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Classical Representations

e propositional representation
® world state is set of propositions
® action consists of precondition propositions,
propositions to be added and removed
e STRIPS representation

¢ like propositional representation, but first-order literals
instead of propositions

e state-variable representation
¢ state is tuple of state variables {x;,...,x,}
® action is partial function over states
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STRIPS Planning Domains:
Restricted State-Transition Systems

e A restricted state-transition system is a triple
2=(S,A,y), where:
® S={s,,s,,...} is a set of states;
* A={a,,a,,...} is a set of actions;
® y:SxA—S is a state transition function.
e defining STRIPS planning domains:
¢ define STRIPS states
® define STRIPS actions
® define the state transition function
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States in the STRIPS
Representation

e Let 2 be a first-order language with finitely

many predicate symbols, finitely many
constant symbols, and no function symbols.

e A state in a STRIPS planning domain is a set
of ground atoms of 4.
® (ground) atom p holds in state s iff pes
® s satisfies a set of (ground) literals g (denoted s k g) if:
® every positive literal in g is in s and
® every negative literal in g is not in s.
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DWR Example: STRIPS States

~

state = {attached(p1,loc1),
attached(p2,loc1),
in(c1,p1),in(c3,p1),
top(c3,p1), on(c3,c1),
on(c1,pallet), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1),
empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2, loc1),
at(r1,loc2), occupied(loc2),

\ unloaded(r1)}

locl
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Fluent Relations

flexible relations.
¢ example: at

rigid relation.
\ ¢ example: adjacent

e Predicates that represent relations, the
truth value of which can change from
state to state, are called a fluent or

e A state-invariant predicate is called a
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/Operators and Actions in \
STRIPS Planning Domains

e A planning operator in a STRIPS planning
domain is a triple
o = (name(0), precond(o), effects(o)) where:

® the name of the operator name(o) is a syntactic
expression of the form n(x,,...,x,) where nis a
(unique) symbol and x;,...,x, are all the variables that
appear in o, and

® the preconditions precond(o) and the effects effects(o)
of the operator are sets of literals.

e An action in a STRIPS planning domain is a

\ ground instance of a planning operator. J
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KDWR Example: STRIPS \
Operators

e move(r,l,m)
® precond: adjacent(/,m), at(r,/), "occupied(m)
¢ effects: at(r,m), occupied(m), "occupied(/), ~at(r,/)

e load(k,l,c,r)
¢ precond: belong(k,/), holding(k,c), at(r,/), unloaded(r)
® effects: empty(k), 7holding(4;c), loaded(r,¢), "unloaded(/)

e put(k/cdp)
® precond: belong(k;,), attached(p,), holding(4,¢), top(d.,p)
¢ effects: “holding(4,c), empty(4), in(c,p), top(c,p), on(c,a),
“top(a,p)

- J
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Applicability and State
Transitions

e Let L be a set of literals.
® [*is the set of atoms that are positive literals in L and
® L is the set of all atoms whose negations are in L.
e Let a be an action and s a state. Then a is
applicable in s iff:

® precond*(a) € s; and
® precond-(a) n s ={}.
e The state transition function yfor an applicable
action agin state sis defined as:
® Ys.a) = (s- effects’(a)) U effects*(a)
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STRIPS Planning Domains

e Let < be a function-free first-order language. A
STRIPS planning domain on £ is a restricted
state-transition system >=(S,A,y) such that:

® Sis a set of STRIPS states, i.e. sets of ground atoms

® Ais a set of ground instances of some STRIPS
planning operators O
® y:SxA—S where
® y(s,a)=(s - effects (a)) u effects*(a) if a is applicable in s
® y(s,a)=undefined otherwise
® Sis closed under y

State-Space Search and the STRIPS Planner
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STRIPS Planning Problems

.

e A STRIPS planning problem is a triple

7=(2,s,,9) where:

® 2=(S,A,y) is a STRIPS planning domain on

some first-order language £
® seSis the initial state

® gis a set of ground literals describing the
goal such that the set of goal states is:

