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Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions, 

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals 

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states

Classical Representations
•propositional representation

•world state is set of propositions
•action consists of precondition propositions, 
propositions to be added and removed

•STRIPS representation
•named after STRIPS planner
•like propositional representation, but first-order literals 
instead of propositions
•most popular for restricted state-transitions systems

•state-variable representation
•state is tuple of state variables {x1,…,xn}
•action is partial function over states
•useful where state is characterized by attributes over finite 
domains

•equally expressive: planning domain in one representation can 
also be represented in the others
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

now: the best-known knowledge representation formalism 
for reasoning about actions

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner
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STRIPS Planning Domains: 
Restricted State-Transition Systems

A restricted state-transition system is a triple 
Σ=(S,A,γ), where:
• S={s1,s2,…} is a set of states;
• A={a1,a2,…} is a set of actions;
• γ:S×A→S is a state transition function.

defining STRIPS planning domains:
• define STRIPS states
• define STRIPS actions
• define the state transition function

STRIPS Planning Domains: Restricted State-Transition 
Systems
•A restricted state-transition system is a triple Σ=(S,A,γ), 
where:

•S={s1,s2,…} is a set of states;
•A={a1,a2,…} is a set of actions;
•γ:S×A→S is a state transition function.

•defining STRIPS planning domains:
•to do to define the representation:
•define STRIPS states
•define STRIPS actions
•define the state transition function
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States in the STRIPS 
Representation

Let L be a first-order language with finitely 
many predicate symbols, finitely many 
constant symbols, and no function symbols.
A state in a STRIPS planning domain is a set 
of ground atoms of L.
• (ground) atom p holds in state s iff p∈s
• s satisfies a set of (ground) literals g (denoted s ⊧ g) if:

• every positive literal in g is in s and
• every negative literal in g is not in s.

States in the STRIPS Representation
•Let L be a first-order language with finitely many predicate 
symbols, finitely many constant symbols, and no function 
symbols.

•terms in L are either constants or a variables
•extensions of L will follow later

•A state in a STRIPS planning domain is a set of ground 
atoms of L.

•note: number of different states is finite
•(ground) atom p holds in state s iff p∈s

•closed-world assumption
•s satisfies a set of (ground) literals g (denoted s ⊧ g) if:

•literals: atoms and negated atoms
•every positive literal in g is in s and
•every negative literal in g is not in s.

•definitions for “holds” and “satisfies” may be generalized 
using substitutions



7

State-Space Search and the STRIPS Planner 7

DWR Example: STRIPS States
state = {attached(p1,loc1), 

attached(p2,loc1), 
in(c1,p1),in(c3,p1), 
top(c3,p1), on(c3,c1), 
on(c1,pallet), in(c2,p2), 
top(c2,p2), on(c2,pallet), 
belong(crane1,loc1), 
empty(crane1), 
adjacent(loc1,loc2), 
adjacent(loc2, loc1), 
at(r1,loc2), occupied(loc2), 
unloaded(r1)}

loc1

loc2

pallet

crane1

r1

pallet

c2

c1

p2

p1

c3

DWR Example: STRIPS States
•predicate symbols: relations for DWR domain
•constant symbols: for objects in the domain {loc1, loc2, r1, 
crane1, p1, p2, c1, c2, c3, pallet}
•state = {attached(p1,loc1), attached(p2,loc1), 
in(c1,p1),in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), 
in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), 
empty(crane1), adjacent(loc1,loc2), adjacent(loc2, loc1), 
at(r1,loc2), occupied(loc2), unloaded(r1)}
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Fluent Relations

Predicates that represent relations, the 
truth value of which can change from 
state to state, are called a fluent or 
flexible relations.
• example: at

A state-invariant predicate is called a 
rigid relation.
• example: adjacent

Fluent Relations
•note: whether an atom holds in a state may or may not depend 
on the state
•Predicates that represent relations, the truth value of which 
can change from state to state, are called a fluent or flexible 
relations.

•example: at
•changes when the robot moves

•A state-invariant predicate is called a rigid relation.
•example: adjacent

•cannot be changed by any of the actions in the domain
•atoms involving this relation do not have a state or 
situation argument
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Operators and Actions in 
STRIPS Planning Domains

A planning operator in a STRIPS planning 
domain is a triple 
o = (name(o), precond(o), effects(o)) where:
• the name of the operator name(o) is a syntactic 

expression of the form n(x1,…,xk) where n is a 
(unique) symbol and x1,…,xk are all the variables that 
appear in o, and

• the preconditions precond(o) and the effects effects(o) 
of the operator are sets of literals.

An action in a STRIPS planning domain is a 
ground instance of a planning operator.

Operators and Actions in STRIPS Planning Domains
•A planning operator in a STRIPS planning domain is a triple 
o = (name(o), precond(o), effects(o)) where:

•the name of the operator name(o) is a syntactic 
expression of the form n(x1,…,xk) where n is a (unique) 
symbol and x1,…,xk are all the variables that appear in o, 
and

•unique: no two operators in the same domain must 
have the same name symbol

•the preconditions precond(o) and the effects effects(o) 
of the operator are sets of literals.

•only variables mentioned in the name are allowed to 
appear in these literals

•An action in a STRIPS planning domain is a ground instance 
of a planning operator.

•actions are also called operator instances
•note: rigid relation must not appear in the effects of an operator, 
only in the preconditions
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DWR Example: STRIPS 
Operators

move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

load(k,l,c,r)
• precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)
• effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

put(k,l,c,d,p)
• precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)
• effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d), 

¬top(d,p)

DWR Example: STRIPS Operators
•move(r,l,m)

•robot r moves from location l to an adjacent location m
•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•load(k,l,c,r)
•crane k at location l loads container c onto robot r
•precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)
•effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

•put(k,l,c,d,p)
•crane k at location l puts container c onto d in pile p
•precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)
•effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d), 
¬top(d,p)

•similar: unload and take operators
•action: just substitute variables with values consistently
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Applicability and State 
Transitions

Let L be a set of literals. 
• L+ is the set of atoms that are positive literals in L and 
• L- is the set of all atoms whose negations are in L.

Let a be an action and s a state. Then a is 
applicable in s iff:
• precond+(a) ⊆ s; and
• precond-(a) ⋂ s = {}.

The state transition function γ for an applicable 
action a in state s is defined as:
• γ(s,a) = (s – effects-(a)) ∪ effects+(a)

Applicability and State Transitions
•Let L be a set of literals. 

•L+ is the set of atoms that are positive literals in L and 
•L- is the set of all atoms whose negations are in L.
•specifically, for operators: precond+(a), precond-(a), 
effects+(a), and effects-(a) are defined in this way

•Let a be an action and s a state. Then a is applicable in s iff:
•precond+(a) ⊆ s; and
•precond-(a) ⋂ s = {}.

•The state transition function γ for an applicable action a in state s
is defined as:

•γ(s,a) = (s – effects-(a)) ∪ effects+(a)
•note implicit frame axioms: what is not mentioned as 
an effect persists
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STRIPS Planning Domains

Let L be a function-free first-order language. A 
STRIPS planning domain on L is a restricted 
state-transition system Σ=(S,A,γ) such that:
• S is a set of STRIPS states, i.e. sets of ground atoms
• A is a set of ground instances of some STRIPS 

planning operators O
• γ:S×A→S where 

• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is applicable in s
• γ(s,a)=undefined otherwise

• S is closed under γ

STRIPS Planning Domains
• Let L be a function-free first-order language. A STRIPS 

planning domain on L is a restricted state-transition 
system Σ=(S,A,γ) such that:

• S is a set of STRIPS states, i.e. sets of ground atoms
• STRIPS vs. propositional domains: ground atoms 

instead of propositions
• A is a set of ground instances of some STRIPS 

planning operators O
• abstraction in operator descriptions due to variables; 

action effectively same as propositional actions
• γ:S×A→S where 

• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is 
applicable in s

• γ(s,a)=undefined otherwise
• S is closed under γ
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STRIPS Planning Problems

A STRIPS planning problem is a triple 
P=(Σ,si,g) where:
• Σ=(S,A,γ) is a STRIPS planning domain on 

some first-order language L
• si∈S is the initial state
• g is a set of ground literals describing the  

goal such that the set of goal states is: 
Sg={s∈S | s satisfies g}

STRIPS Planning Problems
•A STRIPS planning problem is a triple P=(Σ,si,g) where:

•Σ=(S,A,γ) is a STRIPS planning domain on some first-
order language L
•si∈S is the initial state
•g is a set of ground literals describing the  goal such 
that the set of goal states is: Sg={s∈S | s satisfies g}

•note: g may contain positive and negated ground 
atoms (no closed world assumption for goals)
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DWR Example: STRIPS Planning 
Problem
Σ: STRIPS planning domain for DWR domain
si: any state
• example: s0 = {attached(pile,loc1), 

in(cont,pile), top(cont,pile), 
on(cont,pallet), belong(crane,loc1), 
empty(crane), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(robot,loc2), 
occupied(loc2), unloaded(robot)}

g: any subset of L
• example: g = {¬unloaded(robot), 

at(robot,loc2)}, i.e. Sg={s5}

s0

loc1 loc2

palletcont.

crane

robot

s5

location1 location2

pallet

crane

robot
cont.

