
1

Scheduling

Planning with Actions that 
Require Resources

Scheduling
•Planning with Actions that Require Resources



2

Scheduling 2

Literature

Malik Ghallab, Dana Nau, and Paolo Traverso. 
Automated Planning – Theory and Practice, 
chapter 15. Elsevier/Morgan Kaufmann, 2004.
Michael Pinedo. Scheduling: Theory, 
Algorithms and Systems, Prentice Hall, 2001.
Peter Brucker. Scheduling Algorithms, 
Springer Verlag, 2004.

Literature
•Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning –
Theory and Practice, chapter 15. Elsevier/Morgan Kaufmann, 2004.
•Michael Pinedo. Scheduling: Theory, Algorithms and Systems, 
Prentice Hall, 2001.
•Peter Brucker. Scheduling Algorithms, Springer Verlag, 2004.



3

Scheduling 3

Planning and Scheduling

solution to planning problem:
• plan: partially ordered set of actions
• actions: fully instantiated operators

• require resources

resources:
• can be modelled as parameters of an action

• problem: planning algorithms tries out all possibilities 
(inefficient)

• alternative approach:
• allow unbound resource variables in plan (planning)
• find assignment of resources to actions (scheduling)

Planning and Scheduling
•solution to planning problem:

•plan: partially ordered set of actions
•actions: fully instantiated operators

•require resources
•resources:

•can be modelled as parameters of an action
•problem: planning algorithms tries out all possibilities 
(inefficient)

•alternative approach:
•allow unbound resource variables in plan (planning)

•planning focuses on causal reasoning (what to 
do)

•find assignment of resources to actions (scheduling)
•scheduling: resource and time allocation (how 
and when to do it)

•planning before scheduling (not optimal approach)



4

Scheduling 4

Overview

Scheduling Problems and Schedules
Searching for Schedules

Overview
•Scheduling Problems and Schedules

•now: an overview of different types of scheduling problems
Searching for Schedules



5

Scheduling 5

Actions and Resources

resources: an entity needed to perform 
an action
• state variables: modified by actions in 

absolute ways
• example: move(r,l.l’): 
• location changes from l to l’

• resource variables: modified by actions in 
relative ways
• example: move(r,l.l’): 
• fuel level changes from f to f-f’

Actions and Resources
•resources: an entity needed to perform an action

•state variables: modified by actions in absolute ways
•example: move(r,l.l’): 
•location changes from l to l’

•resource variables: modified by actions in relative ways
•example: move(r,l.l’): 
•fuel level changes from f to f-f’



6

Scheduling 6

Actions with Time Constraints

Let a be an action in a planning domain:
• attached time constraints:

• earliest start time: smin(a) – actual start time: s(a) 
• latest end time: smax(a) – actual end time: e(a) 
• duration: d(a)

action types:
• preemptive actions: cannot be interrupted

• d(a) = e(a) - s(a) 
• non-preemptive actions: can be interrupted

• resources available to other actions during interruption

Actions with Time Constraints
•Let a be an action in a planning domain:

•attached time constraints:
•earliest start time: smin(a) – actual start time: s(a) 
•latest end time: smax(a) – actual end time: e(a) 
•duration: d(a)

•action types:
•preemptive actions: cannot be interrupted

•d(a) = e(a) - s(a) 
•non-preemptive actions: can be interrupted

•resources available to other actions during 
interruption
•cost: interruption usually has cost associated

•further constraints: examples:
•action must be performed at night
•interruptions must be at least 30 minutes long



7

Scheduling 7

Actions with Resource 
Constraints

Let a be an action in a planning domain:
• attached resource constraints:

• required resource: r
• quantity of resource required: q

• reusable: resource will be available to other 
actions after this action is completed

• consumable: resource will be consumed 
when action is complete

Actions with Resource Constraints
•Let a be an action in a planning domain:

•attached resource constraints:
•required resource: r
•quantity of resource required: q

•reusable: resource will be available to other actions 
after this action is completed

•tools, machines, HD space, helicopters, docks
•consumable: resource will be consumed when 
action is complete

•petrol, electricity, CPU time, credit
•time is usually treated differently, as a special 
case



8

Scheduling 8

Reusable Resources
resource availability:
• total capacity: Qr• current level at time t: zr(t)

resource requirements:
• require(a,r,q): action a requires q units of resource r while it 

is active
resource profile:

a1: require(a1,r,q1)
a2: require(a2,r,q2)

zr
Qr q1

q2

Reusable Resources
•resource availability:

