
1

State-Space Search and
the STRIPS Planner

Searching for a Path
through a Graph of Nodes
Representing World States

State-Space Search and the STRIPS Planner
•Searching for a Path through a Graph of Nodes
Representing World States

2

State-Space Search and the STRIPS Planner 2

Literature
Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice, chapter
2 and 4. Elsevier/Morgan Kaufmann, 2004.
Malik Ghallab, et al. PDDL–The Planning Domain
Definition Language, Version 1.x.
ftp://ftp.cs.yale.edu/pub/mcdermott/software/
pddl.tar.gz
S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach, chapters 3-4. Prentice Hall, 2nd

edition, 2003.
J. Pearl. Heuristics, chapters 1-2. Addison-Wesley,
1984.

Literature
•Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
Planning – Theory and Practice, chapter 2 and 4.
Elsevier/Morgan Kaufmann, 2004.
•Malik Ghallab, et al. PDDL–The Planning Domain Definition
Language, Version 1.x.
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
•S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach, chapters 3-4. Prentice Hall, 2nd edition, 2003.
•J. Pearl. Heuristics, chapters 1-2. Addison-Wesley, 1984.

3

State-Space Search and the STRIPS Planner 3

Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions,

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states

Classical Representations
•propositional representation

•world state is set of propositions
•action consists of precondition propositions,
propositions to be added and removed

•STRIPS representation
•named after STRIPS planner
•like propositional representation, but first-order literals
instead of propositions
•most popular for restricted state-transitions systems

•state-variable representation
•state is tuple of state variables {x1,…,xn}
•action is partial function over states
•useful where state is characterized by attributes over finite
domains

•equally expressive: planning domain in one representation can
also be represented in the others

4

State-Space Search and the STRIPS Planner 4

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

now: the best-known knowledge representation formalism
for reasoning about actions

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner

5

State-Space Search and the STRIPS Planner 5

STRIPS Planning Domains:
Restricted State-Transition Systems

A restricted state-transition system is a triple
Σ=(S,A,γ), where:
• S={s1,s2,…} is a set of states;
• A={a1,a2,…} is a set of actions;
• γ:S×A→S is a state transition function.

defining STRIPS planning domains:
• define STRIPS states
• define STRIPS actions
• define the state transition function

STRIPS Planning Domains: Restricted State-Transition
Systems
•A restricted state-transition system is a triple Σ=(S,A,γ),
where:

•S={s1,s2,…} is a set of states;
•A={a1,a2,…} is a set of actions;
•γ:S×A→S is a state transition function.

•defining STRIPS planning domains:
•to do to define the representation:
•define STRIPS states
•define STRIPS actions
•define the state transition function

6

State-Space Search and the STRIPS Planner 6

States in the STRIPS
Representation

Let L be a first-order language with finitely
many predicate symbols, finitely many
constant symbols, and no function symbols.
A state in a STRIPS planning domain is a set
of ground atoms of L.
• (ground) atom p holds in state s iff p∈s
• s satisfies a set of (ground) literals g (denoted s ⊧ g) if:

• every positive literal in g is in s and
• every negative literal in g is not in s.

States in the STRIPS Representation
•Let L be a first-order language with finitely many predicate
symbols, finitely many constant symbols, and no function
symbols.

•terms in L are either constants or a variables
•extensions of L will follow later

•A state in a STRIPS planning domain is a set of ground
atoms of L.

•note: number of different states is finite
•(ground) atom p holds in state s iff p∈s

•closed-world assumption
•s satisfies a set of (ground) literals g (denoted s ⊧ g) if:

•literals: atoms and negated atoms
•every positive literal in g is in s and
•every negative literal in g is not in s.

•definitions for “holds” and “satisfies” may be generalized
using substitutions

7

State-Space Search and the STRIPS Planner 7

DWR Example: STRIPS States
state = {attached(p1,loc1),

attached(p2,loc1),
in(c1,p1),in(c3,p1),
top(c3,p1), on(c3,c1),
on(c1,pallet), in(c2,p2),
top(c2,p2), on(c2,pallet),
belong(crane1,loc1),
empty(crane1),
adjacent(loc1,loc2),
adjacent(loc2, loc1),
at(r1,loc2), occupied(loc2),
unloaded(r1)}

loc1

loc2

pallet

crane1

r1

pallet

c2

c1

p2

p1

c3

DWR Example: STRIPS States
•predicate symbols: relations for DWR domain
•constant symbols: for objects in the domain {loc1, loc2, r1,
crane1, p1, p2, c1, c2, c3, pallet}
•state = {attached(p1,loc1), attached(p2,loc1),
in(c1,p1),in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet),
in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
empty(crane1), adjacent(loc1,loc2), adjacent(loc2, loc1),
at(r1,loc2), occupied(loc2), unloaded(r1)}

8

State-Space Search and the STRIPS Planner 8

Fluent Relations

Predicates that represent relations, the
truth value of which can change from
state to state, are called a fluent or
flexible relations.
• example: at

A state-invariant predicate is called a
rigid relation.
• example: adjacent

Fluent Relations
•note: whether an atom holds in a state may or may not depend
on the state
•Predicates that represent relations, the truth value of which
can change from state to state, are called a fluent or flexible
relations.

•example: at
•changes when the robot moves

•A state-invariant predicate is called a rigid relation.
•example: adjacent

•cannot be changed by any of the actions in the domain
•atoms involving this relation do not have a state or
situation argument

9

State-Space Search and the STRIPS Planner 9

Operators and Actions in
STRIPS Planning Domains

A planning operator in a STRIPS planning
domain is a triple
o = (name(o), precond(o), effects(o)) where:
• the name of the operator name(o) is a syntactic

expression of the form n(x1,…,xk) where n is a
(unique) symbol and x1,…,xk are all the variables that
appear in o, and

• the preconditions precond(o) and the effects effects(o)
of the operator are sets of literals.

An action in a STRIPS planning domain is a
ground instance of a planning operator.

Operators and Actions in STRIPS Planning Domains
•A planning operator in a STRIPS planning domain is a triple
o = (name(o), precond(o), effects(o)) where:

•the name of the operator name(o) is a syntactic
expression of the form n(x1,…,xk) where n is a (unique)
symbol and x1,…,xk are all the variables that appear in o,
and

•unique: no two operators in the same domain must
have the same name symbol

•the preconditions precond(o) and the effects effects(o)
of the operator are sets of literals.

•only variables mentioned in the name are allowed to
appear in these literals

•An action in a STRIPS planning domain is a ground instance
of a planning operator.

•actions are also called operator instances
•note: rigid relation must not appear in the effects of an operator,
only in the preconditions

10

State-Space Search and the STRIPS Planner 10

DWR Example: STRIPS
Operators

move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

load(k,l,c,r)
• precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)
• effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

put(k,l,c,d,p)
• precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)
• effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d),

¬top(d,p)

DWR Example: STRIPS Operators
•move(r,l,m)

•robot r moves from location l to an adjacent location m
•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•load(k,l,c,r)
•crane k at location l loads container c onto robot r
•precond: belong(k,l), holding(k,c), at(r,l), unloaded(r)
•effects: empty(k), ¬holding(k,c), loaded(r,c), ¬unloaded(r)

•put(k,l,c,d,p)
•crane k at location l puts container c onto d in pile p
•precond: belong(k,l), attached(p,l), holding(k,c), top(d,p)
•effects: ¬holding(k,c), empty(k), in(c,p), top(c,p), on(c,d),
¬top(d,p)

•similar: unload and take operators
•action: just substitute variables with values consistently

11

State-Space Search and the STRIPS Planner 11

Applicability and State
Transitions

Let L be a set of literals.
• L+ is the set of atoms that are positive literals in L and
• L- is the set of all atoms whose negations are in L.

Let a be an action and s a state. Then a is
applicable in s iff:
• precond+(a) ⊆ s; and
• precond-(a) ⋂ s = {}.

The state transition function γ for an applicable
action a in state s is defined as:
• γ(s,a) = (s – effects-(a)) ∪ effects+(a)

Applicability and State Transitions
•Let L be a set of literals.

•L+ is the set of atoms that are positive literals in L and
•L- is the set of all atoms whose negations are in L.
•specifically, for operators: precond+(a), precond-(a),
effects+(a), and effects-(a) are defined in this way

•Let a be an action and s a state. Then a is applicable in s iff:
•precond+(a) ⊆ s; and
•precond-(a) ⋂ s = {}.

•The state transition function γ for an applicable action a in state s
is defined as:

•γ(s,a) = (s – effects-(a)) ∪ effects+(a)
•note implicit frame axioms: what is not mentioned as
an effect persists

12

State-Space Search and the STRIPS Planner 12

STRIPS Planning Domains

Let L be a function-free first-order language. A
STRIPS planning domain on L is a restricted
state-transition system Σ=(S,A,γ) such that:
• S is a set of STRIPS states, i.e. sets of ground atoms
• A is a set of ground instances of some STRIPS

planning operators O
• γ:S×A→S where

• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is applicable in s
• γ(s,a)=undefined otherwise

• S is closed under γ

STRIPS Planning Domains
• Let L be a function-free first-order language. A STRIPS

planning domain on L is a restricted state-transition
system Σ=(S,A,γ) such that:

• S is a set of STRIPS states, i.e. sets of ground atoms
• STRIPS vs. propositional domains: ground atoms

instead of propositions
• A is a set of ground instances of some STRIPS

planning operators O
• abstraction in operator descriptions due to variables;

action effectively same as propositional actions
• γ:S×A→S where

• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if a is
applicable in s

• γ(s,a)=undefined otherwise
• S is closed under γ

13

State-Space Search and the STRIPS Planner 13

STRIPS Planning Problems

A STRIPS planning problem is a triple
P=(Σ,si,g) where:
• Σ=(S,A,γ) is a STRIPS planning domain on

some first-order language L
• si∈S is the initial state
• g is a set of ground literals describing the

goal such that the set of goal states is:
Sg={s∈S | s satisfies g}

STRIPS Planning Problems
•A STRIPS planning problem is a triple P=(Σ,si,g) where:

•Σ=(S,A,γ) is a STRIPS planning domain on some first-
order language L
•si∈S is the initial state
•g is a set of ground literals describing the goal such
that the set of goal states is: Sg={s∈S | s satisfies g}

•note: g may contain positive and negated ground
atoms (no closed world assumption for goals)

14

State-Space Search and the STRIPS Planner 14

DWR Example: STRIPS Planning
Problem
Σ: STRIPS planning domain for DWR domain
si: any state
• example: s0 = {attached(pile,loc1),

in(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}

g: any subset of L
• example: g = {¬unloaded(robot),

at(robot,loc2)}, i.e. Sg={s5}

s0

loc1 loc2

palletcont.

crane

robot

s5

location1 location2

pallet

crane

robot
cont.