S,={seS | s satisfies g}

J
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Problem

KDWR Example: STRIPS Planning \

-

e >: STRIPS planning domain for DWR domain

e S any state
* example: s, = {attached(pile,loc1),
in(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}

e g: any subset of L

* example: g = {~unloaded(robot),
at(robot,loc2)}, i.e. S;={ss}

L.

locl loc2

locationl location2

Ss

State-Space Search and the STRIPS Planner
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Statement of a STRIPS Planning
Problem

e A statement of a STRIPS planning

problem is a triple P=(0O,s,,g) where:

® O s a set of planning operators in an
appropriate STRIPS planning domain
2=(S,Ay)onL

® s, is the initial state in an appropriate STRIPS
planning problem 2=(Z,s;,9)

® gis a goal (set of ground literals) in the same
STRIPS planning problem 2

State-Space Search and the STRIPS Planner

Classical Plans

e A plan is any sequence of actions m=(ay,...,a,),
where A=0.
® The length of plan 1 is |7|=k, the number of actions.
* If m=ay,....ap and m=(a’,...,a)) are plans, then their
concatenation is the plan m,*m,=(ay,...,a,a’,....a).
® The extended state transition function for plans is
defined as follows:

® y(s,m)=s if k=0 (1 is empty)
® v(s,m)=v(y(s,a,),(@...,ap) if &0 and a, applicable in s
® y(s,m)=undefined otherwise

State-Space Search and the STRIPS Planner
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Classical Solutions

o Let 2=(2,s,,g) be a planning problem. A
plan 17 is a solution for 2 if (s, m)
satisfies g.

® A solution r7is redundant if there is a proper
subsequence of r7is also a solution for 2.

® 77is minimal if no other solution for 2 contains
fewer actions than 1.

State-Space Search and the STRIPS Planner 17

DWR Example: Solution Plan

e plan mm, =
¢ ( move(robot,loc2,loc1),
¢ take(crane,loc1,cont,pallet,pile),
¢ load(crane,loc1,cont,robot),
® move(robot,loc1,loc2) )
o T |=4
e 17, is @ minimal, non-redundant solution

State-Space Search and the STRIPS Planner 18
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PDDL Basics

e http://cs-www.cs.yale.edu/homes/dvm/

e language features (version 1.x):

¢ basic STRIPS-style actions

¢ various extensions as explicit requirements
e used to define:

¢ planning domains: requirements, types,
predicates, possible actions

¢ planning problems: objects, rigid and fluent
relations, initial situation, goal description

State-Space Search and the STRIPS Planner 20
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PDDL 1.x Domains

<domain> ::= <types-def> ::= (:types <typed list (name)>)
(define (domain <name>) <constants-def> ::=
[<extension-def>] (:constants <typed list (name)>)
[<require-def>] <domain-vars-def> ::=
[<types-def>]typing (:domain-variables
[<constants-def>] <typed list(domain-var-declaration)>)
[<domain-vars-def>]:expression-evaluation <predicates-def> ::=
[<predicates-def>] (:predicates <atomic formula skeleton>+)
[<timeless-def>] <atomic formula skeleton> ::=
[<safety-def>]safety-constraints (<predicate> <typed list (variable)>)
<structure-def>*) <predicate> ::= <name>
<variable> ::= ?<name>
<extension-def> ::= <timeless-def> ::=
(:extends <domain name>+) (:timeless <literal (name)>+)
<require-def> ::= <structure-def> ::= <action-def>
(:requirements <require-key>+) <structure-def> ::=domain-axioms <gxjom-def>
<require-key> ::= <structure-def> ::=:action-expansions <method-def>

:strips | :typing | ...