•total capacity: Qr

•current level at time t: zr(t)
•resource requirements:

•require(a,r,q): action a requires q units of resource r while it 
is active

•resource profile:
•[figure]
•actions are overlapping (temporally)
•profile shows availability of resource to other actions

•returns to full capacity when all actions are completed



9

Scheduling 9

Consumable Resources
resource availability:
• total reservoir at t0: Qr• current level at time t: zr(t)

resource consumption/production:
• consume(a,r,q): action a requires q units of resource r
• produce(a,r,q): action a produces q units of resource r

resource profile:

a1: consume(a1,r,q1)
a2: consume(a2,r,q2)

zr
Qr q1

q2

a3: produce(a3,r,q3)

q3

Consumable Resources
•resource availability:

•total reservoir at t0: Qr

•current level at time t: zr(t)
•resource consumption/production:

•consume(a,r,q): action a requires q units of resource r
•produce(a,r,q): action a produces q units of resource r

•resource profile:
•[figure]
•actions are overlapping (temporally)
•profile shows availability of resource to other actions

•availability at end usually different from beginning

•resource profile as step function: usually not accurate



10

Scheduling 10

Other Resource Features

discrete vs. continuous
• countable number of units: cranes, bolts
• real-valued amount: bandwidth, electricity

unary
• Qr=1; exactly one resource of this type available

sharable
• can be used by several actions at the same time

resources with states
• actions may require resources in specific state

Other Resource Features
•discrete vs. continuous

•countable number of units: cranes, bolts
•real-valued amount: bandwidth, electricity

•unary
•Qr=1; exactly one resource of this type available

•sharable
•can be used by several actions at the same time

•resources with states
•actions may require resources in specific state

•example: freezer with temperature setting



11

Scheduling 11

Combining Resource 
Constraints

conjunction:
• action uses multiple resources while being performed

disjunction: 
• action requires resources as alternatives
• cost/time may depend on resource used

resource types:
• resource-class(s) = {r1,…,rm}: require(a,s,q)
• equivalent to disjunction over identical resources

Combining Resource Constraints
•conjunction:

•action uses multiple resources while being performed
•disjunction: 

•action requires resources as alternatives
•cost/time may depend on resource used

•resource types:
•resource-class(s) = {r1,…,rm}: require(a,s,q)
•equivalent to disjunction over identical resources



12

Scheduling 12

Cost Functions and Optimization 
Criteria

cost function parameters
• quantity of resource required
• duration of requirement

optimization criteria:
• total schedule cost
• makespan (end time of last action)
• weighted completion time
• (weighted) number of late actions
• (weighted) maximum tardiness
• resource usage

Cost Functions and Optimization Criteria
•cost function parameters

•quantity of resource required
•duration of requirement

•optimization criteria:
•total schedule cost
•makespan (end time of last action)
•weighted completion time
•(weighted) number of late actions
•(weighted) maximum tardiness
•resource usage



13

Scheduling 13

Machine Scheduling
machine: resource of unit capacity
• either available or not available at time t
• cannot process two actions at the same time

job j: partially ordered set of actions aj1,…,ajk• action aji requires 
• one resource type 
• for a number of time units

• actions in same job must be processed sequentially
• actions in different jobs are independent (not ordered)

machine scheduling problem:
• given: n jobs and m machines
• schedule: mapping from actions to machines + start times 

Machine Scheduling
•class of problems
•machine: resource of unit capacity

•either available or not available at time t
•cannot process two actions at the same time

•job j: partially ordered set of actions aj1,…,ajk

•in general, jobs can have different numbers of activities
•action aji requires 

•one resource type 
•for a number of time units

•actions in same job must be processed sequentially
•even if they are only partially ordered: object that is being 
worked on

•actions in different jobs are independent (not ordered)
•machine scheduling problem:

•given: n jobs and m machines
•schedule: mapping from actions to machines + start times 



14

Scheduling 14

Example: Scheduling Problem

machines: 
• m1 of resource type r1
• m2, m3 of resource type r2

jobs:
• j1: 〈r1(3), r2(3), r1(3)〉

• three actions, totally ordered
• a11 requires 3 units of resource type 1, etc.