DWR Example: STRIPS Planning Problem
•Σ: STRIPS planning domain for DWR domain

•see previous slides
•si: any state

•example: s0 = {attached(pile,loc1), in(cont,pile),
top(cont,pile), on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2), adjacent(loc2,loc1),
at(robot,loc2), occupied(loc2), unloaded(robot)}
•note: s0 is not necessarily initial state

•g: any subset of L
•example: g = {¬unloaded(robot), at(robot,loc2)}, i.e. Sg={s5}

•other relations will hold, but they are not mentioned in
the goal = partial specification of a state

15

State-Space Search and the STRIPS Planner 15

Statement of a STRIPS Planning
Problem

A statement of a STRIPS planning
problem is a triple P=(O,si,g) where:
• O is a set of planning operators in an

appropriate STRIPS planning domain
Σ=(S,A,γ) on L

• si is the initial state in an appropriate STRIPS
planning problem P=(Σ,si,g)

• g is a goal (set of ground literals) in the same
STRIPS planning problem P

Statement of a STRIPS Planning Problem
•A statement of a STRIPS planning problem is a triple
P=(O,si,g) where:

•O is a set of planning operators in an appropriate
STRIPS planning domain Σ=(S,A,γ) on L

•note: statement based on operators rather than actions
= operator instances

•si is the initial state in an appropriate STRIPS planning
problem P=(Σ,si,g)
•g is a goal (set of ground literals) in the same STRIPS
planning problem P

•statement is syntactic specification of STRIPS planning problem
•if two STRIPS planning problems have same statement, they will have same reachable
states and solutions

16

State-Space Search and the STRIPS Planner 16

Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉,
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise

Classical Plans
•note: classical definitions apply to all representations
•A plan is any sequence of actions π=〈a1,…,ak〉, where k≥0.

•k=0 means no actions in the empty plan
•The length of plan π is |π|=k, the number of actions.
•If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their
concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
•The extended state transition function for plans is defined
as follows:

•γ(s,π)=s if k=0 (π is empty)
•γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
•γ(s,π)=undefined otherwise

•plan corresponds to a path through the state space

17

State-Space Search and the STRIPS Planner 17

Classical Solutions

Let P=(Σ,si,g) be a planning problem. A
plan π is a solution for P if γ(si,π)
satisfies g.
• A solution π is redundant if there is a proper

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains

fewer actions than π.

Classical Solutions
•Let P=(Σ,si,g) be a propositional planning problem. A plan π
is a solution for P if g⊆γ(si,π).

•A solution π is redundant if there is a proper subsequence
of π is also a solution for P.
•π is minimal if no other solution for P contains fewer actions
than π.
•note: a minimal solution cannot be redundant

•solution is a path through the state space that leads from the
initial state to a state that satisfies the goal

18

State-Space Search and the STRIPS Planner 18

DWR Example: Solution Plan

plan π1 =
• 〈 move(robot,loc2,loc1),
• take(crane,loc1,cont,pallet,pile),
• load(crane,loc1,cont,robot),
• move(robot,loc1,loc2) 〉

|π1|=4
π1 is a minimal, non-redundant solution

DWR Example: Solution Plan
•plan π1 =

•〈 move(robot,loc2,loc1),
•take(crane,loc1,cont,pallet,pile),
•load(crane,loc1,cont,robot),
•move(robot,loc1,loc2) 〉

•|π1|=4
•π1 is a minimal, non-redundant solution

•to the problem discussed previously

19

State-Space Search and the STRIPS Planner 19

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

just done: the best-known knowledge representation
formalism for reasoning about actions

•The Planning Domain Definition Language (PDDL)
•now: a syntax for the STRIPS representation (and
extensions)

•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner

20

State-Space Search and the STRIPS Planner 20

PDDL Basics

http://cs-www.cs.yale.edu/homes/dvm/
language features (version 1.x):
• basic STRIPS-style actions
• various extensions as explicit requirements

used to define:
• planning domains: requirements, types,

predicates, possible actions
• planning problems: objects, rigid and fluent

relations, initial situation, goal description

PDDL Basics
•http://cs-www.cs.yale.edu/homes/dvm/

•Drew McDermott’s home page; PDDL 1.7 available
(contains documentation version 1.2)
•developed for planning competition 1998; current version
3.0

•language features (version 1.x):
•basic STRIPS-style actions
•various extensions as explicit requirements

•used to define:
•planning domains: requirements, types, predicates,
possible actions
•planning problems: objects, rigid and fluent relations,
initial situation, goal description

21

State-Space Search and the STRIPS Planner 21

PDDL 1.x Domains
<domain> ::=

(define (domain <name>)
[<extension-def>]
[<require-def>]
[<types-def>]:typing

[<constants-def>]
[<domain-vars-def>]:expression−evaluation

[<predicates-def>]
[<timeless-def>]
[<safety-def>]:safety−constraints

<structure-def>*)

<extension-def> ::=
(:extends <domain name>+)

<require-def> ::=
(:requirements <require-key>+)

<require-key> ::=
:strips | :typing | …

<types-def> ::= (:types <typed list (name)>)
<constants-def> ::=

(:constants <typed list (name)>)
<domain-vars-def> ::=

(:domain-variables
<typed list(domain-var-declaration)>)

<predicates-def> ::=
(:predicates <atomic formula skeleton>+)

<atomic formula skeleton> ::=
(<predicate> <typed list (variable)>)

<predicate> ::= <name>
<variable> ::= ?<name>
<timeless-def> ::=

(:timeless <literal (name)>+)
<structure-def> ::= <action-def>
<structure-def> ::=:domain−axioms <axiom-def>
<structure-def> ::=:action−expansions <method-def>

PDDL 1.x Domains
•<domain> ::= (define (domain <name>)

•defines a (statement of a) planning domain
• [<extension-def>] [<require-def>] [<types-def>]:typing [<constants-
def>] [<domain-vars-def>]:expression−evaluation [<predicates-def>] [<timeless-def>]
[<safety-def>]:safety−constraints <structure-def>*)

•various optional components (in any order); only structure definitions (actions)
required

•<extension-def> ::= (:extends <domain name>+)
•possibility to “inherit” definitions from other domain

•<require-def> ::= (:requirements <require-key>+)
•<require-key> ::= :strips | :typing | …

•language extensions required by the domain must be stated explicitly
•<types-def> ::= (:types <typed list (name)>)

•allows for typing of objects and variables
•<constants-def> ::= (:constants <typed list (name)>)
•<domain-vars-def> ::= (:domain-variables <typed list(domain-var-declaration)>)
•<predicates-def> ::= (:predicates <atomic formula skeleton>+)
•<atomic formula skeleton> ::= (<predicate> <typed list (variable)>)
•<predicate> ::= <name>
•<variable> ::= ?<name>

•used to define domain relations for state descriptions; arguments may be typed
•<timeless-def> ::= (:timeless <literal (name)>+)
•<structure-def> ::= <action-def>

•the basic STRIPS actions
•<structure-def> ::=:domain−axioms <axiom-def>
•<structure-def> ::=:action−expansions <method-def>

22

State-Space Search and the STRIPS Planner 22

PDDL Types

PDDL types syntax
<typed list (x)> ::= x*
<typed list (x)> ::=:typing

x+ - <type> <typed list(x)>
<type> ::= <name>
<type> ::= (either <type>+)
<type> ::=:fluents (fluent <type>)

PDDL Types
•PDDL types syntax

•<typed list (x)> ::= x*
•untyped version is always part of the syntax

•<typed list (x)> ::=:typing x+ - <type> <typed list(x)>
•multiple objects can be declared to have the same type
•last element for recursion

•<type> ::= <name>
•<type> ::= (either <type>+)
•<type> ::=:fluents (fluent <type>)

23

State-Space Search and the STRIPS Planner 23

Example: DWR Types
(define (domain dock-worker-robot)

(:requirements :strips :typing)

(:types
location ;there are several connected locations
pile ;is attached to a location,

;it holds a pallet and a stack of containers
robot ;holds at most 1 container,

;only 1 robot per location
crane ;belongs to a location to pickup containers
container)

…)

Example: DWR Types
•(define (domain dock-worker-robot)

•defines a named domain (running example)
•(:requirements :strips :typing)

•simple requirements: STRIPS actions and typing (to
make domain more readable)

•(:types
•location ;there are several connected locations

•first type: set of objects that belong to this type
•note: semicolon is beginning of comment

•pile ;is attached to a location, it
holds a pallet and a stack of containers
•robot ;holds at most 1 container, only 1 robot
per location
•crane ;belongs to a location to pickup
containers
•container)