State-Space Search and the STRIPS Planner
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PDDL Types

e PDDL types syntax
<typed list (x)> ::= x*
<typed list (x)> ::=ping
X* - <type> <typed list(x)>
<type> ::= <name>
<type> ::= (either <type>")
<type> ::=fluents (fluent <type>)

State-Space Search and the STRIPS Planner
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Example: DWR Types

(define (domain dock-worker-robot)

(:requirements :strips :typing )

(:types

location :there are several connected locations
pile ;is attached to a location,

;it holds a pallet and a stack of containers
robot ;holds at most 1 container,

;only 1 robot per location
crane ;belongs to a location to pickup containers
container )

)
State-Space Search and the STRIPS Planner 23

Example: DWR Predicates

(:predicates

gadjacent ?11 ?12 - location) ;location ?11 is adjacent to ?12
attached ?p - pile ?I - location) ;pile ?p attached to location ?I
(belong ?k - crane ?I - location) ;crane ?k belongs to location ?I
(at ?r - robot ?I - location) ;robot ?r is at location ?I

(occupied ?I - location) ;there is a robot at location ?I
(loaded ?r - robot ?c - container ) ;robot ?r is loaded with container ?c
(unloaded ?r - robot) ;robot ?r is empty

(holding ?k - crane ?c - container) ;crane ?k is holding a container ?c
(empty ?k - crane) ;crane 7K is empty

in ?c - container ?p - pile) ;container ?c is within pile ?p

top ?c - container ?p - pile) ;container ?c is on top of pile ?p

on ?c1 - container ?c2 - container) ;container ?c1 is on container ?c2

State-Space Search and the STRIPS Planner 24
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PDDL Actions

<action-def> ::=
(:action <action functor>
:parameters ( <typed list (variable)> )
<action-def body>)
<action functor> ::= <name>
<action-def body> ::=
[:vars (<typed |ist(variab|e)>)]:existentiaI—preconditions :conditional-effects
[:precondition <GD>]
[:expansion <action spec>]-action-expansions
[:expansion :methods]-action-expansions
[:maintain <GD>]:action—expansions
[:effect <effect>]
[:only-in-expansions <boolean>]-action-expansions

State-Space Search and the STRIPS Planner
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PDDL Goal Descriptions

<GD> ::= <atomic formula(term)>

<GD> ::= (and <GD>*)

<GD> ::= <literal(term)>

<GD> ::=:disjunctive—preconditions (or <GD>+)

<GD> ::=:disjunctive—preconditions (not <GD>)

<GD> ::=:disjunctive-preconditions (|mply <GD> <GD>)

<GD> :;=existential-preconditions (gxists (<typed list(variable)>) <GD> )
<GD> ::=:universal-preconditions (forg|| (<typed list(variable)>) <GD> )
<literal(t)> ::= <atomic formula(t)>

<literal(t)> ::= (not <atomic formula(t)>)

<atomic formula(t)> ::= (<predicate> t*)

<term> ::= <name>

State-Space Search and the STRIPS Planner
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PDDL Effects

<effect> ::= (and <effect>*)
<effect> ::= <atomic formula(term)>
<effect> ::= (not <atomic formula(term)>)
<effect> ::=:conditional-effects
(forall (<variable>*) <effect>)
<effect> ::=:conditional-effects
(when <GD> <effect>)
<effect> ::=fluents (change <fluent> <expression>)

N\
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Example: DWR Action

;; moves a robot between two adjacent locations

(:action move
:parameters (?r - robot ?from ?to - location)
:precondition (and
(adjacent ?from ?to) (at ?r ?from)
(not (occupied ?to)))
.effect (and
(at ?r ?to) (occupied ?to)

\ (not (occupied ?from)) (not (at ?r ?from)) )) /

State-Space Search and the STRIPS Planner 28
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PDDL Problem Descriptions

<problem> ::= (define (problem <name>)

(:domain <name>)
[<require-def>]
[<situation> ]

[<object declaration> ]
[<init>]

<goal>*
[<length-spec> 1)

<object declaration> ::= (:objects <typed list (name)>)

<situation> ::= (:situation <initsit name>)

<initsit name> ::= <name>
<init> ::= (Cinit <literal(name)>*)
<goal> ::= (:goal <GD>)

<goal> ::=action-expansions (:expansjon <action spec(action-term)>)
<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

State-Space Search and the STRIPS Planner

.

