Scheduling

Planning with Actions that
Require Resources

Scheduling
*Planning with Actions that Require Resources

Literature

e Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning — Theory and Practice,
chapter 15. Elsevier/Morgan Kaufmann, 2004.

e Michael Pinedo. Scheduling: Theory,
Algorithms and Systems, Prentice Hall, 2001.

e Peter Brucker. Scheduling Algorithms,
Springer Verlag, 2004.

Scheduling 2

Literature

*Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning —
Theory and Practice, chapter 15. Elsevier/Morgan Kaufmann, 2004.
*Michael Pinedo. Scheduling: Theory, Algorithms and Systems,
Prentice Hall, 2001.

*Peter Brucker. Scheduling Algorithms, Springer Verlag, 2004.

Planning and Scheduling

e solution to planning problem:
® plan: partially ordered set of actions
® actions: fully instantiated operators
® require resources
® resources:
® can be modelled as parameters of an action
® problem: planning algorithms tries out all possibilities
(inefficient)
® alternative approach:
® allow unbound resource variables in plan (planning)
® find assignment of resources to actions (scheduling)

Scheduling 3

Planning and Scheduling
esolution to planning problem:
eplan: partially ordered set of actions
eactions: fully instantiated operators
erequire resources
sresources:
ecan be modelled as parameters of an action

sproblem: planning algorithms tries out all possibilities
(inefficient)

«alternative approach:
«allow unbound resource variables in plan (planning)

splanning focuses on causal reasoning (what to
do)

find assignment of resources to actions (scheduling)

escheduling: resource and time allocation (how
and when to do it)

splanning before scheduling (not optimal approach)

Overview

e Scheduling Problems and Schedules
*» Searching for Schedules

Scheduling 4

Overview
*Scheduling Problems and Schedules

*now: an overview of different types of scheduling problems
m»Searching for Schedules

Actions and Resources

e resources: an entity needed to perform
an action
® state variables: modified by actions in
absolute ways
® example: move(r,l.I'):
® |ocation changes from | to I
® resource variables: modified by actions in
relative ways
® example: move(r,l.I'):
® fuel level changes from f to f-f’

Scheduling 5

Actions and Resources
sresources: an entity needed to perform an action
sstate variables: modified by actions in absolute ways
sexample: move(r,l.I):
slocation changes from I to I’
sresource variables: modified by actions in relative ways
sexample: move(r,l.I'):
fuel level changes from f to f-f’

Actions with Time Constraints

e Let a be an action in a planning domain:
® attached time constraints:
® earliest start time: s;,(a) — actual start time: s(a)
® latest end time: s ,,(a) — actual end time: e(a)
® duration: d(a)
e action types:
® preemptive actions: cannot be interrupted
® d(a) = e(a) - s(a)
® non-preemptive actions: can be interrupted
® resources available to other actions during interruption

Scheduling 6

Actions with Time Constraints
*Let a be an action in a planning domain:
eattached time constraints:

searliest start time: s .. (a) — actual start time: s(a)

min
latest end time: s_,,(a) —actual end time: e(a)
eduration: d(a)
eaction types:
spreemptive actions: cannot be interrupted
*d(a) = e(a) - s(a)
*non-preemptive actions: can be interrupted

eresources available to other actions during
interruption

scost: interruption usually has cost associated
further constraints: examples:
saction must be performed at night
sinterruptions must be at least 30 minutes long

Actions with Resource
Constraints

e Let a be an action in a planning domain:
® attached resource constraints:
® required resource: r
® quantity of resource required: g
® reusable: resource will be available to other
actions after this action is completed
® consumable: resource will be consumed
when action is complete

Scheduling 7

Actions with Resource Constraints
sLet a be an action in a planning domain:
sattached resource constraints:
srequired resource: r
squantity of resource required: q

ereusable: resource will be available to other actions
after this action is completed

stools, machines, HD space, helicopters, docks

econsumable: resource will be consumed when
action is complete

spetrol, electricity, CPU time, credit

stime is usually treated differently, as a special
case

Reusable Resources

e resource availability:
¢ total capacity: Q,
® current level at time t: ()
e resource requirements:
® require(a,r,q): action a requires g units of resource r while it
is active
e resource profile:

Z

A,

d2

| a,: require(a,,r,g,) |
| a,: require(a,ra,) |

Scheduling 8

Reusable Resources
eresource availability:

total capacity: Q,

scurrent level at time t: z(t)
sresource requirements:

erequire(a,r,q): action a requires q units of resource r while it
IS active

sresource profile:
o[figure]
eactions are overlapping (temporally)
profile shows availability of resource to other actions
ereturns to full capacity when all actions are completed

Consumable Resources

e resource availability:

® total reservoir at ty: Q,

® current level at time t: z(t)
e resource consumption/production:

® consume(a,r,q): action a requires q units of resource r

® produce(a,r,q): action a produces g units of resource r
e resource profile:

