* and Exponential Space

A* has worst case time and space 
complexity of O(bl)
exponential growth of the fringe is 
normal
• exponential time complexity may be 

acceptable
• exponential space complexity will exhaust any 

computer’s resources all too quickly
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner
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State-Space Search

idea: apply standard search algorithms 
(breadth-first, depth-first, A*, etc.) to 
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan
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s0

DWR Example: State Space

location1 location2

palletcont.

crane s2

location1 location2

palletcont.

crane

s1

location1 location2

pallet

cont.

crane s3

location1 location2

pallet

cont.

crane s4

location1 location2

pallet

crane

robot robot

robot

robot

robot

cont.

s5

location1 location2

pallet

crane

robot
cont.
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Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs
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State-Space Planning as a 
Search Problem

given: statement of a planning problem 
P=(O,si,g) 
define the search problem as follows:
• initial state: si

• goal test for state s: s satisfies g
• path cost function for plan π: |π|
• successor function for state s: Γ(s)
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Reachable Successor States

The successor function Γm:2S→2S for a 
STRIPS domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk) 
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all 
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S
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Solution Existence

Proposition: A STRIPS planning 
problem P=(Σ,si,g) (and a statement of 
such a problem P=(O,si,g) ) has a 
solution iff Sg ⋂ Γ>({si}) ≠ {}.



35

State-Space Search and the STRIPS Planner 69

Forward State-Space Search 
Algorithm
function fwdSearch(O,si,g)

state si
plan 〈〉
loop

if state.satisfies(g) then return plan
applicables

{ground instances from O applicable in state}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
state γ(state,action)
plan plan ∙ 〈action〉
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DWR Example: Forward Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan = 

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)
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Finding Applicable Actions: 
Algorithm
function addApplicables(A, op, precs, σ, s)

if precs+.isEmpty() then
for every np in precs- do

if s.falsifies(σ(np)) then return
A.add(σ(op))

else
pp precs+.chooseOne()
for every sp in s do

σ’ σ.extend(sp, pp)
if σ’.isValid() then

addApplicables(A, op, (precs - pp), σ’, s)
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Properties of Forward Search
Proposition: fwdSearch is sound, i.e. if the function 
returns a plan as a solution then this plan is indeed a 
solution.
• proof idea: show (by induction) state=γ(si,plan) at the 

beginning of each iteration of the loop

Proposition: fwdSearch is complete, i.e. if there exists 
solution plan then there is an execution trace of the 
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace 

for which plan is a prefix of the sought plan
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Making Forward Search 
Deterministic

idea: use depth-first search
• problem: infinite branches
• solution: prune repeated states

pruning: cutting off search below certain 
nodes
• safe pruning: guaranteed not to prune every solution
• strongly safe pruning: guaranteed not to prune every 

optimal solution
• example: prune below nodes that have a 

predecessor that is an equal state (no repeated 
states)
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner
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The Problem with Forward 
Search

number of actions applicable in any 
given state is usually very large
branching factor is very large
forward search for plans with more than 
a few steps not feasible

idea: search backwards from the goal
problem: many goal states
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Relevance and Regression Sets

Let P=(Σ,si,g) be a STRIPS planning 
problem. An action a∈A is relevant for g
if 
• g ⋂ effects(a) ≠ {} and 
• g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}. 

The regression set of g for a relevant 
action a∈A is:
• γ -1(g,a)=(g - effects(a)) ∪ precond(a)
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Regression Function

The regression function Γ-m for a STRIPS 
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn} 

• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

The transitive closure of Γ-1 defines the set of 
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L
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State-Space Planning as a 
Search Problem

given: statement of a planning problem 
P=(O,si,g) 
define the search problem as follows:
• initial search state: g
• goal test for state s: si satisfies s
• path cost function for plan π: |π|
• successor function for state s: Γ-1(s)
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Solution Existence

Proposition: A propositional planning 
problem P=(Σ,si,g) (and a statement of 
such a problem P=(O,si,g) ) has a 
solution iff ∃s∈Γ<({g}) : si satisfies s.
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Ground Backward State-Space 
Search Algorithm
function groundBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if si.satisfies(subgoal) then return plan
applicables