DWR Example: STRIPS Planning Problem
•Σ: STRIPS planning domain for DWR domain

•see previous slides
•si: any state

•example: s0 = {attached(pile,loc1), in(cont,pile), 
top(cont,pile), on(cont,pallet), belong(crane,loc1), 
empty(crane), adjacent(loc1,loc2), adjacent(loc2,loc1), 
at(robot,loc2), occupied(loc2), unloaded(robot)}
•note: s0 is not necessarily initial state

•g: any subset of L
•example: g = {¬unloaded(robot), at(robot,loc2)}, i.e. Sg={s5}

•other relations will hold, but they are not mentioned in 
the goal = partial specification of a state
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Statement of a STRIPS Planning 
Problem

A statement of a STRIPS planning 
problem is a triple P=(O,si,g) where:
• O is a set of planning operators in an 

appropriate STRIPS planning domain 
Σ=(S,A,γ) on L

• si is the initial state in an appropriate STRIPS 
planning problem P=(Σ,si,g)

• g is a goal (set of ground literals) in the same 
STRIPS planning problem P

Statement of a STRIPS Planning Problem
•A statement of a STRIPS planning problem is a triple 
P=(O,si,g) where:

•O is a set of planning operators in an appropriate 
STRIPS planning domain Σ=(S,A,γ) on L

•note: statement based on operators rather than actions 
= operator instances

•si is the initial state in an appropriate STRIPS planning 
problem P=(Σ,si,g)
•g is a goal (set of ground literals) in the same STRIPS 
planning problem P

•statement is syntactic specification of STRIPS planning problem
•if two STRIPS planning problems have same statement, they will have same reachable 
states and solutions
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Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉, 
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their 

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is 

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise

Classical Plans
•note: classical definitions apply to all representations
•A plan is any sequence of actions π=〈a1,…,ak〉, where k≥0.

•k=0 means no actions in the empty plan
•The length of plan π is |π|=k, the number of actions.
•If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their 
concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
•The extended state transition function for plans is defined 
as follows:

•γ(s,π)=s if k=0 (π is empty)
•γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
•γ(s,π)=undefined otherwise

•plan corresponds to a path through the state space
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Classical Solutions

Let P=(Σ,si,g) be a planning problem. A 
plan π is a solution for P if γ(si,π) 
satisfies g.
• A solution π is redundant if there is a proper 

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains 

fewer actions than π.

Classical Solutions
•Let P=(Σ,si,g) be a propositional planning problem. A plan π
is a solution for P if g⊆γ(si,π).

•A solution π is redundant if there is a proper subsequence 
of π is also a solution for P.
•π is minimal if no other solution for P contains fewer actions 
than π.
•note: a minimal solution cannot be redundant

•solution is a path through the state space that leads from the 
initial state to a state that satisfies the goal
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DWR Example: Solution Plan

plan π1 = 
• 〈 move(robot,loc2,loc1), 
• take(crane,loc1,cont,pallet,pile), 
• load(crane,loc1,cont,robot), 
• move(robot,loc1,loc2) 〉

|π1|=4
π1 is a minimal, non-redundant solution

DWR Example: Solution Plan
•plan π1 = 

•〈 move(robot,loc2,loc1), 
•take(crane,loc1,cont,pallet,pile), 
•load(crane,loc1,cont,robot), 
•move(robot,loc1,loc2) 〉

•|π1|=4
•π1 is a minimal, non-redundant solution

•to the problem discussed previously
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

just done: the best-known knowledge representation 
formalism for reasoning about actions

•The Planning Domain Definition Language (PDDL)
•now: a syntax for the STRIPS representation (and 
extensions)

•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner
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PDDL Basics

http://cs-www.cs.yale.edu/homes/dvm/
language features (version 1.x):
• basic STRIPS-style actions
• various extensions as explicit requirements

used to define:
• planning domains: requirements, types, 

predicates, possible actions
• planning problems: objects, rigid and fluent 

relations, initial situation, goal description

PDDL Basics
•http://cs-www.cs.yale.edu/homes/dvm/

•Drew McDermott’s home page; PDDL 1.7 available 
(contains documentation version 1.2)
•developed for planning competition 1998; current version 
3.0

•language features (version 1.x):
•basic STRIPS-style actions
•various extensions as explicit requirements

•used to define:
•planning domains: requirements, types, predicates, 
possible actions
•planning problems: objects, rigid and fluent relations, 
initial situation, goal description
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PDDL 1.x Domains
<domain> ::= 

(define (domain <name>)
[<extension-def>]
[<require-def>]
[<types-def>]:typing

[<constants-def>]
[<domain-vars-def>]:expression−evaluation

[<predicates-def>]
[<timeless-def>]
[<safety-def>]:safety−constraints

<structure-def>*)

<extension-def> ::= 
(:extends <domain name>+)

<require-def> ::= 
(:requirements <require-key>+)

<require-key> ::= 
:strips | :typing | …

<types-def> ::= (:types <typed list (name)>)
<constants-def> ::= 

(:constants <typed list (name)>)
<domain-vars-def> ::= 

(:domain-variables
<typed list(domain-var-declaration)>)

<predicates-def> ::= 
(:predicates <atomic formula skeleton>+)

<atomic formula skeleton> ::= 
(<predicate> <typed list (variable)>)

<predicate> ::= <name>
<variable> ::= ?<name>
<timeless-def> ::= 

(:timeless <literal (name)>+)
<structure-def> ::= <action-def>
<structure-def> ::=:domain−axioms <axiom-def>
<structure-def> ::=:action−expansions <method-def>

PDDL 1.x Domains
•<domain> ::= (define (domain <name>)

•defines a (statement of a) planning domain
• [<extension-def>] [<require-def>] [<types-def>]:typing [<constants-
def>] [<domain-vars-def>]:expression−evaluation [<predicates-def>] [<timeless-def>] 
[<safety-def>]:safety−constraints <structure-def>*)

•various optional components (in any order); only structure definitions (actions) 
required

•<extension-def> ::= (:extends <domain name>+)
•possibility to “inherit” definitions from other domain

•<require-def> ::= (:requirements <require-key>+)
•<require-key> ::= :strips | :typing | …

•language extensions required by the domain must be stated explicitly
•<types-def> ::= (:types <typed list (name)>)

•allows for typing of objects and variables
•<constants-def> ::= (:constants <typed list (name)>)
•<domain-vars-def> ::= (:domain-variables <typed list(domain-var-declaration)>)
•<predicates-def> ::= (:predicates <atomic formula skeleton>+)
•<atomic formula skeleton> ::= (<predicate> <typed list (variable)>)
•<predicate> ::= <name>
•<variable> ::= ?<name>

•used to define domain relations for state descriptions; arguments may be typed
•<timeless-def> ::= (:timeless <literal (name)>+)
•<structure-def> ::= <action-def>

•the basic STRIPS actions
•<structure-def> ::=:domain−axioms <axiom-def>
•<structure-def> ::=:action−expansions <method-def>
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PDDL Types

PDDL types syntax
<typed list (x)> ::= x*
<typed list (x)> ::=:typing

x+ - <type> <typed list(x)>
<type> ::= <name>
<type> ::= (either <type>+)
<type> ::=:fluents (fluent <type>)

PDDL Types
•PDDL types syntax

•<typed list (x)> ::= x*
•untyped version is always part of the syntax

•<typed list (x)> ::=:typing x+ - <type> <typed list(x)>
•multiple objects can be declared to have the same type
•last element for recursion

•<type> ::= <name>
•<type> ::= (either <type>+)
•<type> ::=:fluents (fluent <type>)
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Example: DWR Types
(define (domain dock-worker-robot)

(:requirements :strips :typing ) 

(:types 
location ;there are several connected locations 
pile ;is attached to a location, 

;it holds a pallet and a stack of containers 
robot ;holds at most 1 container, 

;only 1 robot per location 
crane ;belongs to a location to pickup containers 
container ) 

…)

Example: DWR Types
•(define (domain dock-worker-robot)

•defines a named domain (running example)
•(:requirements :strips :typing )

•simple requirements: STRIPS actions and typing (to 
make domain more readable)

•(:types 
•location ;there are several connected locations 

•first type: set of objects that belong to this type
•note: semicolon is beginning of comment

•pile ;is attached to a location, it 
holds a pallet and a stack of containers 
•robot ;holds at most 1 container, only 1 robot 
per location 
•crane ;belongs to a location to pickup 
containers 
•container ) 

•…)
•remaining domain omitted here
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Example: DWR Predicates
(:predicates 

(adjacent ?l1 ?l2 - location) ;location ?l1 is adjacent to ?l2 
(attached ?p - pile ?l - location) ;pile ?p attached to location ?l 
(belong ?k - crane ?l - location) ;crane ?k belongs to location ?l 