•…)
•remaining domain omitted here

24

State-Space Search and the STRIPS Planner 24

Example: DWR Predicates
(:predicates

(adjacent ?l1 ?l2 - location) ;location ?l1 is adjacent to ?l2
(attached ?p - pile ?l - location) ;pile ?p attached to location ?l
(belong ?k - crane ?l - location) ;crane ?k belongs to location ?l

(at ?r - robot ?l - location) ;robot ?r is at location ?l
(occupied ?l - location) ;there is a robot at location ?l
(loaded ?r - robot ?c - container) ;robot ?r is loaded with container ?c
(unloaded ?r - robot) ;robot ?r is empty

(holding ?k - crane ?c - container) ;crane ?k is holding a container ?c
(empty ?k - crane) ;crane ?k is empty

(in ?c - container ?p - pile) ;container ?c is within pile ?p
(top ?c - container ?p - pile) ;container ?c is on top of pile ?p
(on ?c1 - container ?c2 - container) ;container ?c1 is on container ?c2

)

Example: DWR Predicates
•(:predicates

•(adjacent ?l1 ?l2 - location) ;location ?l1 is adjacent to ?l2
•predicate name: adjacent
•two arguments represented by variables: ?l1 and ?l2
•type of both variables must be location

•(attached ?p - pile ?l - location) ;pile ?p attached to location ?l
•arguments of two different types

•(belong ?k - crane ?l - location) ;crane ?k belongs to location
?l
•(at ?r - robot ?l - location) ;robot ?r is at location ?l
•(occupied ?l - location) ;there is a robot at location ?l
•(loaded ?r - robot ?c - container) ;robot ?r is loaded with
container ?c
•(unloaded ?r - robot) ;robot ?r is empty
•(holding ?k - crane ?c - container) ;crane ?k is holding a container
?c
•(empty ?k - crane) ;crane ?k is empty
•(in ?c - container ?p - pile) ;container ?c is within pile ?p
•(top ?c - container ?p - pile) ;container ?c is on top of pile ?p
•(on ?c1 - container ?c2 - container) ;container ?c1 is on container
?c2

•always use comments!
•)

25

State-Space Search and the STRIPS Planner 25

PDDL Actions
<action-def> ::=

(:action <action functor>
:parameters (<typed list (variable)>)
<action-def body>)

<action functor> ::= <name>
<action-def body> ::=

[:vars (<typed list(variable)>)]:existential-preconditions :conditional-effects

[:precondition <GD>]
[:expansion <action spec>]:action−expansions

[:expansion :methods]:action−expansions

[:maintain <GD>]:action−expansions

[:effect <effect>]
[:only-in-expansions <boolean>]:action−expansions

PDDL Actions
•<action-def> ::= (:action <action functor>

•:parameters (<typed list (variable)>)
•list of variables representing parameters
•typed for readability and reduced search space size

•<action-def body>)
•<action functor> ::= <name>
•<action-def body> ::= [:vars (<typed list(variable)>)]:existential-preconditions

:conditional-effects [:precondition <GD>] [:expansion <action
spec>]:action−expansions [:expansion :methods]:action−expansions [:maintain
<GD>]:action−expansions [:effect <effect>] [:only-in-expansions
<boolean>]:action−expansions

•preconditions: GD = goal description; sub-goal for making this action
applicable

26

State-Space Search and the STRIPS Planner 26

PDDL Goal Descriptions
<GD> ::= <atomic formula(term)>
<GD> ::= (and <GD>+)
<GD> ::= <literal(term)>
<GD> ::=:disjunctive−preconditions (or <GD>+)
<GD> ::=:disjunctive−preconditions (not <GD>)
<GD> ::=:disjunctive−preconditions (imply <GD> <GD>)
<GD> ::=:existential−preconditions (exists (<typed list(variable)>) <GD>)
<GD> ::=:universal−preconditions (forall (<typed list(variable)>) <GD>)
<literal(t)> ::= <atomic formula(t)>
<literal(t)> ::= (not <atomic formula(t)>)
<atomic formula(t)> ::= (<predicate> t*)
<term> ::= <name>

PDDL Goal Descriptions
•<GD> ::= <atomic formula(term)>

•simples case: positive or negative atom (predicate with arguments)
•<GD> ::= (and <GD>+)

•conjunction made explicit
•<GD> ::= <literal(term)>
•<GD> ::=:disjunctive−preconditions (or <GD>+)
•<GD> ::=:disjunctive−preconditions (not <GD>)
•<GD> ::=:disjunctive−preconditions (imply <GD> <GD>)
•<GD> ::=:existential−preconditions (exists (<typed list(variable)>) <GD>)
•<GD> ::=:universal−preconditions (forall (<typed list(variable)>) <GD>)
•<literal(t)> ::= <atomic formula(t)>
•<literal(t)> ::= (not <atomic formula(t)>)
•<atomic formula(t)> ::= (<predicate> t*)
•<term> ::= <name>

27

State-Space Search and the STRIPS Planner 27

PDDL Effects

<effect> ::= (and <effect>+)
<effect> ::= <atomic formula(term)>
<effect> ::= (not <atomic formula(term)>)
<effect> ::=:conditional−effects

(forall (<variable>*) <effect>)
<effect> ::=:conditional−effects

(when <GD> <effect>)
<effect> ::=:fluents (change <fluent> <expression>)

PDDL Effects
•note: for basic STRIPS representation, goals and effects are
syntactically identical

•<effect> ::= (and <effect>+)
•again, conjunction is explicit (but no disjunctive extension)

•<effect> ::= <atomic formula(term)>
•<effect> ::= (not <atomic formula(term)>)

•positive and negative literals
•<effect> ::=:conditional−effects (forall (<variable>*) <effect>)
•<effect> ::=:conditional−effects (when <GD> <effect>)
•<effect> ::=:fluents (change <fluent> <expression>)

28

State-Space Search and the STRIPS Planner 28

Example: DWR Action

;; moves a robot between two adjacent locations
(:action move

:parameters (?r - robot ?from ?to - location)
:precondition (and

(adjacent ?from ?to) (at ?r ?from)
(not (occupied ?to)))

:effect (and
(at ?r ?to) (occupied ?to)
(not (occupied ?from)) (not (at ?r ?from))))

Example: DWR Action
•;; moves a robot between two adjacent locations

•Lisp convention: double semicolon not strictly necessary
•(:action move

•:parameters (?r - robot ?from ?to - location)
•typed parameters: “?r” of type robot and “?from” and
“?to” of type location

•:precondition (and
•conjunction
•(adjacent ?from ?to) (at ?r ?from)
•(not (occupied ?to)))

•:effect (and
•(at ?r ?to) (occupied ?to)
•(not (occupied ?from)) (not (at ?r ?from))))

•note: common to find negated fluent preconditions as
effects, but not always

29

State-Space Search and the STRIPS Planner 29

PDDL Problem Descriptions
<problem> ::= (define (problem <name>)

(:domain <name>)
[<require-def>]
[<situation>]
[<object declaration>]
[<init>]
<goal>+

[<length-spec>])
<object declaration> ::= (:objects <typed list (name)>)
<situation> ::= (:situation <initsit name>)
<initsit name> ::= <name>
<init> ::= (:init <literal(name)>+)
<goal> ::= (:goal <GD>)
<goal> ::=:action−expansions (:expansion <action spec(action-term)>)
<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

PDDL Problem Descriptions
•<problem> ::= (define (problem <name>)
• (:domain <name>)

•problem must be defined wrt. a domain, i.e. a set of action definitions
• [<require-def>] [<situation>] [<object declaration>] [<init>]

•situation vs. init: used named situation (re-usable) or define initial
state explicitly

• <goal>+

•at least one goal description
• [<length-spec>])
•<object declaration> ::= (:objects <typed list (name)>)

•list of (typed) objects that exist in this problem (logically: constant
terms)

•<situation> ::= (:situation <initsit name>)
•<initsit name> ::= <name>

•named situation
•<init> ::= (:init <literal(name)>+)

•list of literals (note: includes negative literals)
•<goal> ::= (:goal <GD>)
•<goal> ::=:action−expansions (:expansion <action spec(action-term)>)
•<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

30

State-Space Search and the STRIPS Planner 30

Example: DWR Problem
;; a simple DWR problem with 1 robot and 2
locations
(define (problem dwrpb1)

(:domain dock-worker-robot)
(:objects

r1 - robot
l1 l2 - location
k1 k2 - crane
p1 q1 p2 q2 - pile
ca cb cc cd ce cf pallet - container)

(:init
(adjacent l1 l2)
(adjacent l2 l1)
(attached p1 l1)
(attached q1 l1)
(attached p2 l2)
(attached q2 l2)
(belong k1 l1)
(belong k2 l2)

(in ca p1) (in cb p1) (in cc p1)
(on ca pallet) (on cb ca) (on cc cb)
(top cc p1)

(in cd q1) (in ce q1) (in cf q1)
(on cd pallet) (on ce cd) (on cf ce)
(top cf q1)

(top pallet p2)
(top pallet q2)

(at r1 l1)
(unloaded r1)
(occupied l1)

(empty k1)
(empty k2))

;; task is to move all containers to locations l2
;; ca and cc in pile p2, the rest in q2
(:goal (and

(in ca p2) (in cc p2)
(in cb q2) (in cd q2) (in ce q2) (in cf q2))))

Example: DWR Problem
•;; a simple DWR problem with 1 robot and 2 locations
•(define (problem dwrpb1)

•(:domain dock-worker-robot)
•(:objects r1 - robot l1 l2 - location k1 k2 - crane p1 q1 p2 q2 - pile ca cb cc
cd ce cf pallet - container)
•(:init

•(adjacent l1 l2) (adjacent l2 l1) (attached p1 l1) (attached q1 l1)
(attached p2 l2) (attached q2 l2) (belong k1 l1) (belong k2 l2)