{ground instances from O relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(subgoal, action)
plan 〈action〉 ∙ plan
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DWR Example: Backward 
Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan = 

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)
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Example: Regression with 
Operators

goal: at(robot,loc1)
operator: move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

actions: move(robot,l,loc1)
• l=?
• many options increase branching factor

lifted backward search: use partially 
instantiated operators instead of actions
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Lifted Backward State-Space 
Search Algorithm
function liftedBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan)
applicables

{(o,σ) | o∈O and σ(o) relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(σ(subgoal), σ(o))
plan σ(〈action〉) ∙ σ(plan)
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DWR Example: Lifted Backward 
Search

initial state: s0 = {attached(pile,loc1), 
in(cont,pile), top(cont,pile), 
on(cont,pallet), belong(crane,loc1), 
empty(crane), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(robot,loc2), 
occupied(loc2), unloaded(robot)}
operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l), 

¬occupied(m)
• effects: at(r,m), occupied(m), 

¬occupied(l), ¬at(r,l)

liftedBwdSearch(
{move(r,l,m)}, s0, {at(robot,loc1)} )

∃σ:si.satisfies(σ(subgoal)): no
applicables =
{(move(r1,l1,m1),{r1←robot, 
m1←loc1})}
subgoal = 
{adjacent(l1,loc1), at(robot,l1), 
¬occupied(loc1)}
plan = 〈move(robot,l1,loc1)〉

∃σ:si.satisfies(σ(subgoal)): yes
σ = {l1←loc1}

s0

loc1 loc2

palletcont.

crane

robot
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Properties of Backward Search
Proposition: liftedBwdSearch is sound, i.e. if the function 
returns a plan as a solution then this plan is indeed a 
solution.
• proof idea: show (by induction) subgaol=γ -1(g,plan) at the 

beginning of each iteration of the loop

Proposition: liftedBwdSearch is complete, i.e. if there 
exists solution plan then there is an execution trace of the 
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace 

for which plan is a suffix of the sought plan
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Avoiding Repeated States

search space: 
• let gi and gk be sub-goals where gi is an 

ancestor of gk in the search tree
• let σ be a substitution such that σ(gi) ⊆ gk

pruning:
• then we can prune all nodes below gk
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner
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Problems with Backward Search

state space still too large to search 
efficiently
STRIPS idea:
• only work on preconditions of the last operator 

added to the plan
• if the current state satisfies all of an operator’s 

preconditions, commit to this operator
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Ground-STRIPS Algorithm
function groundStrips(O,s,g)

plan 〈〉
loop

if s.satisfies(g) then return plan
applicables

{ground instances from O relevant for g-s}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subplan groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s γ(s, subplan ∙ 〈action〉)
plan plan ∙ subplan ∙ 〈action〉
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Problems with STRIPS

STRIPS is incomplete:
• cannot find solution for some problems, e.g. 

interchanging the values of two variables
• cannot find optimal solution for others, e.g. Sussman

anomaly:

Table

A B

C

Table

A

B

C
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STRIPS and the Sussman
Anomaly (1)

achieve on(A,B)
• put C from A onto table
• put A onto B

achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C A

BC

A
BC A

B
C

A
B
C

A
B
C
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STRIPS and the Sussman
Anomaly (2)

achieve on(B,C)
• put B onto C

achieve on(A,B)
• put B from C onto table
• put C from A onto table
• put A onto B

re-achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C

A

B
C

A

B
C A

B C

A
B C A

B
C

A
B
C

A
B
C



47

State-Space Search and the STRIPS Planner 93

Interleaving Plans for an 
Optimal Solution

shortest solution 
achieving on(A,B):

shortest solution 
achieving on(B,C):

shortest solution for 
on(A,B) and on(B,C):

put C from A onto table

put B onto C

put A onto B

put C from A onto table

put B onto C

put A onto B
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