(at ?r - robot ?l - location) ;robot ?r is at location ?l 
(occupied ?l - location) ;there is a robot at location ?l 
(loaded ?r - robot ?c - container ) ;robot ?r is loaded with container ?c 
(unloaded ?r - robot) ;robot ?r is empty 

(holding ?k - crane ?c - container) ;crane ?k is holding a container ?c 
(empty ?k - crane) ;crane ?k is empty 

(in ?c - container ?p - pile) ;container ?c is within pile ?p 
(top ?c - container ?p - pile) ;container ?c is on top of pile ?p 
(on ?c1 - container ?c2 - container) ;container ?c1 is on container ?c2 

) 

Example: DWR Predicates
•(:predicates 

•(adjacent ?l1 ?l2 - location) ;location ?l1 is adjacent to ?l2 
•predicate name: adjacent
•two arguments represented by variables: ?l1 and ?l2
•type of both variables must be location

•(attached ?p - pile ?l - location) ;pile ?p attached to location ?l 
•arguments of two different types

•(belong ?k - crane ?l - location) ;crane ?k belongs to location 
?l 
•(at ?r - robot ?l - location) ;robot ?r is at location ?l 
•(occupied ?l - location) ;there is a robot at location ?l 
•(loaded ?r - robot ?c - container ) ;robot ?r is loaded with 
container ?c 
•(unloaded ?r - robot) ;robot ?r is empty 
•(holding ?k - crane ?c - container) ;crane ?k is holding a container 
?c 
•(empty ?k - crane) ;crane ?k is empty 
•(in ?c - container ?p - pile) ;container ?c is within pile ?p 
•(top ?c - container ?p - pile) ;container ?c is on top of pile ?p 
•(on ?c1 - container ?c2 - container) ;container ?c1 is on container 
?c2 

•always use comments!
•) 
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PDDL Actions
<action-def> ::= 

(:action <action functor>
:parameters ( <typed list (variable)> )
<action-def body>)

<action functor> ::= <name>
<action-def body> ::= 

[:vars (<typed list(variable)>)]:existential-preconditions :conditional-effects

[:precondition <GD>]
[:expansion <action spec>]:action−expansions

[:expansion :methods]:action−expansions

[:maintain <GD>]:action−expansions

[:effect <effect>]
[:only-in-expansions <boolean>]:action−expansions

PDDL Actions
•<action-def> ::= (:action <action functor>

•:parameters ( <typed list (variable)> )
•list of variables representing parameters
•typed for readability and reduced search space size

•<action-def body>)
•<action functor> ::= <name>
•<action-def body> ::= [:vars (<typed list(variable)>)]:existential-preconditions 

:conditional-effects [:precondition <GD>] [:expansion <action 
spec>]:action−expansions [:expansion :methods]:action−expansions [:maintain 
<GD>]:action−expansions [:effect <effect>] [:only-in-expansions 
<boolean>]:action−expansions

•preconditions: GD = goal description; sub-goal for making this action 
applicable
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PDDL Goal Descriptions
<GD> ::= <atomic formula(term)>
<GD> ::= (and <GD>+)
<GD> ::= <literal(term)>
<GD> ::=:disjunctive−preconditions (or <GD>+)
<GD> ::=:disjunctive−preconditions (not <GD>)
<GD> ::=:disjunctive−preconditions (imply <GD> <GD>)
<GD> ::=:existential−preconditions (exists (<typed list(variable)>) <GD> )
<GD> ::=:universal−preconditions (forall (<typed list(variable)>) <GD> )
<literal(t)> ::= <atomic formula(t)>
<literal(t)> ::= (not <atomic formula(t)>)
<atomic formula(t)> ::= (<predicate> t*)
<term> ::= <name>

PDDL Goal Descriptions
•<GD> ::= <atomic formula(term)>

•simples case: positive or negative atom (predicate with arguments)
•<GD> ::= (and <GD>+)

•conjunction made explicit
•<GD> ::= <literal(term)>
•<GD> ::=:disjunctive−preconditions (or <GD>+)
•<GD> ::=:disjunctive−preconditions (not <GD>)
•<GD> ::=:disjunctive−preconditions (imply <GD> <GD>)
•<GD> ::=:existential−preconditions (exists (<typed list(variable)>) <GD> )
•<GD> ::=:universal−preconditions (forall (<typed list(variable)>) <GD> )
•<literal(t)> ::= <atomic formula(t)>
•<literal(t)> ::= (not <atomic formula(t)>)
•<atomic formula(t)> ::= (<predicate> t*)
•<term> ::= <name>
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PDDL Effects

<effect> ::= (and <effect>+)
<effect> ::= <atomic formula(term)>
<effect> ::= (not <atomic formula(term)>)
<effect> ::=:conditional−effects

(forall (<variable>*) <effect>)
<effect> ::=:conditional−effects

(when <GD> <effect>)
<effect> ::=:fluents (change <fluent> <expression>)

PDDL Effects
•note: for basic STRIPS representation, goals and effects are 
syntactically identical

•<effect> ::= (and <effect>+)
•again, conjunction is explicit (but no disjunctive extension)

•<effect> ::= <atomic formula(term)>
•<effect> ::= (not <atomic formula(term)>)

•positive and negative literals
•<effect> ::=:conditional−effects (forall (<variable>*) <effect>)
•<effect> ::=:conditional−effects (when <GD> <effect>)
•<effect> ::=:fluents (change <fluent> <expression>)
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Example: DWR Action

;; moves a robot between two adjacent locations 
(:action move 

:parameters (?r - robot ?from ?to - location) 
:precondition (and 

(adjacent ?from ?to) (at ?r ?from) 
(not (occupied ?to))) 

:effect (and 
(at ?r ?to) (occupied ?to) 
(not (occupied ?from)) (not (at ?r ?from)) )) 

Example: DWR Action
•;; moves a robot between two adjacent locations 

•Lisp convention: double semicolon not strictly necessary
•(:action move 

•:parameters (?r - robot ?from ?to - location) 
•typed parameters: “?r” of type robot and “?from” and 
“?to” of type location

•:precondition (and 
•conjunction
•(adjacent ?from ?to) (at ?r ?from) 
•(not (occupied ?to))) 

•:effect (and 
•(at ?r ?to) (occupied ?to) 
•(not (occupied ?from)) (not (at ?r ?from)) ))

•note: common to find negated fluent preconditions as 
effects, but not always
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PDDL Problem Descriptions
<problem> ::= (define (problem <name>)

(:domain <name>)
[<require-def>]
[<situation> ]
[<object declaration> ]
[<init>]
<goal>+

[<length-spec> ])
<object declaration> ::= (:objects <typed list (name)>)
<situation> ::= (:situation <initsit name>)
<initsit name> ::= <name>
<init> ::= (:init <literal(name)>+)
<goal> ::= (:goal <GD>)
<goal> ::=:action−expansions (:expansion <action spec(action-term)>)
<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

PDDL Problem Descriptions
•<problem> ::= (define (problem <name>)
• (:domain <name>)

•problem must be defined wrt. a domain, i.e. a set of action definitions
• [<require-def>] [<situation> ] [<object declaration> ] [<init>]

•situation vs. init: used named situation (re-usable) or define initial 
state explicitly

• <goal>+

•at least one goal description
• [<length-spec> ])
•<object declaration> ::= (:objects <typed list (name)>)

•list of (typed) objects that exist in this problem (logically: constant 
terms)

•<situation> ::= (:situation <initsit name>)
•<initsit name> ::= <name>

•named situation
•<init> ::= (:init <literal(name)>+)

•list of literals (note: includes negative literals)
•<goal> ::= (:goal <GD>)
•<goal> ::=:action−expansions (:expansion <action spec(action-term)>)
•<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])
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Example: DWR Problem
;; a simple DWR problem with 1 robot and 2 
locations  
(define (problem dwrpb1) 

(:domain dock-worker-robot) 
(:objects 

r1 - robot 
l1 l2 - location 
k1 k2 - crane 
p1 q1 p2 q2 - pile 
ca cb cc cd ce cf pallet - container)

(:init 
(adjacent l1 l2) 
(adjacent l2 l1) 
(attached p1 l1)
(attached q1 l1)
(attached p2 l2)
(attached q2 l2)
(belong k1 l1)
(belong k2 l2) 

(in ca p1) (in cb p1) (in cc p1)
(on ca pallet) (on cb ca) (on cc cb)
(top cc p1)

(in cd q1) (in ce q1) (in cf q1) 
(on cd pallet) (on ce cd) (on cf ce) 
(top cf q1) 

(top pallet p2) 
(top pallet q2) 

(at r1 l1) 
(unloaded r1) 
(occupied l1) 

(empty k1) 
(empty k2))

;; task is to move all containers to locations l2 
;; ca and cc in pile p2, the rest in q2 
(:goal (and 

(in ca p2) (in cc p2) 
(in cb q2) (in cd q2) (in ce q2) (in cf q2)))) 

Example: DWR Problem
•;; a simple DWR problem with 1 robot and 2 locations  
•(define (problem dwrpb1) 