•rigid relations
•(in ca p1) (in cb p1) (in cc p1) (on ca pallet) (on cb ca) (on cc cb) (top
cc p1)
•(in cd q1) (in ce q1) (in cf q1) (on cd pallet) (on ce cd) (on cf ce) (top
cf q1)

•the two piles of containers at location l1
•(top pallet p2)
•(top pallet q2)

•no containers at location l2
•(at r1 l1) (unloaded r1) (occupied l1)
•(empty k1) (empty k2))

•;; task is to move all containers to locations l2 ;; ca and cc in pile p2, the rest in
q2
•(:goal (and

•(in ca p2) (in cc p2)
•(in cb q2) (in cd q2) (in ce q2) (in cf q2))))
•note: many solutions as order of containers is undefined

31

State-Space Search and the STRIPS Planner 31

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•just done : a syntax for the STRIPS representation (and
extensions)

•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner

32

State-Space Search and the STRIPS Planner 32

Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs

Search Problems
•initial state: current state the world is in (state = situation)

•states: symbol structures representing real world objects
and relations physical symbols systems

•finite set of possible actions (aka. operators or production rules
(problem formulation))/applicability conditions

•successor function: state set of <action, state>:
action is applicable in given state; result of applying action in
given state is paired state
•successor function + initial state = state space: directed
graph with states as nodes and actions as arcs
•path (in the graph) (solution)

•goal (goal formulation)
•goal state (for unique goal state) or goal test function (for
multiple goal states (e.g. in chess))

•Solution: path in state space from initial state to goal
state

•path cost function
•for optimality: find solution path with minimal path cost
•assumption: path cost = sum of step costs (cost of
applying a given action in a given state)

33

State-Space Search and the STRIPS Planner 33

Missionaries and Cannibals:
Initial State and Actions

initial state:
• all missionaries, all

cannibals, and the
boat are on the left
bank

5 possible actions:
• one missionary crossing
• one cannibal crossing
• two missionaries

crossing
• two cannibals crossing
• one missionary and one

cannibal crossing

Missionaries and Cannibals: Initial State and Actions
•initial state:

•all missionaries, all cannibals, and the boat are on the
left bank

•5 possible actions:
•one missionary crossing
•one cannibal crossing
•two missionaries crossing
•two cannibals crossing
•one missionary and one cannibal crossing
•note: not every action applicable in every state

•example: first action not applicable in initial state

34

State-Space Search and the STRIPS Planner 34

Missionaries and Cannibals:
Successor Function

{<1m1c, (L:3m,3c,b-R:0m,0c)>,
<1m, (L:3m,2c,b-R:0m,1c)>}

(L:2m,2c-R:1m,1c,b)

{<2c, (L:3m,3c,b-R:0m,0c)>,
<1c, (L:3m,2c,b-R:0m,1c)>}

(L:3m,1c-R:0m,2c,b)

{<2c, (L:3m,1c-R:0m,2c,b)>,
<1m1c, (L:2m,2c-R:1m,1c,b)>,
<1c, (L:3m,2c-R:0m,1c,b)>}

(L:3m,3c,b-R:0m,0c)

set of <action, state>state

Missionaries and Cannibals: Successor Function
•state set of <action, state> (domain and range: set of
pairs)
•(L:3m,3c,b-R:0m,0c) {<2c, (L:3m,1c-R:0m,2c,b)>, <1m1c, (L:2m,2c-
R:1m,1c,b)>, <1c, (L:3m,2c-R:0m,1c,b)>}

•states:
•L/R: on left/right bank
•m/c: missionaries/cannibals (example: 3
missionaries and three cannibals on left bank,
none on right bank)
•b: boat (example: boat on left bank)

•actions:
•m/c: missionaries/cannibals crossing
(example(s): 2 cannibals crossing (L to R), 1m
and 1c crossing; 1c crossing)

•(L:3m,1c-R:0m,2c,b) {<2c, (L:3m,3c,b-R:0m,0c)>, <1c, (L:3m,2c,b-
R:0m,1c)>} (note: only two actions applicable)
•(L:2m,2c-R:1m,1c,b) {<1m1c, (L:3m,3c,b-R:0m,0c)>, <1m,
(L:3m,2c,b-R:0m,1c)>}

35

State-Space Search and the STRIPS Planner 35

Missionaries and Cannibals:
State Space

1c

1m
1c

2c
1c

2c

1c

2m

1m
1c

1m
1c

1c

2c

1m

2m

1c

2c

1c

1m

Missionaries and Cannibals: State Space
•(only) 16 possible world states
•arcs represent possible actions with action as label

•actions reversible and reversing action is same action;
hence bidirectional arcs

36

State-Space Search and the STRIPS Planner 36

Missionaries and Cannibals:
Goal State and Path Cost

goal state:
• all missionaries, all

cannibals, and the
boat are on the right
bank

path cost
• step cost: 1 for each

crossing
• path cost: number of

crossings = length of
path

solution path:
• 4 optimal solutions
• cost: 11

Missionaries and Cannibals: Goal State and Path Cost
•goal state:

•all missionaries, all cannibals, and the boat are on the
right bank

•path cost
•step cost: 1 for each crossing (alternatives weigh
missionaries and cannibals crossing differently)
•path cost: number of crossings = length of path

•solution path:
•4 optimal solutions
•cost: 11

•search problem now complete: initial state, actions (successor
function), goal state, and path cost function

37

State-Space Search and the STRIPS Planner 37

Real-World Problem:
Touring in Romania

Oradea

Bucharest

Fagaras

Pitesti

Neamt

Iasi

Vaslui

Urziceni
Hirsova

Eforie

Giurgiu
Craiova

Rimnicu Vilcea

Sibiu

Dobreta

Mehadia

Lugoj

Timisoara

Arad

Zerind

120

140

151

75

70

111

118

75

71

85

90

211

101

97

138

146

80
99

87

92

142

98

86

Real-World Problem: Touring in Romania
•shown: rough map of Romania
•initial state: on vacation in Arad, Romania
•goal? actions? -- “Touring Romania” cannot readily be described
in terms of possible actions, goals, and path cost

38

State-Space Search and the STRIPS Planner 38

Touring Romania:
Search Problem Definition

initial state:
• In(Arad)

possible Actions:
• DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara),

etc.

goal state:
• In(Bucharest)

step cost:
• distances between cities

Touring Romania: Search Problem Definition
•initial state:

•In(Arad)
•all states: current location only (abstraction)

•possible Actions:
•DriveTo(Zerind), DriveTo(Sibiu), DriveTo(Timisoara),
etc.
•actions: applicable if there is a direct road from the current
location to the destination

•goal state:
•In(Bucharest)
•goal state: here single state

•step cost:
•distances between cities
•path cost = sum of step costs; step cost is distance on map
(abstraction)

39

State-Space Search and the STRIPS Planner 39

Search Trees

search tree: tree structure defined by initial
state and successor function
Touring Romania (partial search tree):

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)

Search Trees
•search tree: tree structure defined by initial state and
successor function
•Touring Romania (partial search tree):

•initial state: root of tree (green)
•children of any node: states reachable via a single action

•note: repeated states possible (e.g. grey state)
•note: tree may be infinite; infinite path: Arad – Sibiu -
Arad – Sibiu - …

•goal state (red)
•search graph vs. search tree

•graph: if nodes can be reached through multiple paths
•corresponds to state space

40

State-Space Search and the STRIPS Planner 40

Search Nodes

search nodes: the nodes in the search tree
data structure:
• state: a state in the state space
• parent node: the immediate predecessor in the search

tree
• action: the action that, performed in the parent node’s

state, leads to this node’s state
• path cost: the total cost of the path leading to this

node
• depth: the depth of this node in the search tree

Search Nodes
•search nodes: the nodes in the search tree

•node is a bookkeeping structure in a search tree
•data structure:

•state: a state in the state space
•state (vs. node) corresponds to a configuration of the
world
•two nodes may contain equal states

•parent node: the immediate predecessor in the search
tree

•nodes are on paths (defined by parent nodes)
•action: the action that, performed in the parent node’s
state, leads to this node’s state
•path cost: the total cost of the path leading to this node
•depth: the depth of this node in the search tree

•alternative: representing paths only (sequences of actions):
•possible, but state provides direct access to valuable
information that might be expensive to regenerate all the
time

41

State-Space Search and the STRIPS Planner 41

Fringe Nodes
in Touring Romania Example

fringe nodes: nodes that have not been
expanded

In(Arad)

In(Zerind) In(Sibiu) In(Timisoara)

In(Arad) In(Oradea) In(Fagaras) In(Rimnicu Vilcea)

In(Sibiu) In(Bucharest)

Fringe Nodes in Touring Romania Example
•fringe nodes: nodes that have not been expanded
•shown: partial search tree for TR example

•three expanded nodes (white)
•seven (unexpanded) fringe nodes (blue)

•fringe nodes are leaves in the search tree, but not
necessarily vice versa

•remark: fringe nodes also called open nodes (vs. closed)

42

State-Space Search and the STRIPS Planner 42

Search (Control) Strategy

search or control strategy: an effective
method for scheduling the application of the
successor function to expand nodes
• selects the next node to be expanded from the fringe
• determines the order in which nodes are expanded
• aim: produce a goal state as quickly as possible

examples:
• LIFO/FIFO-queue for fringe nodes
• alphabetical ordering

Search (Control) Strategy
•search or control strategy: an effective method for
scheduling the application of the successor function to
expand nodes

•removes non-determinism from search method
•selects the next node to be expanded from the fringe

•closed nodes never need to be expanded again
•determines the order in which nodes are expanded

•exact order makes method deterministic
•aim: produce a goal state as quickly as possible