Example: DWR Problem

;; @ simple DWR problem with 1 robot and 2
locations
(define (problem dwrpb1)
:domain dock-worker-robot)
:objects
r1 - robot
11 12 - location
k1 k2 - crane
p191p2q2 - pile
ca cb cc cd ce cf pallet - container)

adjacent |1 12
adjacent 12 11
attached p1 I1§

(:init

attached q1 11
attached p2 12
attached g2 12
belong k1 11
belong k2 12

in ca p1) (in cb p1L(|n ccpl)
on ca pallet) (on cb ca) (on cc cb)
top cc p1)

incd q1) (in ce q1) (in cf q1)
on cd pallet) (on ce cd) (on cf ce)
top cfq1)

%top pallet p2;
top pallet g2

atr1 1)
unloaded r1)
occupied I1)

ene )

;; task is to move all containers to locations 12
;; ca and cc in pile p2, the rest in g2
(:goal (and

in ca p2) (in cc p2

in cb g2) (in cd g2) (in ce g2) (in cf g2))))

State-Space Search and the STRIPS Planner
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Search Problems

e initial state

e set of possible actions/applicability conditions
® successor function: state > set of <action, state>
® successor function + initial state = state space
® path (solution)

e goal
® goal state or goal test function

e path cost function
¢ for optimality
® assumption: path cost = sum of step costs

State-Space Search and the STRIPS Planner 32
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/Missionaries and Cannibals:
Initial State and Actions

~

e initial state:

® all missionaries, all
cannibals, and the
boat are on the left
bank

.

e 5 possible actions:
one missionary crossing

one cannibal crossing

two missionaries
crossing

two cannibals crossing

one missionary and one

cannibal crossing

J
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KMissionaries and Cannibals:
Successor Function

state

set of <action, state>

(L:3m,3c,b-R:0m,0c) 2> | {<2c, (L:3m,1c-R:0m,2¢c,b)>,
<1m1c, (L:2m,2¢c-R:1m,1c,b)>,
<1c, (L:3m,2¢c-R:0m,1c,b)>}

(L:3m,1c-R:0m,2¢,b) > | {<2c, (L:3m,3c,b-R:0m,0c)>,
<1c, (L:3m,2¢,b-R:0m,1c)>}

(L:2m,2¢c-R:1m,1c,b) 2> | {<1m1c, (L:3m,3c,b-R:0m,0c)>,

<1m, (L:3m,2c,b-R:0m,1¢c)>}

N
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Missionaries and Cannibals:
State Space

A“

State-Space Search and the STRIPS Planner
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Missionaries and Cannibals:
Goal State and Path Cost

~

e goal state: e path cost
® all missionaries, all ® step cost: 1 for each
cannibals, and the crossing
boat are on the right * path cost: number of
bank crossings = length of
path
Aa, : .
®oo e solution path:
® 4 optimal solutions
® cost: 11

/

State-Space Search and the STRIPS Planner
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Real-World Problem:
Touring in Romania

Dobreta ]

State-Space Search and the STRIPS Planner

37

-

Touring Romania:
Search Problem Definition

.

initial state:
® In(Arad)
possible Actions:

® DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara),
etc.

goal state:
® In(Bucharest)

step cost:
® distances between cities

State-Space Search and the STRIPS Planner
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Search Trees

e search tree: tree structure defined by initial
state and successor function

e Touring Romania (partial search tree):

In(Fagaras)

State-Space Search and the STRIPS Planner 39
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Search Nodes

e search nodes: the nodes in the search tree

e data structure:
¢ state: a state in the state space

® parent node: the immediate predecessor in the search
tree

® action: the action that, performed in the parent node’s
state, leads to this node’s state

® path cost: the total cost of the path leading to this
node

\ ® depth: the depth of this node in the search tree /

State-Space Search and the STRIPS Planner 40
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Fringe Nodes
in Touring Romania Example

fringe nodes: nodes that have not been
expanded

In(Timisoara)
In(Rimnicu Vilcea)
In(Bucharest)

State-Space Search and the STRIPS Planner 41

Search (Control) Strategy

e search or control strategy: an effective
method for scheduling the application of the
successor function to expand nodes

® selects the next node to be expanded from the fringe
® determines the order in which nodes are expanded
® aim: produce a goal state as quickly as possible
e examples:
® LIFO/FIFO-queue for fringe nodes
¢ alphabetical ordering