•(:domain dock-worker-robot) 
•(:objects r1 - robot l1 l2 - location k1 k2 - crane p1 q1 p2 q2 - pile ca cb cc 
cd ce cf pallet - container)
•(:init 

•(adjacent l1 l2) (adjacent l2 l1) (attached p1 l1) (attached q1 l1) 
(attached p2 l2) (attached q2 l2) (belong k1 l1) (belong k2 l2) 

•rigid relations
•(in ca p1) (in cb p1) (in cc p1) (on ca pallet) (on cb ca) (on cc cb) (top 
cc p1)
•(in cd q1) (in ce q1) (in cf q1) (on cd pallet) (on ce cd) (on cf ce) (top 
cf q1) 

•the two piles of containers at location l1
•(top pallet p2) 
•(top pallet q2) 

•no containers at location l2
•(at r1 l1) (unloaded r1) (occupied l1) 
•(empty k1) (empty k2))

•;; task is to move all containers to locations l2 ;; ca and cc in pile p2, the rest in 
q2 
•(:goal (and 

•(in ca p2) (in cc p2) 
•(in cb q2) (in cd q2) (in ce q2) (in cf q2)))) 
•note: many solutions as order of containers is undefined
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•just done : a syntax for the STRIPS representation (and 
extensions)

•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner
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Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs

Search Problems
•initial state: current state the world is in (state = situation)

•states: symbol structures representing real world objects 
and relations physical symbols systems

•finite set of possible actions (aka. operators or production rules 
(problem formulation))/applicability conditions

•successor function: state set of <action, state>: 
action is applicable in given state; result of applying action in 
given state is paired state
•successor function + initial state = state space: directed 
graph with states as nodes and actions as arcs
•path (in the graph) (solution)

•goal (goal formulation)
•goal state (for unique goal state) or goal test function (for 
multiple goal states (e.g. in chess))

•Solution: path in state space from initial state to goal 
state

•path cost function
•for optimality: find solution path with minimal path cost
•assumption: path cost = sum of step costs (cost of 
applying a given action in a given state)
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Missionaries and Cannibals: 
Initial State and Actions

initial state:
• all missionaries, all 

cannibals, and the 
boat are on the left 
bank

5 possible actions:
• one missionary crossing
• one cannibal crossing
• two missionaries 

crossing
• two cannibals crossing
• one missionary and one 

cannibal crossing

Missionaries and Cannibals: Initial State and Actions
•initial state:

•all missionaries, all cannibals, and the boat are on the 
left bank

•5 possible actions:
•one missionary crossing
•one cannibal crossing
•two missionaries crossing
•two cannibals crossing
•one missionary and one cannibal crossing
•note: not every action applicable in every state

•example: first action not applicable in initial state
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Missionaries and Cannibals: 
Successor Function

{<1m1c, (L:3m,3c,b-R:0m,0c)>, 
<1m, (L:3m,2c,b-R:0m,1c)>}

(L:2m,2c-R:1m,1c,b) 

{<2c, (L:3m,3c,b-R:0m,0c)>, 
<1c, (L:3m,2c,b-R:0m,1c)>}

(L:3m,1c-R:0m,2c,b) 

{<2c, (L:3m,1c-R:0m,2c,b)>, 
<1m1c, (L:2m,2c-R:1m,1c,b)>, 
<1c, (L:3m,2c-R:0m,1c,b)>}

(L:3m,3c,b-R:0m,0c) 

set of <action, state>state

Missionaries and Cannibals: Successor Function
•state set of <action, state> (domain and range: set of 
pairs)
•(L:3m,3c,b-R:0m,0c) {<2c, (L:3m,1c-R:0m,2c,b)>, <1m1c, (L:2m,2c-
R:1m,1c,b)>, <1c, (L:3m,2c-R:0m,1c,b)>}

•states:
•L/R: on left/right bank
•m/c: missionaries/cannibals (example: 3 
missionaries and three cannibals on left bank, 
none on right bank)
•b: boat (example: boat on left bank)

•actions:
•m/c: missionaries/cannibals crossing 
(example(s): 2 cannibals crossing (L to R), 1m 
and 1c crossing; 1c crossing)

•(L:3m,1c-R:0m,2c,b) {<2c, (L:3m,3c,b-R:0m,0c)>, <1c, (L:3m,2c,b-
R:0m,1c)>} (note: only two actions applicable)
•(L:2m,2c-R:1m,1c,b) {<1m1c, (L:3m,3c,b-R:0m,0c)>, <1m, 
(L:3m,2c,b-R:0m,1c)>}
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Missionaries and Cannibals: 
State Space

1c

1m
1c

2c
1c

2c

1c

2m

1m
1c

1m
1c

1c

2c

1m

2m

1c

2c

1c

1m

Missionaries and Cannibals: State Space
•(only) 16 possible world states
•arcs represent possible actions with action as label

•actions reversible and reversing action is same action; 
hence bidirectional arcs
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Missionaries and Cannibals: 
Goal State and Path Cost

goal state:
• all missionaries, all 

cannibals, and the 
boat are on the right 
bank

path cost
• step cost: 1 for each 

crossing
• path cost: number of 

crossings = length of 
path

solution path:
• 4 optimal solutions
• cost: 11

Missionaries and Cannibals: Goal State and Path Cost
•goal state:

•all missionaries, all cannibals, and the boat are on the 
right bank

•path cost
•step cost: 1 for each crossing (alternatives weigh 
missionaries and cannibals crossing differently)
•path cost: number of crossings = length of path

•solution path:
•4 optimal solutions
•cost: 11

•search problem now complete: initial state, actions (successor 
function), goal state, and path cost function
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Real-World Problem:
Touring in Romania

Oradea

Bucharest

Fagaras

Pitesti

Neamt

Iasi

Vaslui

Urziceni
Hirsova

Eforie

Giurgiu
Craiova

Rimnicu Vilcea

Sibiu

Dobreta

Mehadia

Lugoj

Timisoara

Arad

Zerind

120

140

151

75

70

111

118

75

71

85

90

211

101

97

138

146

80
99

87

92

142

98

86

Real-World Problem: Touring in Romania 
•shown: rough map of Romania
•initial state: on vacation in Arad, Romania
•goal? actions? -- “Touring Romania” cannot readily be described 
in terms of possible actions, goals, and path cost
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Touring Romania:
Search Problem Definition

initial state:
• In(Arad)

possible Actions:
• DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara), 

etc.

goal state:
• In(Bucharest)

step cost:
• distances between cities

Touring Romania: Search Problem Definition
•initial state:

•In(Arad)
•all states: current location only (abstraction)

•possible Actions:
•DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara), 
etc.
•actions: applicable if there is a direct road from the current 
location to the destination

•goal state:
•In(Bucharest)
•goal state: here single state

•step cost:
•distances between cities
•path cost = sum of step costs; step cost is distance on map 
(abstraction)
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Search Trees

search tree: tree structure defined by initial 
state and successor function
Touring Romania (partial search tree):

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)

Search Trees
•search tree: tree structure defined by initial state and 
successor function
•Touring Romania (partial search tree):

•initial state: root of tree (green)
•children of any node: states reachable via a single action

•note: repeated states possible (e.g. grey state)
•note: tree may be infinite; infinite path: Arad – Sibiu -
Arad – Sibiu - …

•goal state (red)
•search graph vs. search tree

•graph: if nodes can be reached through multiple paths
•corresponds to state space
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Search Nodes

search nodes: the nodes in the search tree
data structure:
• state: a state in the state space
• parent node: the immediate predecessor in the search 

tree
• action: the action that, performed in the parent node’s 

state, leads to this node’s state
• path cost: the total cost of the path leading to this 

node
• depth: the depth of this node in the search tree

Search Nodes
•search nodes: the nodes in the search tree

•node is a bookkeeping structure in a search tree
•data structure:

•state: a state in the state space
•state (vs. node) corresponds to a configuration of the 
world
•two nodes may contain equal states

•parent node: the immediate predecessor in the search 
tree

•nodes are on paths (defined by parent nodes)
•action: the action that, performed in the parent node’s 
state, leads to this node’s state
•path cost: the total cost of the path leading to this node
•depth: the depth of this node in the search tree

•alternative: representing paths only (sequences of actions): 
•possible, but state provides direct access to valuable 
information that might be expensive to regenerate all the 
time
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Fringe Nodes
in Touring Romania Example

fringe nodes: nodes that have not been 
expanded

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)

Fringe Nodes in Touring Romania Example
•fringe nodes: nodes that have not been expanded
•shown: partial search tree for TR example

•three expanded nodes (white) 
•seven (unexpanded) fringe nodes (blue) 

•fringe nodes are leaves in the search tree, but not 
necessarily vice versa

•remark: fringe nodes also called open nodes (vs. closed)
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Search (Control) Strategy

search or control strategy: an effective 
method for scheduling the application of the 
successor function to expand nodes
• selects the next node to be expanded from the fringe
• determines the order in which nodes are expanded
• aim: produce a goal state as quickly as possible

examples: 
• LIFO/FIFO-queue for fringe nodes
• alphabetical ordering

Search (Control) Strategy
•search or control strategy: an effective method for 
scheduling the application of the successor function to 
expand nodes