•strategy that produces goal state quicker is usually
considered better

•examples:
•LIFO/FIFO-queue for fringe nodes (two fundamental
search strategies)
•alphabetical ordering

•remark: complete search tree is usually too large to fit into
memory, strategy determines which part to generate

43

State-Space Search and the STRIPS Planner 43

General Tree Search Algorithm
function treeSearch(problem, strategy)

fringe { new
searchNode(problem.initialState) }

loop
if empty(fringe) then return failure
node selectFrom(fringe, strategy)
if problem.goalTest(node.state) then

return pathTo(node)
fringe fringe + expand(problem, node)

General Tree Search Algorithm
function treeSearch(problem, strategy)
•find a solution to the given problem while expanding nodes according to
the given strategy
fringe { new searchNode(problem.initialState) }

•fringe: set of known states; initially just initial state
loop

•possibly infinite loop expands nodes
if empty(fringe) then return failure

•complete tree explored; no goal state found
node selectFrom(fringe, strategy)

•select node from fringe according to search control strategy; the
node will not be selected again

if problem.goalTest(node.state) then
•goal test before expansion: to avoid trick problem like “get from Arad
to Arad”

return pathTo(node)
•success: goal node found

fringe fringe + expand(problem, node)
•otherwise: add new nodes to the fringe and continue loop

44

State-Space Search and the STRIPS Planner 44

In(Arad) In(Oradea) In(Rimnicu Vilcea)

In(Zerind) In(Timisoara)

In(Sibiu) In(Bucharest)

In(Fagaras)

In(Sibiu)

General Search Algorithm:
Touring Romania Example

In(Arad)

fringe

selected

General Search Algorithm: Touring Romania Example
•algorithm: select and expand cycle until goal node is about to be
expanded
•strategy: expand node on path to the goal – how do we know
which node this is? (generally, we don’t!)

45

State-Space Search and the STRIPS Planner 45

Uninformed vs. Informed Search

uninformed search (blind search)
• no additional information about states beyond

problem definition
• only goal states and non-goal states can be

distinguished

informed search (heuristic search)
• additional information about how “promising”

a state is available

Uninformed vs. Informed Search
•uninformed search (blind search)

•no additional information about states beyond problem
definition
•only goal states and non-goal states can be
distinguished
•the order of node expansion does not depend on the
location of the goal state

•informed search (heuristic search)
•additional information about how “promising” a state is
available

46

State-Space Search and the STRIPS Planner 46

de
pt

h
=

3

Breadth-First Search:
Missionaries and Cannibals

de
pt

h
=

0
de

pt
h

=
1

de
pt

h
=

2

Breadth-First Search: Missionaries and Cannibals
•first expand root node
•expand all nodes at depth 1 left to right (i.e. order depends on
order in which successors have been generated)
•expand all nodes at depth 2, again left to right
•etc.

•no nodes beyond depth 3 shown but breadth-first search would
continue

47

State-Space Search and the STRIPS Planner 47

de
pt

h
=

3

Depth-First Search:
Missionaries and Cannibals

de
pt

h
=

0
de

pt
h

=
1

de
pt

h
=

2

Depth-First Search: Missionaries and Cannibals
•expand left-most sub-tree

•this constitutes an infinite sub-tree and the algorithm would
never return, therefore the rest of the animation is wrong for
this example!

•back up to depth 1; memory is freed up
•expand the remaining sub-trees

•note: only one path including all siblings in memory at any
one time

48

State-Space Search and the STRIPS Planner 48

Iterative Deepening Search

strategy:
• based on depth-limited (depth-first) search
• repeat search with gradually increasing depth

limit until a goal state is found

implementation:
for depth 0 to ∞ do

result depthLimitedSearch(problem, depth)
if result ≠ cutoff then return result

Iterative Deepening Search
•strategy:

•based on depth-limited (depth-first) search
•repeat search with gradually increasing depth limit until
a goal state is found

•implementation:
•for depth 0 to ∞ do
•loop over increasing depth limit
•result depthLimitedSearch(problem, depth)
•perform depth-limited search with current depth limit
•if result ≠ cutoff then return result
•terminate search when no cut-off occurred (we have a
solution or failure)

•iterative deepening search finds shallowest goal node

49

State-Space Search and the STRIPS Planner 49

Discovering Repeated States:
Potential Savings

sometimes repeated states are unavoidable,
resulting in infinite search trees
checking for repeated states:
• infinite search tree ⇒ finite search tree
• finite search tree ⇒ exponential reduction

st
at

e
sp

ac
e

gr
ap

h

se
ar

ch
 tr

ee

st
at

e
sp

ac
e

gr
ap

h

Discovering Repeated States: Potential Savings
•sometimes repeated states are unavoidable, resulting in
infinite search trees

•e.g. when actions are reversible; search graph rather than
search tree

•checking for repeated states: (during the search process)
•infinite search tree ⇒ finite search tree

•reduces the search tree to the part that is necessary to
span the state space graph (e.g. M&C, Touring
Romania problem)

•finite search tree ⇒ exponential reduction
•example left: worst case scenario; true exponential
reduction (reduction from exponential to linear function)
•example right: more realistic example; still exponential
reduction (exponential to polynomial)

50

State-Space Search and the STRIPS Planner 50

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner

51

State-Space Search and the STRIPS Planner 51

Best-First Search

an instance of the general tree search or
graph search algorithm
• strategy: select next node based on an

evaluation function f: state space → ℝ
• select node with lowest value f(n)

implementation:
selectFrom(fringe, strategy)
• priority queue: maintains fringe in ascending

order of f-values

Best-First Search
•an instance of the general tree search or graph search
algorithm

•tree or graph search: both possible; difference only lies in test
for repeated states
•strategy: select next node based on an evaluation
function f: state space → ℝ

•evaluation function: determines the search strategy
•intuition: choose function that estimates the distance to
the goal

•select node with lowest value f(n)
•lowest f-value means best node: hence best-first search

•implementation: selectFrom(fringe, strategy)

•priority queue: maintains fringe in ascending order of f-
values

•implementation as binary tree: nodes can be
added/retrieved in log-time (still expensive)

52

State-Space Search and the STRIPS Planner 52

Heuristic Functions

heuristic function h: state space → ℝ
h(n) = estimated cost of the cheapest
path from node n to a goal node
if n is a goal node then h(n) must be 0
heuristic function encodes problem-
specific knowledge in a problem-
independent way

Heuristic Functions
•heuristic function h: state space → ℝ
•h(n) = estimated cost of the cheapest path from node n to a goal
node
•if n is a goal node then h(n) must be 0
•heuristic function encodes problem-specific knowledge in a
problem-independent way
•difference between evaluation function and heuristic function:

•good evaluation function makes sure nodes are expanded in
an order that leads straight to the optimal solution
•good heuristic function always gives the correct distance to
the nearest goal node
•evaluation function is not problem-specific, but uses heuristic
function which is problem-specific

53

State-Space Search and the STRIPS Planner 53

Greedy Best-First Search

use heuristic function as evaluation
function: f(n) = h(n)
• always expands the node that is closest to the

goal node
• eats the largest chunk out of the remaining

distance, hence, “greedy”

Greedy Best-First Search
•use heuristic function as evaluation function: f(n) = h(n)

•always expands the node that is closest to the goal node
•eats the largest chunk out of the remaining distance,
hence, “greedy”

54

State-Space Search and the STRIPS Planner 54

Touring in Romania: Heuristic

hSLD(n) = straight-line distance to Bucharest

77
176
161
242
160

0
366

Pitesti
Oradea
Neamt
Mehadia
Lugoj
Iasi
Hirsova

374Zerind100Giurgiu
199Vaslui380Fagaras

80Urziceni234Eforie
329Timisoara241Dobreta
253Sibiu244Craiova

226Bucharest
193Rimnicu

Vilcea
151Arad

Touring in Romania: Heuristic
•hSLD(n) = straight-line distance to Bucharest

•straight-line distance: Euclidean distance
•distance to Bucharest because our goal is to be in Bucharest

•[table]
•hSLD(Bucharest) = 0
•hSLD(Fagaras) = 176 < 211 driving distance
•hSLD(n) cannot be computed from the problem description, it
represents additional information

55

State-Space Search and the STRIPS Planner 55

Greediness

greediness is susceptible to false starts

repeated states may lead to infinite oscillation

initial state
goal state

Greediness
•greediness is susceptible to false starts
•[left figure]

•GBFS will go to node at top first because this is closest to the
goal node
•solution path is sub-optimal

•[right figure]
•GBFS will first explore the complete tree at the top that is not
connected to the goal node
•finally, it will go further away from the goal node and discover
the (optimal) solution path
•a lot of wasted search effort

•repeated states may lead to infinite oscillation
•[bottom figure]

•algorithm may go back and forth between “close” nodes,
never exploring node on way to goal

56

State-Space Search and the STRIPS Planner 56

A* Search

best-first search where
f(n) = h(n) + g(n)

• h(n) the heuristic function (as before)
• g(n) the cost to reach the node n

evaluation function:
f(n) = estimated cost of the cheapest

solution through n
A* search is optimal if h(n) is admissible

A* Search
•best-first search where f(n) = h(n) + g(n)

•h(n) the heuristic function (as before)
•g(n) the cost to reach the node n

•adds a breadth-first component to GBFS
•evaluation function: f(n) = estimated cost of the cheapest
solution through n

•expand that node next which is on the cheapest path to a goal
node

•A* search is optimal if h(n) is admissible

57

State-Space Search and the STRIPS Planner 57

Admissible Heuristics

A heuristic h(n) is admissible if it never
overestimates the distance from n to the nearest
goal node.

example: hSLD

A* search: If h(n) is admissible then f(n) never
overestimates the true cost of a solution
through n.