State-Space Search and the STRIPS Planner 42
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General Tree Search Algorithm

function treeSearch(problem, strategy)
fringe € { new
searchNode(problem.initialState) }
loop
iIf empty(fringe) then return failure
node < selectFrom(fringe, strategy)
if problem.goalTest(node.state) then
return pathTo(node)
fringe < fringe + expand(problem, node)

State-Space Search and the STRIPS Planner 43

General Search Algorithm:
Touring Romania Example

In(Timisoara)
In(Rimnicu Vilcea)
In(Bucharest)

O fringe
. selected

State-Space Search and the STRIPS Planner 44
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Uninformed vs. Informed Search

e uninformed search (blind search)

® no additional information about states beyond
problem definition

¢ only goal states and non-goal states can be
distinguished

e informed search (heuristic search)

¢ additional information about how “promising”
a state is available

- J

State-Space Search and the STRIPS Planner
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KBreadth-First Search:
Missionaries and Cannibals

!l!
ldepth = 0‘

|

l depth
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State-Space Search and the STRIPS Planner

23



J

/Depth-First Search:
Missionaries and Cannibals

o
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Iterative Deepening Search

e Strategy:

¢ based on depth-limited (depth-first) search

® repeat search with gradually increasing depth
limit until a goal state is found

e implementation:
for depth €< 0to ~ do

result < depthLimitedSearch(problem, depth)
\ if result # cutoff then return result

J

48
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Discovering Repeated States:
Potential Savings

e sometimes repeated states are unavoidable,
resulting in infinite search trees

e checking for repeated states:
® infinite search tree = finite search tree
® finite search tree = exponential reduction

< <
& &
[0}
=) Qo =
3 < 3
® &) ®
o © o
» B »
o & o
ae) ae)
» »
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e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

Problem-Solving by Search
Heuristic Search

Forward State-Space Search
e Backward State-Space Search
The STRIPS Planner

\d
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Best-First Search

¢ an instance of the general tree search or
graph search algorithm

¢ strategy: select next node based on an
levaluation function f: state space - R |

¢ select node with lowest value f(n)
e implementation:
selectFrom(fringe, strategy)

¢ priority queue: maintains fringe in ascending
order of f~values

State-Space Search and the STRIPS Planner 51

Heuristic Functions

e heuristic function h: state space — R |

e /(n) = estimated cost of the cheapest
path from node nto a goal node

e if nis a goal node then A(n) must be 0

e heuristic function encodes problem-
specific knowledge in a problem-
independent way

State-Space Search and the STRIPS Planner 52
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Greedy Best-First Search

e use heuristic function as evaluation
function: f(n) = h(n)
¢ always expands the node that is closest to the
goal node

¢ eats the largest chunk out of the remaining
distance, hence, “greedy”

State-Space Search and the STRIPS Planner 53

Touring in Romania: Heuristic

e hg, p(n) = straight-line distance to Bucharest

Arad 366 | Hirsova 151 | Rimnicu 193
Bucharest 0 |lasi 226 | Vilcea

Craiova 160 | Lugoj 244 | Sibiu 253
Dobreta 242 | Mehadia 241 | Timisoara 329
Eforie 161 | Neamt 234 | Urziceni 80
Fagaras 176 | Oradea 380 | Vaslui 199
Giurgiu 77 | Pitesti 100 | Zerind 374

State-Space Search and the STRIPS Planner 54
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Greediness

e greediness is susceptible to false starts

e repeated states may lead to infinite oscillation

.f i ; ! Einitial state
@ goal state

State-Space Search and the STRIPS Planner 55

A* Search

e best-first search where
f(n) = h(n) + g(n)
® h(n) the heuristic function (as before)
® g(n) the cost to reach the node n
e evaluation function:
f(n) = estimated cost of the cheapest
solution through n

e A* search is optimal if h(n) is admissible

State-Space Search and the STRIPS Planner 56
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Admissible Heuristics

A heuristic h(n) is admissible if it never
overestimates the distance from n to the nearest
goal node.

e example: hg

e A* search: If h(n) is admissible then f(n) never
overestimates the true cost of a solution
through n.