•removes non-determinism from search method
•selects the next node to be expanded from the fringe

•closed nodes never need to be expanded again
•determines the order in which nodes are expanded

•exact order makes method deterministic
•aim: produce a goal state as quickly as possible

•strategy that produces goal state quicker is usually 
considered better

•examples: 
•LIFO/FIFO-queue for fringe nodes (two fundamental 
search strategies)
•alphabetical ordering

•remark: complete search tree is usually too large to fit into 
memory, strategy determines which part to generate
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General Tree Search Algorithm
function treeSearch(problem, strategy)

fringe { new
searchNode(problem.initialState) }

loop
if empty(fringe) then return failure
node selectFrom(fringe, strategy)
if problem.goalTest(node.state) then

return pathTo(node)
fringe fringe + expand(problem, node) 

General Tree Search Algorithm
function treeSearch(problem, strategy)
•find a solution to the given problem while expanding nodes according to 
the given strategy
fringe { new searchNode(problem.initialState) }

•fringe: set of known states; initially just initial state
loop

•possibly infinite loop expands nodes
if empty(fringe) then return failure

•complete tree explored; no goal state found
node selectFrom(fringe, strategy)

•select node from fringe according to search control strategy; the 
node will not be selected again

if problem.goalTest(node.state) then 
•goal test before expansion: to avoid trick problem like “get from Arad 
to Arad”

return pathTo(node)
•success: goal node found

fringe fringe + expand(problem, node)
•otherwise: add new nodes to the fringe and continue loop
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In(Arad) In(Oradea) In(Rimnicu Vilcea)

In(Zerind) In(Timisoara)

In(Sibiu) In(Bucharest)

In(Fagaras)

In(Sibiu)

General Search Algorithm:
Touring Romania Example

In(Arad)

fringe

selected

General Search Algorithm: Touring Romania Example
•algorithm: select and expand cycle until goal node is about to be 
expanded
•strategy: expand node on path to the goal – how do we know 
which node this is? (generally, we don’t!)
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Uninformed vs. Informed Search

uninformed search (blind search)
• no additional information about states beyond 

problem definition
• only goal states and non-goal states can be 

distinguished

informed search (heuristic search)
• additional information about how “promising”

a state is available

Uninformed vs. Informed Search
•uninformed search (blind search)

•no additional information about states beyond problem 
definition
•only goal states and non-goal states can be 
distinguished
•the order of node expansion does not depend on the 
location of the goal state

•informed search (heuristic search)
•additional information about how “promising” a state is 
available 
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Breadth-First Search: 
Missionaries and Cannibals
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Breadth-First Search: Missionaries and Cannibals
•first expand root node
•expand all nodes at depth 1 left to right (i.e. order depends on
order in which successors have been generated)
•expand all nodes at depth 2, again left to right
•etc.

•no nodes beyond depth 3 shown but breadth-first search would 
continue
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Depth-First Search:
Missionaries and Cannibals
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Depth-First Search: Missionaries and Cannibals
•expand left-most sub-tree

•this constitutes an infinite sub-tree and the algorithm would 
never return, therefore the rest of the animation is wrong for 
this example!

•back up to depth 1; memory is freed up
•expand the remaining sub-trees

•note: only one path including all siblings in memory at any 
one time
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Iterative Deepening Search

strategy:
• based on depth-limited (depth-first) search
• repeat search with gradually increasing depth 

limit until a goal state is found

implementation:
for depth 0 to ∞ do

result depthLimitedSearch(problem, depth)
if result ≠ cutoff then return result

Iterative Deepening Search
•strategy:

•based on depth-limited (depth-first) search
•repeat search with gradually increasing depth limit until 
a goal state is found

•implementation:
•for depth 0 to ∞ do
•loop over increasing depth limit
•result depthLimitedSearch(problem, depth)
•perform depth-limited search with current depth limit 
•if result ≠ cutoff then return result
•terminate search when no cut-off occurred (we have a 
solution or failure)

•iterative deepening search finds shallowest goal node
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Discovering Repeated States: 
Potential Savings

sometimes repeated states are unavoidable, 
resulting in infinite search trees
checking for repeated states:
• infinite search tree ⇒ finite search tree
• finite search tree ⇒ exponential reduction
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Discovering Repeated States: Potential Savings
•sometimes repeated states are unavoidable, resulting in 
infinite search trees

•e.g. when actions are reversible; search graph rather than 
search tree

•checking for repeated states: (during the search process)
•infinite search tree ⇒ finite search tree

•reduces the search tree to the part that is necessary to 
span the state space graph (e.g. M&C, Touring 
Romania problem)

•finite search tree ⇒ exponential reduction
•example left: worst case scenario; true exponential 
reduction (reduction from exponential to linear function)
•example right: more realistic example; still exponential 
reduction (exponential to polynomial)
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner
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Best-First Search

an instance of the general tree search or 
graph search algorithm
• strategy: select next node based on an 

evaluation function f: state space → ℝ
• select node with lowest value f(n)

implementation: 
selectFrom(fringe, strategy)
• priority queue: maintains fringe in ascending 

order of f-values

Best-First Search
•an instance of the general tree search or graph search 
algorithm

•tree or graph search: both possible; difference only lies in test 
for repeated states
•strategy: select next node based on an evaluation 
function f: state space → ℝ

•evaluation function: determines the search strategy
•intuition: choose function that estimates the distance to 
the goal

•select node with lowest value f(n)
•lowest f-value means best node: hence best-first search

•implementation: selectFrom(fringe, strategy)

•priority queue: maintains fringe in ascending order of f-
values

•implementation as binary tree: nodes can be 
added/retrieved in log-time (still expensive)
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Heuristic Functions

heuristic function h: state space → ℝ
h(n) = estimated cost of the cheapest 
path from node n to a goal node
if n is a goal node then h(n) must be 0
heuristic function encodes problem-
specific knowledge in a problem-
independent way

Heuristic Functions
•heuristic function h: state space → ℝ
•h(n) = estimated cost of the cheapest path from node n to a goal 
node
•if n is a goal node then h(n) must be 0
•heuristic function encodes problem-specific knowledge in a 
problem-independent way
•difference between evaluation function and heuristic function:

•good evaluation function makes sure nodes are expanded in 
an order that leads straight to the optimal solution
•good heuristic function always gives the correct distance to 
the nearest goal node
•evaluation function is not problem-specific, but uses heuristic 
function which is problem-specific
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Greedy Best-First Search

use heuristic function as evaluation 
function: f(n) = h(n)
• always expands the node that is closest to the 

goal node
• eats the largest chunk out of the remaining 

distance, hence, “greedy”

Greedy Best-First Search
•use heuristic function as evaluation function: f(n) = h(n)

•always expands the node that is closest to the goal node
•eats the largest chunk out of the remaining distance, 
hence, “greedy”
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Touring in Romania: Heuristic

hSLD(n) = straight-line distance to Bucharest

77
176
161
242
160

0
366

Pitesti
Oradea
Neamt
Mehadia
Lugoj
Iasi
Hirsova

374Zerind100Giurgiu
199Vaslui380Fagaras

80Urziceni234Eforie
329Timisoara241Dobreta
253Sibiu244Craiova

226Bucharest
193Rimnicu

Vilcea
151Arad

Touring in Romania: Heuristic
•hSLD(n) = straight-line distance to Bucharest

•straight-line distance: Euclidean distance
•distance to Bucharest because our goal is to be in Bucharest

•[table]
•hSLD(Bucharest) = 0
•hSLD(Fagaras) = 176 < 211 driving distance
•hSLD(n) cannot be computed from the problem description, it 
represents additional information
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Greediness

greediness is susceptible to false starts

repeated states may lead to infinite oscillation

initial state
goal state

Greediness
•greediness is susceptible to false starts
•[left figure]

•GBFS will go to node at top first because this is closest to the
goal node
•solution path is sub-optimal

•[right figure]
•GBFS will first explore the complete tree at the top that is not
connected to the goal node
•finally, it will go further away from the goal node and discover
the (optimal) solution path
•a lot of wasted search effort

•repeated states may lead to infinite oscillation
•[bottom figure]

•algorithm may go back and forth between “close” nodes, 
never exploring node on way to goal
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A* Search

best-first search where
f(n) = h(n) + g(n)

• h(n) the heuristic function (as before)
• g(n) the cost to reach the node n

evaluation function: 
f(n) = estimated cost of the cheapest

solution through n
A* search is optimal if h(n) is admissible

A* Search
•best-first search where f(n) = h(n) + g(n)

•h(n) the heuristic function (as before)
•g(n) the cost to reach the node n

•adds a breadth-first component to GBFS
•evaluation function: f(n) = estimated cost of the cheapest 
solution through n

•expand that node next which is on the cheapest path to a goal 
node

•A* search is optimal if h(n) is admissible
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Admissible Heuristics

A heuristic h(n) is admissible if it never 
overestimates the distance from n to the nearest 
goal node.

example: hSLD

A* search: If h(n) is admissible then f(n) never 
overestimates the true cost of a solution 
through n.