• j2: 〈r2(3), r1(5)〉
• j3: 〈r1(3), r1(2), r2(3), r1(5)〉

Example: Scheduling Problem
•machines: 

•m1 of resource type r1

•m2, m3 of resource type r2

•jobs:
•j1: 〈r1(3), r2(3), r1(3)〉

•three actions, totally ordered
•a11 requires 3 units of resource type 1, etc.

•j2: 〈r2(3), r1(5)〉
•j3: 〈r1(3), r1(2), r2(3), r1(5)〉



15

Scheduling 15

Example: Schedules by Job

machines: 
• m1 of type r1

• m2 of type r2

jobs: 
• j1: 〈r1(1), r2(2)〉
• j2: 〈r1(3), r2(1)〉

j1
j2

m1 m2

m2m1

j1
j2

m1 m2

m2m1

Example: Schedules by Job
•machines: 

•m1 of type r1

•m2 of type r2

•jobs: 
•j1: 〈r1(1), r2(2)〉
•j2: 〈r1(3), r2(1)〉

•[figures]
•schedules showing machines assigned to actions in jobs



16

Scheduling 16

Example: Schedules by Machine

machines: 
• m1 of type r1

• m2 of type r2

jobs: 
• j1: 〈r1(1), r2(2)〉
• j2: 〈r1(3), r2(1)〉

m1

m2

a11 a21

a22a12

m1

m2

a11a21

a22 a12

Example: Schedules by Machine
•machines: 

•m1 of type r1

•m2 of type r2

•jobs: 
•j1: 〈r1(1), r2(2)〉
•j2: 〈r1(3), r2(1)〉

•[figures]
•schedules showing actions assigned to machines



17

Scheduling 17

Overview

Scheduling Problems and Schedules
Searching for Schedules

Overview
•Scheduling Problems and Schedules

•just done: an overview of different types of scheduling 
problems

Searching for Schedules
now: search algorithms that generate schedules



18

Scheduling 18

Assignable Actions

Let P be a machine scheduling problem. 
Let S be a partially defined schedule.
An action aji of some job jl in P is 
unassigned if it does not appear in S.
An action aji of some job jl in P is 
assignable if it has no unassigned 
predecessors in S.

Assignable Actions
•Let P be a machine scheduling problem. Let S be a partially 
defined schedule.
•An action aji of some job jl in P is unassigned if it does not 
appear in S.
•An action aji of some job jl in P is assignable if it has no 
unassigned predecessors in S.

•all predecessors in schedule; action is ready to be executed



19

Scheduling 19

Example: Assignable Actions

problem P:
• machines: 

• m1 of type r1

• m2 of type r2

• jobs: 
• j1: 〈r1(1), r2(2)〉
• j2: 〈r1(3), r2(1)〉
• j2: 〈r1(3), r2(1), r1(3)〉

• unassigned:
• a22, a31, a32, a33

• assignable:
• a22, a31

m1

m2

a11 a21

a12

partial schedule S:

Example: Assignable Actions
•problem P:

•machines: 
•m1 of type r1

•m2 of type r2

•jobs: 
•j1: 〈r1(1), r2(2)〉
•j2: 〈r1(3), r2(1)〉
•j2: 〈r1(3), r2(1), r1(3)〉

•[figure]
•unassigned:

•a22, a31, a32, a33

•assignable:
•a22, a31



20

Scheduling 20

Earliest Assignable Time

Let aji be an assignable action in S. The 
earliest assignable time for aji on 
machine m in S is:
• the end of the last action currently scheduled 

on m in S, or
• the end of the last predecessor (aj0 … aji-1) in 

S,

whichever comes later.

Earliest Assignable Time
•Let aji be an assignable action in S. The earliest assignable 
time for aji on machine m in S is:

•the end of the last action currently scheduled on m in S, 
or
•the end of the last predecessor (aj0 … aji-1) in S,

•whichever comes later.
•note: assignment not necessarily optimal!