. J

State-Space Search and the STRIPS Planner

Touring Romania

O fringe
. selected

449 447

| Fagaras | |Rimnicu Vilcea|
(415) (413)

Sibiu

Lsen | [*
(591)

Pitesti
417

charest | Craiova
(450) (526)

Bucharest| Craiova RimnicuViIcea| =
(418) (615) (607) /—

State-Space Search and the STRIPS Planner
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/A* (Best-First) Search: \
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Optimality of A* (Tree Search)

Theorem:

A* using tree search is optimal if the
heuristic h(n) is admissible.

State-Space Search and the STRIPS Planner 59

A*: Optimally Efficient

e A* is optimally efficient for a given
heuristic function:
no other optimal algorithm is guaranteed
to expand fewer nodes than A*.

e any algorithm that does not expand all
nodes with f(n) < C* runs the risk of
missing the optimal solution

State-Space Search and the STRIPS Planner 60
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A* and Exponential Space

e A* has worst case time and space
complexity of O(b')

e exponential growth of the fringe is
normal

¢ exponential time complexity may be
acceptable

¢ exponential space complexity will exhaust any
computer’s resources all too quickly

State-Space Search and the STRIPS Planner 61

Overview
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L 2
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State-Space Search

~

.

e idea: apply standard search algorithms

(breadth-first, depth-first, A*, etc.) to
planning problem:

® search space is subset of state space

® nodes correspond to world states

¢ arcs correspond to state transitions

¢ path in the search space corresponds to plan

J

State-Space Search and the STRIPS Planner
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DWR Example: State Space

~

locationl location2 locatio

Sy
N

crane crane crane
j F So j F Sy — F S5
—_—
5 — | —= /1

=3

location2 locationl

location2

Ccrane S1 crane s3 crane S4
- 4

-

Zpllet/
] { sronot J )
locationl location2 locationl location2 locationl location2
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Search Problems

e initial state

e set of possible actions/applicability conditions
® successor function: state > set of <action, state>
® successor function + initial state = state space
® path (solution)

e goal
® goal state or goal test function

e path cost function
® for optimality
® assumption: path cost = sum of step costs

State-Space Search and the STRIPS Planner 65

State-Space Planning as a
Search Problem

e given: statement of a planning problem
P=(0,s;9)
e define the search problem as follows:
¢ initial state: s;
¢ goal test for state s: s satisfies g
® path cost function for plan r: |7]
® successor function for state s: ()

State-Space Search and the STRIPS Planner 66
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Reachable Successor States

e The successor function [:25—-25 for a
STRIPS domain Z=(S,A,y) is defined as:

® I'(s)={s,a) | acA and a applicable in s} for seS

* T{sy,--.80)= Uuepr.mpl (S0

* 1%{s,,...,s p)=4{s;,..-,5,} S1,--,5,€S
5)

e The transitive closure of [ defines the set of all
reachable states:

® (8)= Uyyepo.plUSH for seS
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Solution Existence

e Proposition: A STRIPS planning
problem 2=(,s;g9) (and a statement of

such a problem P=(0O,s;,g) ) has a
solution iff S,n ™>({s}) # {}.
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/ Forward State-Space Search
Algorithm

state € s;
plan < ()
loop

action €

function fwdSearch(O,s;,9)

if state.satisfies(g) then return plan
applicables <

{ground instances from O applicable in state}
if applicables.isEmpty() then return failure

applicables.chooseOne()

state < y(state,action)

K plan € plan ¢ (action)

State-Space Search and the STRIPS Planner

-

J

69

~

DWR Example: Forward Search

initial state:

plan =

crane S
| o

locl loc2

goal state:

move(robot,loc1,loc2)

take(crane,loc1,cont,pallet,pile) BEE
move(robot,loc2,loc1)
load(crane,loc1,cont,robot)

locl

S5

loc2

crane s,
attey/ (| A

crane
S3
—_ —_—

locl loc2

crane
— F Sy
/1

locl

[ FObOoT |
locl loc2

loc2 /
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Finding Applicable Actions:
Algorithm

function addApplicables(A, op, precs, o, S)
if precs’.isEmpty() then
for every np in precs do
if s.falsifies(o(np)) then return
A.add(o(op))
else
pp € precs*.chooseOne()
for every spin sdo
o’ €< o.extend(sp, pp)
if o’.isValid() then
addApplicables(A, op, (precs - pp), ¢’, S)
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Properties of Forward Search

e Proposition: fwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.