Admissible Heuristics
•A heuristic h(n) is admissible if it never overestimates the 
distance from n to the nearest goal node.

•admissible heuristics usually think the nearest goal node is 
closer than it actually is
•example: hSLD

•hSLD: shortest distance between two point is straight line, 
hence hSLD is admissible

•A* search: If h(n) is admissible then f(n) never 
overestimates the true cost of a solution through n.

•since f(n) = h(n) + g(n) and g(n) is the exact cost of 
reaching n, f(n) cannot overestimate the true cost of a 
solution through n
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d
= 

3

A* (Best-First) Search:
Touring Romania

Arad
(646)

Rimnicu Vilcea
(413)

Fagaras
(415)

Oradea
(671)

Zerind
(449)

Sibiu
(393)

Timisoara
(447)

Arad
(366) d

= 
0

d
= 

2
d

= 
1

d
= 

4

fringe

selected

Sibiu
(591)

Bucharest
(450)

Craiova
(526)

Pitesti
(417)

Sibiu
(553)

Bucharest
(418)

Craiova
(615)

Rimnicu Vilcea
(607)

A* (Best-First) Search: Touring Romania
•initial state: in Arad; values shown are evaluation function f(n) 
= h(n) + g(n)

•select Arad; expand Arad
•lowest f-value: Sibiu (393); means: possible path through 
Sibiu with cost 393

•select Sibiu; expand Sibiu
•lowest f-value: Rimnicu Vilcea (413); means: possible path 
through Rimnicu Vilcea with cost 413

•select Rimnicu Vilcea; expand Rimnicu Vilcea
•lowest f-value: Fagaras (415); expanding Rimnicu Vilcea
showed f-value too optimistic

•select Fagaras; expand Fagaras
•lowest f-value: Pitesti (417); expanding Fagaras showed f-
value too optimistic

•select Pitesti; expand Pitesti
•lowest f-value: Bucharest (418)

•select Bucharest
•goal node test succeeds

•note: search cost not minimal as for GBFS but solution is optimal
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Optimality of A* (Tree Search)

Theorem:
A* using tree search is optimal if the 
heuristic h(n) is admissible.

Optimality of A* (Tree Search)
•Theorem: A* using tree search is optimal if the heuristic h(n) 
is admissible.

•reminder: optimal means finds a minimal-path cost solution
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A*: Optimally Efficient

A* is optimally efficient for a given 
heuristic function:
no other optimal algorithm is guaranteed 
to expand fewer nodes than A*.
any algorithm that does not expand all 
nodes with f(n) < C* runs the risk of 
missing the optimal solution

A*: Optimally Efficient
•A* is optimally efficient for a given heuristic function: no other 
optimal algorithm is guaranteed to expand fewer nodes than 
A*.

•efficiency can still be increased with a different, more 
accurate heuristic for a given problem
•but: efficiency does not only depend on number of nodes 
expanded

•any algorithm that does not expand all nodes with f(n) < C* 
runs the risk of missing the optimal solution

•suppose there is a node with f(n) < C* that is not expanded 
before a goal node
•then there could be a path of cost with f(n) < C* through that 
node which would be better than the goal node found
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A* and Exponential Space

A* has worst case time and space 
complexity of O(bl)
exponential growth of the fringe is 
normal
• exponential time complexity may be 

acceptable
• exponential space complexity will exhaust any 

computer’s resources all too quickly

A* and Exponential Space
•A* has worst case time and space complexity of O(bl)
•exponential growth of the fringe is normal

•exponential time complexity may be acceptable
•exponential space complexity will exhaust any 
computer’s resources all too quickly

•and with the memory exhausted A* cannot continue and 
fails – no solution will be found
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search

•now: using standard search algorithms to perform a forward 
search for a goal state

•Backward State-Space Search
•The STRIPS Planner



63

State-Space Search and the STRIPS Planner 63

State-Space Search

idea: apply standard search algorithms 
(breadth-first, depth-first, A*, etc.) to 
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan

State-Space Search
•idea: apply standard search algorithms (breadth-first, depth-
first, A*, etc.) to planning problem:

•search space is subset of state space
•subset: generate only reachable states until a goal 
state has been found

•nodes correspond to world states
•arcs correspond to state transitions

•arcs are labelled with actions
•path in the search space corresponds to plan

•path from initial state to goal state is solution
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s0

DWR Example: State Space

location1 location2

palletcont.

crane s2

location1 location2

palletcont.

crane

s1

location1 location2

pallet

cont.

crane s3

location1 location2

pallet

cont.

crane s4

location1 location2

pallet

crane

robot robot

robot

robot

robot

cont.

s5

location1 location2

pallet

crane

robot
cont.

DWR Example: State Space
•from introduction

•nodes are sets of ground atoms (shown here as 3D 
visualisations)
•transitions should be labelled with ground operator 
instances (actions), e.g. move(robot,location1,location2)
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Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs

Search Problems
•initial state: current state the world is in (state = situation)

•STRIPS states: sets of ground atoms
•finite set of possible actions with applicability conditions 

•successor function: state set of <action, state>: 
corresponds to state transition function as defined for 
STRIPS actions
•successor function + initial state = state space: directed 
graph with states as nodes and actions as arcs
•path (in the graph) (solution)

•goal
•goal state (not applicable) or goal test function: for 
multiple goal states; states in which goal holds

•path cost function
•for optimality
•assumption: path cost = sum of step costs (cost of 
applying a given action in a given state)
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State-Space Planning as a 
Search Problem

given: statement of a planning problem 
P=(O,si,g) 
define the search problem as follows:
• initial state: si

• goal test for state s: s satisfies g
• path cost function for plan π: |π|
• successor function for state s: Γ(s)

State-Space Planning as a Search Problem
•given: statement of a planning problem P=(O,si,g) 
•define the search problem as follows:

•initial state: si

•goal test for state s: s satisfies g
•path cost function for plan π: |π|

•simplification: plan length = path cost
•successor function for state s: Γ(s)

•to be defined next
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Reachable Successor States

The successor function Γm:2S→2S for a 
STRIPS domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk) 
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all 
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

Reachable Successor States
•The successor function Γm:2S→2S for a STRIPS domain 
Σ=(S,A,γ) is defined as:

•Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
•all states that can be reached by applying exactly one 
applicable action

•Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
•union of all states that can be reached by applying 
exactly one applicable action

•Γ0({s1,…,sn})= {s1,…,sn}
•identity function; the states themselves

•Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))
•union of all states that can be reached by applying 
exactly m applicable actions

•The transitive closure of Γ defines the set of all reachable states:
•Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

•pronounce: gamma forward
•all states that can be reached by applying any number 
of applicable actions
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Solution Existence

Proposition: A STRIPS planning 
problem P=(Σ,si,g) (and a statement of 
such a problem P=(O,si,g) ) has a 
solution iff Sg ⋂ Γ>({si}) ≠ {}.

Solution Existence
•Proposition: A STRIPS planning problem P=(Σ,si,g) (and a 
statement of such a problem P=(O,si,g) ) has a solution iff Sg
⋂ Γ>({si}) ≠ {}.

•… iff there is a goal state that is also a reachable state
•enumerate all reachable states from the initial state (in some 
good order) and we will generate a goal state eventually = forward 
search



69

State-Space Search and the STRIPS Planner 69

Forward State-Space Search 
Algorithm
function fwdSearch(O,si,g)

state si
plan 〈〉
loop

if state.satisfies(g) then return plan
applicables

{ground instances from O applicable in state}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
state γ(state,action)
plan plan ∙ 〈action〉

•function fwdSearch(O,si,g)
•given: statement of a STRIPS planning problem; return a 
solution plan (or failure)
•non-deterministic version

•state si

•start with the initial state
•plan 〈〉

•initialize solution with empty plan (partial plan: prefix of the
solution)

•loop
•if state.satisfies(g) then return plan
•applicables {ground instances from O applicable in state}
•if applicables.isEmpty() then return failure
•action applicables.chooseOne()

•non-deterministically choose an applicable action
•state γ(state,action)
•plan plan ∙ 〈action〉
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DWR Example: Forward Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan = 

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)

•DWR Example: Forward Search
•goal state available at start
•choose action; (non-deterministic; alternative would be 
“move” action)
•compute successor state
•chose action; (again non-deterministic; alternative would be 
“put” returning to s0)
•compute successor state
•chose action
•compute successor state
•chose action
•compute successor state; goal state!
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Finding Applicable Actions: 
Algorithm
function addApplicables(A, op, precs, σ, s)

if precs+.isEmpty() then
for every np in precs- do

if s.falsifies(σ(np)) then return
A.add(σ(op))

else
pp precs+.chooseOne()
for every sp in s do

σ’ σ.extend(sp, pp)
if σ’.isValid() then

addApplicables(A, op, (precs - pp), σ’, s)

•function addApplicables(A, op, precs, σ, s)
•Parameters: set of actions, operator, set of remaining 
preconditions, partial substitution, state

•if precs+.isEmpty() then
•Note: σ should now be complete

•for every np in precs- do
•if s.falsifies(σ(np)) then return
•A.add(σ(op))

•test for inconsistent effects before adding!
•else
•pp precs+.chooseOne()

•Heuristics: nr of atoms in state; nr of unbound variables
•for every sp in s do
•σ’ σ.extend(sp, pp)
•if σ’.isValid() then
•addApplicables(A, op, (precs - pp), σ’, s)
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Properties of Forward Search
Proposition: fwdSearch is sound, i.e. if the function 
returns a plan as a solution then this plan is indeed a 
solution.
• proof idea: show (by induction) state=γ(si,plan) at the 

beginning of each iteration of the loop

Proposition: fwdSearch is complete, i.e. if there exists 
solution plan then there is an execution trace of the 
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace 

for which plan is a prefix of the sought plan

Properties of Forward Search
•Proposition: fwdSearch is sound, i.e. if the function returns 
a plan as a solution then this plan is indeed a solution.