21

Scheduling 21

Example: Earliest Assignable 
Time

problem P:
• machines: 

• m1 of type r1

• m2 of type r2

• jobs: 
• j1: 〈r1(1), r2(2)〉
• j2: 〈r1(3), r2(1)〉
• j2: 〈r1(3), r2(1), r1(3)〉 • earliest assignable time 

for a22 on m2: 4
• earliest assignable time 

for a31 on m1:4

m1

m2

a11 a21

a12

partial schedule S:

0 2 4 6

Example: Earliest Assignable Time
•problem P:

•machines: 
•m1 of type r1

•m2 of type r2

•jobs: 
•j1: 〈r1(1), r2(2)〉
•j2: 〈r1(3), r2(1)〉
•j2: 〈r1(3), r2(1), r1(3)〉

•[figure]
•earliest assignable time for a22 on m2: 4
•earliest assignable time for a31 on m1:4



22

Scheduling 22

Heuristic Search
heuristicScheduler(P,S)

assignables P.getAssignables(S)
if assignables.isEmpty() then return S
action assignables.selectOne()
machines P.getMachines(action)
machine machines.selectOne()
time S.getEarliestAssignableTime(action, machine)
S S + assign(action, machine, time)
return heuristicScheduler(P,S)

• Heuristic Search
• heuristicScheduler(P,S)
• assignables P.getAssignables(S)
• if assignables.isEmpty() then return S
• action assignables.selectOne()
• machines P.getMachines(action)
• machine machines.selectOne()
• time S.getEarliestAssignableTime(action, machine)
• S S + assign(action, machine, time)
• return heuristicScheduler(P,S)



23

Scheduling 23

Using Local Search

issues:
• representing schedules
• generating a random initial schedule
• generating neighbours
• evaluating neighbours (schedules)

Using Local Search
•issues:

•representing schedules
•generating a random initial schedule
•generating neighbours
•evaluating neighbours (schedules)



24

Scheduling 24

Schedule Representation
representation:
• totally ordered list of all actions with assigned 

machines
• example: 〈(a11,m1), (a21,m1), (a12,m2), (a22,m2)〉

schedule: 
• assign actions in sequence to given machines at 

earliest assignable times
• example:

m1

m2

a11 a21

a22a12

Schedule Representation
•representation:

•totally ordered list of all actions with assigned 
machines
•example: 〈(a11,m1), (a21,m1), (a12,m2), (a22,m2)〉

•schedule: 
•assign actions in sequence to given machines at 
earliest assignable times
•example:

•[figure]



25

Scheduling 25

Initial Schedule and Evaluation

generating random schedules:
• randomly choose an assignable action
• randomly choose a machine of the right resource type 

for that action
• append the action-machine pair to the list of 

assignments
• do this until all actions are assigned

evaluating schedules:
• generate schedule from list
• apply optimization criterion

Initial Schedule and Evaluation
•generating random schedules:

•randomly choose an assignable action
•randomly choose a machine of the right resource type 
for that action
•append the action-machine pair to the list of 
assignments
•do this until all actions are assigned

•evaluating schedules:
•generate schedule from list
•apply optimization criterion



26

Scheduling 26

Generating Neighbours

machine neighbours:
• change the machine assigned to an action to 

any other machine

position neighbours:
• change the position of an action a in the list:

• amin:the latest predecessor of a in the current list
• amax:the earliest successor of a in the current list
• move a anywhere between amin and amax

Generating Neighbours
•machine neighbours:

•change the machine assigned to an action to any other 
machine

•position neighbours:
•change the position of an action a in the list:

•amin:the latest predecessor of a in the current list
•amax:the earliest successor of a in the current list
•move a anywhere between amin and amax



27

Scheduling 27

LocalSearchScheduler: Pseudo 
Code
function LocalSearchScheduler(P)
best randomSchedule(P)
loop MAXLOOP times

S randomSchedule(P)
do

succs S.getBestNeighbours(P)
next succs.selectOne()
if S.evaluate() < next.evaluate() then

S next
while S = next
if S.evaluate() > best.evaluate() then

best S
return best

•LocalSearchScheduler: Pseudo Code
•function LocalSearchScheduler(P)
•best randomSchedule(P)

•will contain best schedule found
•loop MAXLOOP times
•S randomSchedule(P)

•best schedule for local search
•do
•succs S.getBestNeighbours(P)

•returns set of neighbours with highest value for evaluation 
function

•next succs.selectOne()
•randomly select a (best) neighbour

•if S.evaluate() < next.evaluate() then
•S next

•remember best local neighbour
•while S = next

•stop local search when no uphill move possible
•if S.evaluate() > best.evaluate() then
•best S

•remember best overall
•return best



28

Scheduling 28

Overview

Scheduling Problems and Schedules
Searching for Schedules

Overview
•Scheduling Problems and Schedules

Searching for Schedules
just done: search algorithms that generate schedules