® proof idea: show (by induction) state=y(s,plan) at the
beginning of each iteration of the loop

e Proposition: fwdSearch is complete, i.e. if there exists
solution plan then there is an execution trace of the
function that will return this solution plan.

¢ proof idea: show (by induction) there is an execution trace
for which plan is a prefix of the sought plan
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Making Forward Search
Deterministic

e idea: use depth-first search
® problem: infinite branches
® solution: prune repeated states

e pruning: cutting off search below certain
nodes
® safe pruning: guaranteed not to prune every solution

® strongly safe pruning: guaranteed not to prune every
optimal solution

¢ example: prune below nodes that have a
predecessor that is an equal state (no repeated
states)
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Overview

The STRIPS Representation

The Planning Domain Definition Language
(PDDL)

Problem-Solving by Search
Heuristic Search

Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

\d
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The Problem with Forward
Search

e number of actions applicable in any
given state is usually very large

e branching factor is very large

e forward search for plans with more than
a few steps not feasible

e idea: search backwards from the goal
e problem: many goal states
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Relevance and Regression Sets

o Let 2=(Z,s,,9) be a STRIPS planning
problem. An action a<A is relevant for g
if
® g n effects(a) * {} and
® g* n effects’(a) = {} and g n effects*(a) = {}.

e The regression set of gfor a relevant
action acA is:

* y-(g,a)=(g - effects(a)) U precond(a)
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Regression Function

e The regression function [ for a STRIPS
domain 2=(S,A,y) on L is defined as:
* "(g)={y'(g,a) | acA is relevant for g}  for ge2L

* T°(g1,--9)= {9190}

* {94,907 U(ke[1,n])r'1(gk) } G1s--gpe2t
* T({gy,---,9,h)= T I({gy,....9,)))

e The transitive closure of [*! defines the set of
all regression sets:

* T5(9)= Ypepo.)(ah) for ge2*

State-Space Search and the STRIPS Planner

State-Space Planning as a
Search Problem

e given: statement of a planning problem
P=(0O,s;9)
e define the search problem as follows:
¢ initial search state: g
¢ goal test for state s: s; satisfies s
® path cost function for plan r: |7]
® successor function for state s: ()

State-Space Search and the STRIPS Planner
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Solution Existence

e Proposition: A propositional planning
problem 2=(,s;,9) (and a statement of

such a problem P=(0O,s;,g) ) has a
solution iff 3sel<({g}) : s satisfies s.
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Ground Backward State-Space
Search Algorithm

function groundBwdSearch(O,s;,9)

subgoal < g

plan € ()

loop
if s;.satisfies(subgoal) then return plan
applicables <

{ground instances from O relevant for subgoal}

if applicables.isEmpty() then return failure
action < applicables.chooseOne()
subgoal €< y-'(subgoal, action)
plan €< (action) * plan
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/ DWR Example: Backward \
Search

initial state: plan = goal state:
crane So take(crane,loc1,cont,pallet,pile) crane S5
move(robot,loc2,loc1)
!7 - load(crane,loc1,cont,robot) p
[FonoT move(robot,loc1,loc2) [Fonot )
locl loc2 locl loc2

crane crane crane
S, S3 Sy
o /pliey Va -
b b I [grobot |
locl loc2 locl loc2 j

(
i=3
iz}
=
-
i=3
0
NE
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f Example: Regression with \
Operators

e goal: at(robot,loc1)
e operator: move(r,/,m)

® precond: adjacent(/,m), at(r,/), "occupied(m)

® effects: at(r,m), occupied(m), ~occupied(/), ~at(r,/)
e actions: move(robot,/loc1)