•proof idea: show (by induction) state=γ(si,plan) at 
the beginning of each iteration of the loop
•variable state always contains STRIPS state that is 
result of applying plan (variable) in initial state
•hence: when state contains goal state plan contains 
solution plan

•Proposition: fwdSearch is complete, i.e. if there exists 
solution plan then there is an execution trace of the function 
that will return this solution plan.

•proof idea: show (by induction) there is an 
execution trace for which plan is a prefix of the 
sought plan
•given a solution plan, the variable plan contains a prefix 
of that plan starting with the initial empty plan
•chooseOne(…) can always choose the next step in the 
solution plan we are looking for
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Making Forward Search 
Deterministic

idea: use depth-first search
• problem: infinite branches
• solution: prune repeated states

pruning: cutting off search below certain 
nodes
• safe pruning: guaranteed not to prune every solution
• strongly safe pruning: guaranteed not to prune every 

optimal solution
• example: prune below nodes that have a 

predecessor that is an equal state (no repeated 
states)

Making Forward Search Deterministic
•idea: use depth-first search

•problem: infinite branches
•example: alternating between two states that are not 
solutions

•solution: prune repeated states
•search is finite: pruning repeated states means we will 
eventually enumerate the whole search space

•pruning: cutting off search below certain nodes
•safe pruning: guaranteed not to prune every solution

•but may prune some solutions
•strongly safe pruning: guaranteed not to prune every 
optimal solution
•example: prune below nodes that have a 
predecessor that is an equal state (no repeated 
states)

•pruning repeated states is strongly safe
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search

•just done: using standard search algorithms to perform a 
forward search for a goal state

•Backward State-Space Search
•now: search backwards from the goal reduces search space 
size

•The STRIPS Planner
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The Problem with Forward 
Search

number of actions applicable in any 
given state is usually very large
branching factor is very large
forward search for plans with more than 
a few steps not feasible

idea: search backwards from the goal
problem: many goal states

The Problem with Forward Search
•number of actions applicable in any given state is usually 
very large
•branching factor is very large
•forward search for plans with more than a few steps not 
feasible

•forward search unnecessarily generates a large part of the 
search space which makes it highly inefficient

•idea: search backwards from the goal
•problem: many goal states

•applying reverse operators only works for single goal state
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Relevance and Regression Sets

Let P=(Σ,si,g) be a STRIPS planning 
problem. An action a∈A is relevant for g
if 
• g ⋂ effects(a) ≠ {} and 
• g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}. 

The regression set of g for a relevant 
action a∈A is:
• γ -1(g,a)=(g - effects(a)) ∪ precond(a)

Relevance and Regression Sets
•Let P=(Σ,si,g) be a STRIPS planning problem. An action a∈A
is relevant for g if 

•g ⋂ effects(a) ≠ {} and 
•a’s effects contribute to g

•g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}. 
•a’s effects do not conflict with g

•The regression set of g for a relevant action a∈A is:
•γ -1(g,a)=(g - effects(a)) ∪ precond(a)

•subtract all effects, not just positive ones
•note: goal and regression set (γ -1(g,a)) are sets of 
ground literals
•regression set can be seen as sub-goal
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Regression Function

The regression function Γ-m for a STRIPS 
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn} 

• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

The transitive closure of Γ-1 defines the set of 
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

Regression Function
•The regression function Γ-m for a STRIPS domain Σ=(S,A,γ) on 
L is defined as:

•Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

•regression set for a single set of (goal) propositions
•Γ0({g1,…,gn})= {g1,…,gn} 

•as for successors
•Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) 

•union of individual regression sets
•Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

•minimal sets of propositions that must hold in a state s
from which m actions lead to a state in which one of 
g1,…,gn is satisfied

•The transitive closure of Γ-1 defines the set of all regression sets:
•Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

•pronounce: gamma backward
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State-Space Planning as a 
Search Problem

given: statement of a planning problem 
P=(O,si,g) 
define the search problem as follows:
• initial search state: g
• goal test for state s: si satisfies s
• path cost function for plan π: |π|
• successor function for state s: Γ-1(s)

State-Space Planning as a Search Problem
•given: statement of a planning problem P=(O,si,g) 
•define the search problem as follows:

•initial search state: g
•search backwards from the goal

•goal test for state s: s satisfies si

•initial state satisfies regression set (sub-goal)
•path cost function for plan π: |π|
•successor function for state s: Γ-1(s)

•as defined in previous slide
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Solution Existence

Proposition: A propositional planning 
problem P=(Σ,si,g) (and a statement of 
such a problem P=(O,si,g) ) has a 
solution iff ∃s∈Γ<({g}) : si satisfies s.

Solution Existence
•Proposition: A propositional planning problem P=(Σ,si,g) 
(and a statement of such a problem P=(O,si,g) ) has a 
solution iff ∃s∈Γ<({g}) : si satisfies s.

•… iff there is a minimal set of propositions amongst all 
regression sets that is a subset of the initial state

•enumerate all regression sets from the goal (in some good order)
and we will generate a subset of the initial state eventually = 
backward search
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Ground Backward State-Space 
Search Algorithm
function groundBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if si.satisfies(subgoal) then return plan
applicables

{ground instances from O relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(subgoal, action)
plan 〈action〉 ∙ plan

Ground Backward State-Space Search Algorithm
•function groundBwdSearch(O,si,g)

•given: statement of a STRIPS planning problem; return a 
solution plan (or failure)
•non-deterministic version

•subgoal g
•start with the overall goal

•plan 〈〉
•initialize solution with empty plan (partial plan: suffix of the
solution)

•loop
•if si.satisfies(subgoal) then return plan
•applicables {ground instances from O relevant for 
subgoal}
•if applicables.isEmpty() then return failure
•action applicables.chooseOne()

•non-deterministically choose an applicable action
•subgoal γ -1(subgoal, action)
•plan 〈action〉 ∙ plan

•sound and complete
•test for repeated sub-goals can be applied to prune all infinite 
branches
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DWR Example: Backward 
Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan = 

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)

•DWR Example: Backward Search
•note: sub-goal represented as state here, but goal 
description is not complete state description! shown state 
satisfies sub-goal
•choose action
•compute sub-goal using regression
•chose action; (non-deterministic; alternative would be 
“move” returning to s5)
•compute sub-goal 
•chose action
•compute sub-goal
•chose action
•compute sub-goal
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Example: Regression with 
Operators

goal: at(robot,loc1)
operator: move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

actions: move(robot,l,loc1)
• l=?
• many options increase branching factor

lifted backward search: use partially 
instantiated operators instead of actions

Example: Regression with Operators
•goal: at(robot,loc1)
•operator: move(r,l,m)

•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•operator may achieve or undo goal depending on 
variable bindings

•actions: move(robot,l,loc1)
•l=?