Admissible Heuristics
•A heuristic h(n) is admissible if it never overestimates the
distance from n to the nearest goal node.

•admissible heuristics usually think the nearest goal node is
closer than it actually is
•example: hSLD

•hSLD: shortest distance between two point is straight line,
hence hSLD is admissible

•A* search: If h(n) is admissible then f(n) never
overestimates the true cost of a solution through n.

•since f(n) = h(n) + g(n) and g(n) is the exact cost of
reaching n, f(n) cannot overestimate the true cost of a
solution through n

58

State-Space Search and the STRIPS Planner 58

d
=

3

A* (Best-First) Search:
Touring Romania

Arad
(646)

Rimnicu Vilcea
(413)

Fagaras
(415)

Oradea
(671)

Zerind
(449)

Sibiu
(393)

Timisoara
(447)

Arad
(366) d

=
0

d
=

2
d

=
1

d
=

4

fringe

selected

Sibiu
(591)

Bucharest
(450)

Craiova
(526)

Pitesti
(417)

Sibiu
(553)

Bucharest
(418)

Craiova
(615)

Rimnicu Vilcea
(607)

A* (Best-First) Search: Touring Romania
•initial state: in Arad; values shown are evaluation function f(n)
= h(n) + g(n)

•select Arad; expand Arad
•lowest f-value: Sibiu (393); means: possible path through
Sibiu with cost 393

•select Sibiu; expand Sibiu
•lowest f-value: Rimnicu Vilcea (413); means: possible path
through Rimnicu Vilcea with cost 413

•select Rimnicu Vilcea; expand Rimnicu Vilcea
•lowest f-value: Fagaras (415); expanding Rimnicu Vilcea
showed f-value too optimistic

•select Fagaras; expand Fagaras
•lowest f-value: Pitesti (417); expanding Fagaras showed f-
value too optimistic

•select Pitesti; expand Pitesti
•lowest f-value: Bucharest (418)

•select Bucharest
•goal node test succeeds

•note: search cost not minimal as for GBFS but solution is optimal

59

State-Space Search and the STRIPS Planner 59

Optimality of A* (Tree Search)

Theorem:
A* using tree search is optimal if the
heuristic h(n) is admissible.

Optimality of A* (Tree Search)
•Theorem: A* using tree search is optimal if the heuristic h(n)
is admissible.

•reminder: optimal means finds a minimal-path cost solution

60

State-Space Search and the STRIPS Planner 60

A*: Optimally Efficient

A* is optimally efficient for a given
heuristic function:
no other optimal algorithm is guaranteed
to expand fewer nodes than A*.
any algorithm that does not expand all
nodes with f(n) < C* runs the risk of
missing the optimal solution

A*: Optimally Efficient
•A* is optimally efficient for a given heuristic function: no other
optimal algorithm is guaranteed to expand fewer nodes than
A*.

•efficiency can still be increased with a different, more
accurate heuristic for a given problem
•but: efficiency does not only depend on number of nodes
expanded

•any algorithm that does not expand all nodes with f(n) < C*
runs the risk of missing the optimal solution

•suppose there is a node with f(n) < C* that is not expanded
before a goal node
•then there could be a path of cost with f(n) < C* through that
node which would be better than the goal node found

61

State-Space Search and the STRIPS Planner 61

A* and Exponential Space

A* has worst case time and space
complexity of O(bl)
exponential growth of the fringe is
normal
• exponential time complexity may be

acceptable
• exponential space complexity will exhaust any

computer’s resources all too quickly

A* and Exponential Space
•A* has worst case time and space complexity of O(bl)
•exponential growth of the fringe is normal

•exponential time complexity may be acceptable
•exponential space complexity will exhaust any
computer’s resources all too quickly

•and with the memory exhausted A* cannot continue and
fails – no solution will be found

62

State-Space Search and the STRIPS Planner 62

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search

•now: using standard search algorithms to perform a forward
search for a goal state

•Backward State-Space Search
•The STRIPS Planner

63

State-Space Search and the STRIPS Planner 63

State-Space Search

idea: apply standard search algorithms
(breadth-first, depth-first, A*, etc.) to
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan

State-Space Search
•idea: apply standard search algorithms (breadth-first, depth-
first, A*, etc.) to planning problem:

•search space is subset of state space
•subset: generate only reachable states until a goal
state has been found

•nodes correspond to world states
•arcs correspond to state transitions

•arcs are labelled with actions
•path in the search space corresponds to plan

•path from initial state to goal state is solution

64

State-Space Search and the STRIPS Planner 64

s0

DWR Example: State Space

location1 location2

palletcont.

crane s2

location1 location2

palletcont.

crane

s1

location1 location2

pallet

cont.

crane s3

location1 location2

pallet

cont.

crane s4

location1 location2

pallet

crane

robot robot

robot

robot

robot

cont.

s5

location1 location2

pallet

crane

robot
cont.

DWR Example: State Space
•from introduction

•nodes are sets of ground atoms (shown here as 3D
visualisations)
•transitions should be labelled with ground operator
instances (actions), e.g. move(robot,location1,location2)

65

State-Space Search and the STRIPS Planner 65

Search Problems
initial state
set of possible actions/applicability conditions
• successor function: state set of <action, state>
• successor function + initial state = state space
• path (solution)

goal
• goal state or goal test function

path cost function
• for optimality
• assumption: path cost = sum of step costs

Search Problems
•initial state: current state the world is in (state = situation)

•STRIPS states: sets of ground atoms
•finite set of possible actions with applicability conditions

•successor function: state set of <action, state>:
corresponds to state transition function as defined for
STRIPS actions
•successor function + initial state = state space: directed
graph with states as nodes and actions as arcs
•path (in the graph) (solution)

•goal
•goal state (not applicable) or goal test function: for
multiple goal states; states in which goal holds

•path cost function
•for optimality
•assumption: path cost = sum of step costs (cost of
applying a given action in a given state)

66

State-Space Search and the STRIPS Planner 66

State-Space Planning as a
Search Problem

given: statement of a planning problem
P=(O,si,g)
define the search problem as follows:
• initial state: si

• goal test for state s: s satisfies g
• path cost function for plan π: |π|
• successor function for state s: Γ(s)

State-Space Planning as a Search Problem
•given: statement of a planning problem P=(O,si,g)
•define the search problem as follows:

•initial state: si

•goal test for state s: s satisfies g
•path cost function for plan π: |π|

•simplification: plan length = path cost
•successor function for state s: Γ(s)

•to be defined next

67

State-Space Search and the STRIPS Planner 67

Reachable Successor States

The successor function Γm:2S→2S for a
STRIPS domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

Reachable Successor States
•The successor function Γm:2S→2S for a STRIPS domain
Σ=(S,A,γ) is defined as:

•Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
•all states that can be reached by applying exactly one
applicable action

•Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
•union of all states that can be reached by applying
exactly one applicable action

•Γ0({s1,…,sn})= {s1,…,sn}
•identity function; the states themselves

•Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))
•union of all states that can be reached by applying
exactly m applicable actions

•The transitive closure of Γ defines the set of all reachable states:
•Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

•pronounce: gamma forward
•all states that can be reached by applying any number
of applicable actions

68

State-Space Search and the STRIPS Planner 68

Solution Existence

Proposition: A STRIPS planning
problem P=(Σ,si,g) (and a statement of
such a problem P=(O,si,g)) has a
solution iff Sg ⋂ Γ>({si}) ≠ {}.

Solution Existence
•Proposition: A STRIPS planning problem P=(Σ,si,g) (and a
statement of such a problem P=(O,si,g)) has a solution iff Sg
⋂ Γ>({si}) ≠ {}.

•… iff there is a goal state that is also a reachable state
•enumerate all reachable states from the initial state (in some
good order) and we will generate a goal state eventually = forward
search

69

State-Space Search and the STRIPS Planner 69

Forward State-Space Search
Algorithm
function fwdSearch(O,si,g)

state si
plan 〈〉
loop

if state.satisfies(g) then return plan
applicables

{ground instances from O applicable in state}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
state γ(state,action)
plan plan ∙ 〈action〉

•function fwdSearch(O,si,g)
•given: statement of a STRIPS planning problem; return a
solution plan (or failure)
•non-deterministic version

•state si

•start with the initial state
•plan 〈〉

•initialize solution with empty plan (partial plan: prefix of the
solution)

•loop
•if state.satisfies(g) then return plan
•applicables {ground instances from O applicable in state}
•if applicables.isEmpty() then return failure
•action applicables.chooseOne()

•non-deterministically choose an applicable action
•state γ(state,action)
•plan plan ∙ 〈action〉

70

State-Space Search and the STRIPS Planner 70

DWR Example: Forward Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan =

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)

•DWR Example: Forward Search
•goal state available at start
•choose action; (non-deterministic; alternative would be
“move” action)
•compute successor state
•chose action; (again non-deterministic; alternative would be
“put” returning to s0)
•compute successor state
•chose action
•compute successor state
•chose action
•compute successor state; goal state!