® =7

® many options increase branching factor

e lifted backward search: use partially

\ instantiated operators instead of actions /
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/ Lifted Backward State-Space
Search Algorithm

subgoal < g
plan < ()
loop

applicables <

function liftedBwdSearch(O,s;9)

if Jo:s;.satisfies(o(subgoal)) then return o(plan)

{(0,0) | 0€0O and o(o) relevant for subgoal}
if applicables.isEmpty() then return failure
action < applicables.chooseOne()
subgoal €< y-'(o(subgoal), a(0))

K plan € o((action)) * a(plan)

J
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Search

f DWR Example: Lifted Backward \

crane S
L

locl loc2

in(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2
occupied(loc2), unloaded(robot)}

e operator:move(r,/,m)

® precond: adjacent(/,m), at(r,/),

—occupied(m)
* effects: at(r,m), occupied(m),
—occupied(/), 7at(r,/)

o initial state: s, = {attached(pile,loc1),

liftedBwdSearch
{move(r,,m)}, s,, {at(robot,loc1)} )

Jo:s;satisfies(o(subgoal)): no
applicables =
{(move(ry,l,,m,),{r;«robot,
my«—loc1

subgoal =

{adjacent(/,,loc1), at(robot,/,),
-'occupiedZ|oc1)}

plan = (move(robot,/,,loc1))

Jo:s;satisfies(o(subgoal)): yes
o = {l;«loc1}

/
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Properties of Backward Search

e Proposition: liftedBwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.

® proof idea: show (by induction) subgaol=y-'(g,plan) at the
beginning of each iteration of the loop

e Proposition: liftedBwdSearch is complete, i.e. if there
exists solution plan then there is an execution trace of the
function that will return this solution plan.

¢ proof idea: show (by induction) there is an execution trace
for which plan is a suffix of the sought plan
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Avoiding Repeated States

e search space:

¢ let g;and g, be sub-goals where g; is an
ancestor of g, in the search tree

¢ let o be a substitution such that o(g;) € g,
e pruning:
¢ then we can prune all nodes below g,
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

Problem-Solving by Search
Heuristic Search

Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

A 4
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Problems with Backward Search

e state space still too large to search
efficiently
e STRIPS idea:

¢ only work on preconditions of the last operator
added to the plan

¢ if the current state satisfies all of an operator’s
preconditions, commit to this operator
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Ground-STRIPS Algorithm

function groundStrips(O,s,g)

plan < ()

loop
if s.satisfies(g) then return plan
applicables <

{ground instances from O relevant for g-s}

if applicables.isEmpty() then return failure
action < applicables.chooseOne()
subplan < groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s € y(s, subplan < {action))
plan €< plan « subplan « {action)
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Problems with STRIPS

e STRIPS is incomplete:

® cannot find solution for some problems, e.g.
interchanging the values of two variables

® cannot find optimal solution for others, e.g. Sussman

anomaly:
A
c — :
A B C
| Table | | Table
State-Space Search and the STRIPS Planner 90
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STRIPS and the Sussman
Anomaly (1)

e achieve on(A,B)
¢ put C from A onto table
® put A onto B [M EI]Q[ E\&]
e achieve on(B,C)

® put A from B onto table
® putBontoC i @&]Q[W

e re-achieve on(A,B)
* put A onto B [W ]E>[

ow]

o[w[>]
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STRIPS and the Sussman
Anomaly (2)

e achieve on(B,C)
® putBonto C

e achieve on(A,B)
® put B from C onto table
® put C from A onto table

[B] | E>[ A
o Ble
® put Aonto B 1 l 1
e re-achieve on(B,C)

[
IA
® put A from B onto table A
® putBonto C 8] C] I:>

e re-achieve on(A,B)

* put Aonto B B] E>
[A] IC
Al [c]
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/Interleaving Plans for an
Optimal Solution

~

e shortest solution e shortest solution for
achieving on(A,B): on(A,B) and on(B,C):
| put C from A onto table |
| put A onto B |

e shortest solution
achieving on(B,C):

| put B onto C |

.
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Overview

e The STRIPS Representation

e The Planning Domain Definition Language
(PDDL)

Problem-Solving by Search
Heuristic Search

Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

L 2

-
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