•to contribute to goal, r must bound to robot and m to 
loc1; l can remain unbound

•many options increase branching factor
•keeping variables unbound can significantly reduce the 
branching factor (as opposed to using actions)

•lifted backward search: use partially instantiated operators 
instead of actions

•essentially same as ground version, but need to maintain 
appropriate variable substitutions



83

State-Space Search and the STRIPS Planner 83

Lifted Backward State-Space 
Search Algorithm
function liftedBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan)
applicables

{(o,σ) | o∈O and σ(o) relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(σ(subgoal), σ(o))
plan σ(〈action〉) ∙ σ(plan)

Lifted Backward State-Space Search Algorithm
•function liftedBwdSearch(O,si,g)
•subgoal g
•plan 〈〉
•loop
•if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan)

•need existence of substitution to test for goal satisfaction 
(variables in sub-goals are implicitly existentially quantified)

•applicables {(o,σ) | o∈O and σ(o) relevant for subgoal}
•need partial instantiation to test for relevance of operator 
(note: extension of definition of relevance straight forward)

•if applicables.isEmpty() then return failure
•action applicables.chooseOne()
•subgoal γ -1(σ(subgoal), σ(o))

•new sub-goal may contain variables (note: extension of 
definition of γ -1 straight forward)

•plan σ(〈action〉) ∙ σ(plan)
•add partially instantiated operator to plan and apply 
substitution to existing plan

•sound and complete
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DWR Example: Lifted Backward 
Search

initial state: s0 = {attached(pile,loc1), 
in(cont,pile), top(cont,pile), 
on(cont,pallet), belong(crane,loc1), 
empty(crane), adjacent(loc1,loc2), 
adjacent(loc2,loc1), at(robot,loc2), 
occupied(loc2), unloaded(robot)}
operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l), 

¬occupied(m)
• effects: at(r,m), occupied(m), 

¬occupied(l), ¬at(r,l)

liftedBwdSearch(
{move(r,l,m)}, s0, {at(robot,loc1)} )

∃σ:si.satisfies(σ(subgoal)): no
applicables =
{(move(r1,l1,m1),{r1←robot, 
m1←loc1})}
subgoal = 
{adjacent(l1,loc1), at(robot,l1), 
¬occupied(loc1)}
plan = 〈move(robot,l1,loc1)〉

∃σ:si.satisfies(σ(subgoal)): yes
σ = {l1←loc1}

s0

loc1 loc2

palletcont.

crane

robot

DWR Example: Lifted Backward Search
•initial state: s0 = {attached(pile,loc1), in(cont,pile), 
top(cont,pile), on(cont,pallet), belong(crane,loc1), 
empty(crane),adjacent(loc1,loc2), adjacent(loc2,loc1), 
at(robot,loc2), occupied(loc2), unloaded(robot)}
•operator:move(r,l,m)

•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•liftedBwdSearch( {move(r,l,m)}, s0, {at(robot,loc1)} )
•∃σ:si.satisfies(σ(subgoal)): no

•at(robot,loc1) ∉ s0
•applicables ={(move(r1,l1,m1),{r1←robot, m1←loc1})}

•variable l1 remains unbound 
•subgoal = {adjacent(l1,loc1), at(robot,l1), ¬occupied(loc1)}

•instantiated preconditions of the move-operator
•plan = 〈move(robot,l1,loc1)〉
•∃σ:si.satisfies(σ(subgoal)): yes
σ = {l1←loc1}
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Properties of Backward Search
Proposition: liftedBwdSearch is sound, i.e. if the function 
returns a plan as a solution then this plan is indeed a 
solution.
• proof idea: show (by induction) subgaol=γ -1(g,plan) at the 

beginning of each iteration of the loop

Proposition: liftedBwdSearch is complete, i.e. if there 
exists solution plan then there is an execution trace of the 
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace 

for which plan is a suffix of the sought plan

Properties of Backward Search
•Proposition: liftedBwdSearch is sound, i.e. if the function 
returns a plan as a solution then this plan is indeed a 
solution.

•proof idea: show (by induction) subgaol=γ -1(g,plan) 
at the beginning of each iteration of the loop

•Proposition: liftedBwdSearch is complete, i.e. if there exists 
solution plan then there is an execution trace of the function 
that will return this solution plan.

•proof idea: show (by induction) there is an 
execution trace for which plan is a suffix of the 
sought plan

•proof ideas similar to forward case, but need to show that there
are no variables in the final plan

•final sub-goal must be satisfied by initial state which is 
ground
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Avoiding Repeated States

search space: 
• let gi and gk be sub-goals where gi is an 

ancestor of gk in the search tree
• let σ be a substitution such that σ(gi) ⊆ gk

pruning:
• then we can prune all nodes below gk

Avoiding Repeated States
•search space: 

•let gi and gk be sub-goals where gi is an ancestor of gk
in the search tree
•let σ be a substitution such that σ(gi)⊆ gk

•gk is more specific sub-goal than gi :
•subset relation: gk may contain additional 
conjuncts
•substitution: variables in gi are specific values in 
gk

•note similarity to subsumption relation in theorem 
proving

•pruning:
•then we can prune all nodes below gk

•any plan achieving gk from the initial state would also 
achieve gi

•thus: solution via gk and gi is redundant
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search

•just done: search backwards from the goal reduces search 
space size

•The STRIPS Planner
•now: further reduction of the search space size in the 
STRIPS algorithm (not complete)
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Problems with Backward Search

state space still too large to search 
efficiently
STRIPS idea:
• only work on preconditions of the last operator 

added to the plan
• if the current state satisfies all of an operator’s 

preconditions, commit to this operator

Problems with Backward Search
•state space still too large to search efficiently

•especially when STRIPS was developed (early 70s), but still 
true today

•STRIPS idea:
•only work on preconditions of the last operator added 
to the plan

•reduces branching factor significantly
•if the current state satisfies all of an operator’s 
preconditions, commit to this operator

•reduces need for backtracking (in deterministic 
implementation)
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Ground-STRIPS Algorithm
function groundStrips(O,s,g)

plan 〈〉
loop

if s.satisfies(g) then return plan
applicables

{ground instances from O relevant for g-s}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subplan groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s γ(s, subplan ∙ 〈action〉)
plan plan ∙ subplan ∙ 〈action〉

Ground-STRIPS Algorithm
•function groundStrips(O,s,g)

•recursive function will be called with intermediate state and 
new sub-goals

•plan 〈〉
•loop
•if s.satisfies(g) then return plan
•applicables {ground instances from O relevant for g-s}

•focus on unachieved parts of the sub-goal
•if applicables.isEmpty() then return failure
•action applicables.chooseOne()

•non-deterministic choice point
•subplan groundStrips(O,s,action.preconditions())

•recursive call: generate sub-plan that achieves the 
preconditions of the regression operator

•if subplan = failure then return failure
•s γ(s, subplan ∙ 〈action〉)

•commit to the successful plan and action and use resulting 
state as new “initial” state

•plan plan ∙ subplan ∙ 〈action〉
•update the plan accordingly
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Problems with STRIPS

STRIPS is incomplete:
• cannot find solution for some problems, e.g. 

interchanging the values of two variables
• cannot find optimal solution for others, e.g. Sussman

anomaly:

Table

A B

C

Table

A

B

C

Problems with STRIPS
•STRIPS is incomplete:

•cannot find solution for some problems, e.g. 
interchanging the values of two variables

•why?
•cannot find optimal solution for others, e.g. Sussman
anomaly:

•after achieving sub-goal, plan for next sub-goal will un-
achieve previous sub-goal

•[figure]
•Sussman anomaly: find plan for transforming left 
configuration into right configuration
•goal given as {on(A,B), on(B,C)}
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STRIPS and the Sussman
Anomaly (1)

achieve on(A,B)
• put C from A onto table
• put A onto B

achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C A

BC

A
BC A

B
C

A
B
C

A
B
C

STRIPS and the Sussman Anomaly (1)
•two relevant operators at top level: “put A onto B” and “put B onto 
C”
•first case: choose “put A onto B”
•achieve on(A,B)

•put C from A onto table
•put A onto B
•sub-plan complete from initial state; commit to it

•achieve on(B,C)
•put A from B onto table
•put B onto C
•sub-plan complete from new state (un-achieves first sub-
goal); commit to it

•re-achieve on(A,B)
•put A onto B
•plan complete
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STRIPS and the Sussman
Anomaly (2)

achieve on(B,C)
• put B onto C

achieve on(A,B)
• put B from C onto table
• put C from A onto table
• put A onto B

re-achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C

A

B
C

A

B
C A

B C

A
B C A

B
C

A
B
C

A
B
C

STRIPS and the Sussman Anomaly (2)
•second case: choose “put B onto C”
•achieve on(B,C)

•put B onto C
•sub-plan complete from initial state; commit to it

•achieve on(A,B)
•put B from C onto table
•put C from A onto table
•put A onto B
•sub-plan complete from new state (un-achieves first sub-
goal); commit to it

•re-achieve on(B,C)
•put A from B onto table
•put B onto C
•sub-plan complete from new state (un-achieves second 
sub-goal); commit to it

•re-achieve on(A,B)
•put A onto B
•plan complete
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Interleaving Plans for an 
Optimal Solution

shortest solution 
achieving on(A,B):

shortest solution 
achieving on(B,C):

shortest solution for 
on(A,B) and on(B,C):

put C from A onto table

put B onto C

put A onto B

put C from A onto table

put B onto C

put A onto B

Interleaving Plans for an Optimal Solution
•shortest solution achieving on(A,B):

•put C from A onto table
•put A onto B

•shortest solution achieving on(B,C):
•put B onto C

•shortest solution for on(A,B) and on(B,C):
•put C from A onto table
•put B onto C
•put A onto B

•note: optimal solution cannot be found by STRIPS algorithm 
because: 

•it cannot switch the sub-goal to work on during the search 
and 
•commits as soon as it found a path to the initial state
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Overview

The STRIPS Representation
The Planning Domain Definition Language 
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner

•just done: further reduction of the search space size in the 
STRIPS algorithm (not complete)