71

State-Space Search and the STRIPS Planner 71

Finding Applicable Actions:
Algorithm
function addApplicables(A, op, precs, σ, s)

if precs+.isEmpty() then
for every np in precs- do

if s.falsifies(σ(np)) then return
A.add(σ(op))

else
pp precs+.chooseOne()
for every sp in s do

σ’ σ.extend(sp, pp)
if σ’.isValid() then

addApplicables(A, op, (precs - pp), σ’, s)

•function addApplicables(A, op, precs, σ, s)
•Parameters: set of actions, operator, set of remaining
preconditions, partial substitution, state

•if precs+.isEmpty() then
•Note: σ should now be complete

•for every np in precs- do
•if s.falsifies(σ(np)) then return
•A.add(σ(op))

•test for inconsistent effects before adding!
•else
•pp precs+.chooseOne()

•Heuristics: nr of atoms in state; nr of unbound variables
•for every sp in s do
•σ’ σ.extend(sp, pp)
•if σ’.isValid() then
•addApplicables(A, op, (precs - pp), σ’, s)

72

State-Space Search and the STRIPS Planner 72

Properties of Forward Search
Proposition: fwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.
• proof idea: show (by induction) state=γ(si,plan) at the

beginning of each iteration of the loop

Proposition: fwdSearch is complete, i.e. if there exists
solution plan then there is an execution trace of the
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace

for which plan is a prefix of the sought plan

Properties of Forward Search
•Proposition: fwdSearch is sound, i.e. if the function returns
a plan as a solution then this plan is indeed a solution.

•proof idea: show (by induction) state=γ(si,plan) at
the beginning of each iteration of the loop
•variable state always contains STRIPS state that is
result of applying plan (variable) in initial state
•hence: when state contains goal state plan contains
solution plan

•Proposition: fwdSearch is complete, i.e. if there exists
solution plan then there is an execution trace of the function
that will return this solution plan.

•proof idea: show (by induction) there is an
execution trace for which plan is a prefix of the
sought plan
•given a solution plan, the variable plan contains a prefix
of that plan starting with the initial empty plan
•chooseOne(…) can always choose the next step in the
solution plan we are looking for

73

State-Space Search and the STRIPS Planner 73

Making Forward Search
Deterministic

idea: use depth-first search
• problem: infinite branches
• solution: prune repeated states

pruning: cutting off search below certain
nodes
• safe pruning: guaranteed not to prune every solution
• strongly safe pruning: guaranteed not to prune every

optimal solution
• example: prune below nodes that have a

predecessor that is an equal state (no repeated
states)

Making Forward Search Deterministic
•idea: use depth-first search

•problem: infinite branches
•example: alternating between two states that are not
solutions

•solution: prune repeated states
•search is finite: pruning repeated states means we will
eventually enumerate the whole search space

•pruning: cutting off search below certain nodes
•safe pruning: guaranteed not to prune every solution

•but may prune some solutions
•strongly safe pruning: guaranteed not to prune every
optimal solution
•example: prune below nodes that have a
predecessor that is an equal state (no repeated
states)

•pruning repeated states is strongly safe

74

State-Space Search and the STRIPS Planner 74

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search

•just done: using standard search algorithms to perform a
forward search for a goal state

•Backward State-Space Search
•now: search backwards from the goal reduces search space
size

•The STRIPS Planner

75

State-Space Search and the STRIPS Planner 75

The Problem with Forward
Search

number of actions applicable in any
given state is usually very large
branching factor is very large
forward search for plans with more than
a few steps not feasible

idea: search backwards from the goal
problem: many goal states

The Problem with Forward Search
•number of actions applicable in any given state is usually
very large
•branching factor is very large
•forward search for plans with more than a few steps not
feasible

•forward search unnecessarily generates a large part of the
search space which makes it highly inefficient

•idea: search backwards from the goal
•problem: many goal states

•applying reverse operators only works for single goal state

76

State-Space Search and the STRIPS Planner 76

Relevance and Regression Sets

Let P=(Σ,si,g) be a STRIPS planning
problem. An action a∈A is relevant for g
if
• g ⋂ effects(a) ≠ {} and
• g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}.

The regression set of g for a relevant
action a∈A is:
• γ -1(g,a)=(g - effects(a)) ∪ precond(a)

Relevance and Regression Sets
•Let P=(Σ,si,g) be a STRIPS planning problem. An action a∈A
is relevant for g if

•g ⋂ effects(a) ≠ {} and
•a’s effects contribute to g

•g+ ⋂ effects-(a) = {} and g- ⋂ effects+(a) = {}.
•a’s effects do not conflict with g

•The regression set of g for a relevant action a∈A is:
•γ -1(g,a)=(g - effects(a)) ∪ precond(a)

•subtract all effects, not just positive ones
•note: goal and regression set (γ -1(g,a)) are sets of
ground literals
•regression set can be seen as sub-goal

77

State-Space Search and the STRIPS Planner 77

Regression Function

The regression function Γ-m for a STRIPS
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn}

• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

The transitive closure of Γ-1 defines the set of
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

Regression Function
•The regression function Γ-m for a STRIPS domain Σ=(S,A,γ) on
L is defined as:

•Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

•regression set for a single set of (goal) propositions
•Γ0({g1,…,gn})= {g1,…,gn}

•as for successors
•Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk)

•union of individual regression sets
•Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))

•minimal sets of propositions that must hold in a state s
from which m actions lead to a state in which one of
g1,…,gn is satisfied

•The transitive closure of Γ-1 defines the set of all regression sets:
•Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

•pronounce: gamma backward

78

State-Space Search and the STRIPS Planner 78

State-Space Planning as a
Search Problem

given: statement of a planning problem
P=(O,si,g)
define the search problem as follows:
• initial search state: g
• goal test for state s: si satisfies s
• path cost function for plan π: |π|
• successor function for state s: Γ-1(s)

State-Space Planning as a Search Problem
•given: statement of a planning problem P=(O,si,g)
•define the search problem as follows:

•initial search state: g
•search backwards from the goal

•goal test for state s: s satisfies si

•initial state satisfies regression set (sub-goal)
•path cost function for plan π: |π|
•successor function for state s: Γ-1(s)

•as defined in previous slide

79

State-Space Search and the STRIPS Planner 79

Solution Existence

Proposition: A propositional planning
problem P=(Σ,si,g) (and a statement of
such a problem P=(O,si,g)) has a
solution iff ∃s∈Γ<({g}) : si satisfies s.

Solution Existence
•Proposition: A propositional planning problem P=(Σ,si,g)
(and a statement of such a problem P=(O,si,g)) has a
solution iff ∃s∈Γ<({g}) : si satisfies s.

•… iff there is a minimal set of propositions amongst all
regression sets that is a subset of the initial state

•enumerate all regression sets from the goal (in some good order)
and we will generate a subset of the initial state eventually =
backward search

80

State-Space Search and the STRIPS Planner 80

Ground Backward State-Space
Search Algorithm
function groundBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if si.satisfies(subgoal) then return plan
applicables

{ground instances from O relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(subgoal, action)
plan 〈action〉 ∙ plan

Ground Backward State-Space Search Algorithm
•function groundBwdSearch(O,si,g)

•given: statement of a STRIPS planning problem; return a
solution plan (or failure)
•non-deterministic version

•subgoal g
•start with the overall goal

•plan 〈〉
•initialize solution with empty plan (partial plan: suffix of the
solution)

•loop
•if si.satisfies(subgoal) then return plan
•applicables {ground instances from O relevant for
subgoal}
•if applicables.isEmpty() then return failure
•action applicables.chooseOne()

•non-deterministically choose an applicable action
•subgoal γ -1(subgoal, action)
•plan 〈action〉 ∙ plan

•sound and complete
•test for repeated sub-goals can be applied to prune all infinite
branches

81

State-Space Search and the STRIPS Planner 81

DWR Example: Backward
Search

s1

loc1 loc2

pallet

cont.

crane

robot

s3

loc1 loc2

pallet

cont.

crane

robot

s0

loc1 loc2

palletcont.

crane

robot

s4

loc1 loc2

pallet

crane

robot
cont.

s5

loc1 loc2

pallet

crane

robot
cont.

plan =

move(robot,loc2,loc1)

initial state: goal state:

load(crane,loc1,cont,robot)

take(crane,loc1,cont,pallet,pile)

move(robot,loc1,loc2)

•DWR Example: Backward Search
•note: sub-goal represented as state here, but goal
description is not complete state description! shown state
satisfies sub-goal
•choose action
•compute sub-goal using regression
•chose action; (non-deterministic; alternative would be
“move” returning to s5)
•compute sub-goal
•chose action
•compute sub-goal
•chose action
•compute sub-goal

82

State-Space Search and the STRIPS Planner 82

Example: Regression with
Operators

goal: at(robot,loc1)
operator: move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

actions: move(robot,l,loc1)
• l=?
• many options increase branching factor

lifted backward search: use partially
instantiated operators instead of actions

Example: Regression with Operators
•goal: at(robot,loc1)
•operator: move(r,l,m)

•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•operator may achieve or undo goal depending on
variable bindings

•actions: move(robot,l,loc1)
•l=?

•to contribute to goal, r must bound to robot and m to
loc1; l can remain unbound

•many options increase branching factor
•keeping variables unbound can significantly reduce the
branching factor (as opposed to using actions)

•lifted backward search: use partially instantiated operators
instead of actions

•essentially same as ground version, but need to maintain
appropriate variable substitutions

83

State-Space Search and the STRIPS Planner 83

Lifted Backward State-Space
Search Algorithm
function liftedBwdSearch(O,si,g)

subgoal g
plan 〈〉
loop

if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan)
applicables

{(o,σ) | o∈O and σ(o) relevant for subgoal}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subgoal γ -1(σ(subgoal), σ(o))
plan σ(〈action〉) ∙ σ(plan)

Lifted Backward State-Space Search Algorithm
•function liftedBwdSearch(O,si,g)
•subgoal g
•plan 〈〉
•loop
•if ∃σ:si.satisfies(σ(subgoal)) then return σ(plan)

•need existence of substitution to test for goal satisfaction
(variables in sub-goals are implicitly existentially quantified)

•applicables {(o,σ) | o∈O and σ(o) relevant for subgoal}
•need partial instantiation to test for relevance of operator
(note: extension of definition of relevance straight forward)

•if applicables.isEmpty() then return failure
•action applicables.chooseOne()
•subgoal γ -1(σ(subgoal), σ(o))

•new sub-goal may contain variables (note: extension of
definition of γ -1 straight forward)

•plan σ(〈action〉) ∙ σ(plan)
•add partially instantiated operator to plan and apply
substitution to existing plan

•sound and complete

84

State-Space Search and the STRIPS Planner 84

DWR Example: Lifted Backward
Search

initial state: s0 = {attached(pile,loc1),
in(cont,pile), top(cont,pile),
on(cont,pallet), belong(crane,loc1),
empty(crane), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(robot,loc2),
occupied(loc2), unloaded(robot)}
operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l),

¬occupied(m)
• effects: at(r,m), occupied(m),

¬occupied(l), ¬at(r,l)

liftedBwdSearch(
{move(r,l,m)}, s0, {at(robot,loc1)})

∃σ:si.satisfies(σ(subgoal)): no
applicables =
{(move(r1,l1,m1),{r1←robot,
m1←loc1})}
subgoal =
{adjacent(l1,loc1), at(robot,l1),
¬occupied(loc1)}
plan = 〈move(robot,l1,loc1)〉

∃σ:si.satisfies(σ(subgoal)): yes
σ = {l1←loc1}

s0

loc1 loc2

palletcont.

crane

robot

DWR Example: Lifted Backward Search
•initial state: s0 = {attached(pile,loc1), in(cont,pile),
top(cont,pile), on(cont,pallet), belong(crane,loc1),
empty(crane),adjacent(loc1,loc2), adjacent(loc2,loc1),
at(robot,loc2), occupied(loc2), unloaded(robot)}
•operator:move(r,l,m)

•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•liftedBwdSearch({move(r,l,m)}, s0, {at(robot,loc1)})
•∃σ:si.satisfies(σ(subgoal)): no

•at(robot,loc1) ∉ s0
•applicables ={(move(r1,l1,m1),{r1←robot, m1←loc1})}

•variable l1 remains unbound
•subgoal = {adjacent(l1,loc1), at(robot,l1), ¬occupied(loc1)}

•instantiated preconditions of the move-operator
•plan = 〈move(robot,l1,loc1)〉
•∃σ:si.satisfies(σ(subgoal)): yes
σ = {l1←loc1}

85

State-Space Search and the STRIPS Planner 85

Properties of Backward Search
Proposition: liftedBwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.
• proof idea: show (by induction) subgaol=γ -1(g,plan) at the

beginning of each iteration of the loop

Proposition: liftedBwdSearch is complete, i.e. if there
exists solution plan then there is an execution trace of the
function that will return this solution plan.
• proof idea: show (by induction) there is an execution trace

for which plan is a suffix of the sought plan

Properties of Backward Search
•Proposition: liftedBwdSearch is sound, i.e. if the function
returns a plan as a solution then this plan is indeed a
solution.

•proof idea: show (by induction) subgaol=γ -1(g,plan)
at the beginning of each iteration of the loop

•Proposition: liftedBwdSearch is complete, i.e. if there exists
solution plan then there is an execution trace of the function
that will return this solution plan.

•proof idea: show (by induction) there is an
execution trace for which plan is a suffix of the
sought plan

•proof ideas similar to forward case, but need to show that there
are no variables in the final plan

•final sub-goal must be satisfied by initial state which is
ground

86

State-Space Search and the STRIPS Planner 86

Avoiding Repeated States

search space:
• let gi and gk be sub-goals where gi is an

ancestor of gk in the search tree
• let σ be a substitution such that σ(gi) ⊆ gk

pruning:
• then we can prune all nodes below gk

Avoiding Repeated States
•search space:

•let gi and gk be sub-goals where gi is an ancestor of gk
in the search tree
•let σ be a substitution such that σ(gi)⊆ gk

•gk is more specific sub-goal than gi :
•subset relation: gk may contain additional
conjuncts
•substitution: variables in gi are specific values in
gk

•note similarity to subsumption relation in theorem
proving

•pruning:
•then we can prune all nodes below gk

•any plan achieving gk from the initial state would also
achieve gi

•thus: solution via gk and gi is redundant

87

State-Space Search and the STRIPS Planner 87

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search

•just done: search backwards from the goal reduces search
space size

•The STRIPS Planner
•now: further reduction of the search space size in the
STRIPS algorithm (not complete)

88

State-Space Search and the STRIPS Planner 88

Problems with Backward Search

state space still too large to search
efficiently
STRIPS idea:
• only work on preconditions of the last operator

added to the plan
• if the current state satisfies all of an operator’s

preconditions, commit to this operator

Problems with Backward Search
•state space still too large to search efficiently

•especially when STRIPS was developed (early 70s), but still
true today

•STRIPS idea:
•only work on preconditions of the last operator added
to the plan

•reduces branching factor significantly
•if the current state satisfies all of an operator’s
preconditions, commit to this operator

•reduces need for backtracking (in deterministic
implementation)

89

State-Space Search and the STRIPS Planner 89

Ground-STRIPS Algorithm
function groundStrips(O,s,g)

plan 〈〉
loop

if s.satisfies(g) then return plan
applicables

{ground instances from O relevant for g-s}
if applicables.isEmpty() then return failure
action applicables.chooseOne()
subplan groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s γ(s, subplan ∙ 〈action〉)
plan plan ∙ subplan ∙ 〈action〉

Ground-STRIPS Algorithm
•function groundStrips(O,s,g)

•recursive function will be called with intermediate state and
new sub-goals

•plan 〈〉
•loop
•if s.satisfies(g) then return plan
•applicables {ground instances from O relevant for g-s}

•focus on unachieved parts of the sub-goal
•if applicables.isEmpty() then return failure
•action applicables.chooseOne()

•non-deterministic choice point
•subplan groundStrips(O,s,action.preconditions())

•recursive call: generate sub-plan that achieves the
preconditions of the regression operator

•if subplan = failure then return failure
•s γ(s, subplan ∙ 〈action〉)

•commit to the successful plan and action and use resulting
state as new “initial” state

•plan plan ∙ subplan ∙ 〈action〉
•update the plan accordingly

90

State-Space Search and the STRIPS Planner 90

Problems with STRIPS

STRIPS is incomplete:
• cannot find solution for some problems, e.g.

interchanging the values of two variables
• cannot find optimal solution for others, e.g. Sussman

anomaly:

Table

A B

C

Table

A

B

C

Problems with STRIPS
•STRIPS is incomplete:

•cannot find solution for some problems, e.g.
interchanging the values of two variables

•why?
•cannot find optimal solution for others, e.g. Sussman
anomaly:

•after achieving sub-goal, plan for next sub-goal will un-
achieve previous sub-goal

•[figure]
•Sussman anomaly: find plan for transforming left
configuration into right configuration
•goal given as {on(A,B), on(B,C)}

91

State-Space Search and the STRIPS Planner 91

STRIPS and the Sussman
Anomaly (1)

achieve on(A,B)
• put C from A onto table
• put A onto B

achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C A

BC

A
BC A

B
C

A
B
C

A
B
C

STRIPS and the Sussman Anomaly (1)
•two relevant operators at top level: “put A onto B” and “put B onto
C”
•first case: choose “put A onto B”
•achieve on(A,B)

•put C from A onto table
•put A onto B
•sub-plan complete from initial state; commit to it

•achieve on(B,C)
•put A from B onto table
•put B onto C
•sub-plan complete from new state (un-achieves first sub-
goal); commit to it

•re-achieve on(A,B)
•put A onto B
•plan complete

92

State-Space Search and the STRIPS Planner 92

STRIPS and the Sussman
Anomaly (2)

achieve on(B,C)
• put B onto C

achieve on(A,B)
• put B from C onto table
• put C from A onto table
• put A onto B

re-achieve on(B,C)
• put A from B onto table
• put B onto C

re-achieve on(A,B)
• put A onto B

A B
C

A

B
C

A

B
C A

B C

A
B C A

B
C

A
B
C

A
B
C

STRIPS and the Sussman Anomaly (2)
•second case: choose “put B onto C”
•achieve on(B,C)

•put B onto C
•sub-plan complete from initial state; commit to it

•achieve on(A,B)
•put B from C onto table
•put C from A onto table
•put A onto B
•sub-plan complete from new state (un-achieves first sub-
goal); commit to it

•re-achieve on(B,C)
•put A from B onto table
•put B onto C
•sub-plan complete from new state (un-achieves second
sub-goal); commit to it

•re-achieve on(A,B)
•put A onto B
•plan complete

93

State-Space Search and the STRIPS Planner 93

Interleaving Plans for an
Optimal Solution

shortest solution
achieving on(A,B):

shortest solution
achieving on(B,C):

shortest solution for
on(A,B) and on(B,C):

put C from A onto table

put B onto C

put A onto B

put C from A onto table

put B onto C

put A onto B

Interleaving Plans for an Optimal Solution
•shortest solution achieving on(A,B):

•put C from A onto table
•put A onto B

•shortest solution achieving on(B,C):
•put B onto C

•shortest solution for on(A,B) and on(B,C):
•put C from A onto table
•put B onto C
•put A onto B

•note: optimal solution cannot be found by STRIPS algorithm
because:

•it cannot switch the sub-goal to work on during the search
and
•commits as soon as it found a path to the initial state

94

State-Space Search and the STRIPS Planner 94

Overview

The STRIPS Representation
The Planning Domain Definition Language
(PDDL)
Problem-Solving by Search
Heuristic Search
Forward State-Space Search
Backward State-Space Search
The STRIPS Planner

Overview
The STRIPS Representation

•The Planning Domain Definition Language (PDDL)
•Problem-Solving by Search
•Heuristic Search
•Forward State-Space Search
•Backward State-Space Search
•The STRIPS Planner

•just done: further reduction of the search space size in the
STRIPS algorithm (not complete)