Z

r
Q
HCE - Ir

|a,: consume(a,,r,q,)]
|_a,: consume(a,r.q,) |
|_a, produce(a,ra,) |

Scheduling 9

Consumable Resources
sresource availability:
total reservoir at t,;: Q,
scurrent level at time t: z(t)
sresource consumption/production:
sconsume(a,r,q): action a requires g units of resourcer
sproduce(a,r,q): action a produces g units of resourcer
sresource profile:
[figure]
eactions are overlapping (temporally)

profile shows availability of resource to other actions
eavailability at end usually different from beginning

sresource profile as step function: usually not accurate

Other Resource Features

e discrete vs. continuous

® countable number of units: cranes, bolts

® real-valued amount: bandwidth, electricity
e unary

® Q,=1; exactly one resource of this type available
e sharable

® can be used by several actions at the same time
e resources with states

® actions may require resources in specific state

Scheduling 10

Other Resource Features
«discrete vs. continuous

scountable number of units: cranes, bolts

sreal-valued amount: bandwidth, electricity
sunary

*Q,=1; exactly one resource of this type available
esharable

scan be used by several actions at the same time
sresources with states

sactions may require resources in specific state

sexample: freezer with temperature setting

10

Combining Resource
Constraints

e conjunction:

® action uses multiple resources while being performed
e disjunction:

® action requires resources as alternatives

® cost/time may depend on resource used
e resource types:

® resource-class(s) = {r,,....I,}: require(a,s,q)

® equivalent to disjunction over identical resources

Scheduling 11

Combining Resource Constraints
scONnjunction:
saction uses multiple resources while being performed
sdisjunction:
saction requires resources as alternatives
scost/time may depend on resource used
sresource types:
sresource-class(s) = {ry,....,r,}: require(a,s,q)
sequivalent to disjunction over identical resources

11

Cost Functions and Optimization
Criteria

e cost function parameters
® guantity of resource required
® duration of requirement
e optimization criteria:
® total schedule cost
® makespan (end time of last action)
® weighted completion time
® (weighted) number of late actions
® (weighted) maximum tardiness
® resource usage

Scheduling

12

Cost Functions and Optimization Criteria
scost function parameters
equantity of resource required
eduration of requirement
soptimization criteria:
stotal schedule cost
makespan (end time of last action)
sweighted completion time
*(weighted) number of late actions
s(weighted) maximum tardiness
sresource usage

12

Machine Scheduling

e machine: resource of unit capacity
¢ either available or not available at time t
® cannot process two actions at the same time
e job j: partially ordered set of actions ay;, ..,y
® action g; requires
® one resource type
¢ for a number of time units
® actions in same job must be processed sequentially
® actions in different jobs are independent (not ordered)
e machine scheduling problem:
® given: n jobs and m machines
® schedule: mapping from actions to machines + start times

Scheduling 13

Machine Scheduling
class of problems
emachine: resource of unit capacity
eeither available or not available at time t
ecannot process two actions at the same time
*job j: partially ordered set of actions a;,,...,a
*in general, jobs can have different numbers of activities
eaction g; requires
eONe resource type
ofor a number of time units
eactions in same job must be processed sequentially

seven if they are only partially ordered: object that is being
worked on

eactions in different jobs are independent (not ordered)
*machine scheduling problem:

egiven: n jobs and m machines

eschedule: mapping from actions to machines + start times

13

Example: Scheduling Problem

e machines:
® m, of resource type r,
® m,, m, of resource type r,
e jobs:
¢ It (n(3), 15(3), (3))
® three actions, totally ordered
® a,, requires 3 units of resource type 1, etc.

® J21 (ry(3), 1(5))
® Jg: (ry(3), 11(2), rx(3), 1,(5))

Scheduling 14

Example: Scheduling Problem
emachines:
*m, of resource typer,
*m,, M5 of resource type r,
sjobs:
*J1: {r1(3), r2(3), r1(3)
sthree actions, totally ordered

*a,, requires 3 units of resource type 1, etc.

*jo: (ra(3), r1(5))
*j3: (r1(3), r1(2), ro(3), r1(5))

14

Example: Schedules by Job

e machines: iy o
® m, of type r, _
* m, of type r,, l2 M2

e jobs:

® j: (ri(1), r(2)) . n\] |
® (), (1) I 2
j2 my

Scheduling

15

Example: Schedules by Job

emachines:

'm, of typer,

*m, of typer,

sjobs:

*j1: (r1(1), ro(2))
*jo (r1(3), r,(1))

*[figures]

*schedules showing machines assigned to actions in jobs

15

Example: Schedules by Machine

e machines: o~

my Az
® m, of type r,
* m, of type r, m, Az
e jobs:
¢ ju (n(1), (2 m ‘ a‘
® j2: (n(3), (1)) 1
m, ‘azz

Scheduling 16

Example: Schedules by Machine
emachines:
'm, of typer,
*m, of typer,
sjobs:
*jo: (re(1), ro(2))
*jo1 (ra(3), ro(1)
*[figures]

*schedules showing actions assigned to machines

16

4 N

Overview

*» Scheduling Problems and Schedules
e Searching for Schedules

- /

Scheduling 17

Overview
*Scheduling Problems and Schedules

sjust done: an overview of different types of scheduling
problems

»Searching for Schedules
®now: search algorithms that generate schedules

Assignable Actions

e Let P be a machine scheduling problem.
Let S be a partially defined schedule.

e An action a; of some job j,in P is
unassigned if it does not appear in S.

e An action a; of some job j in P is
assignable if it has no unassigned
predecessors in S.

Scheduling 18

Assignable Actions

sLet P be a machine scheduling problem. Let S be a partially
defined schedule.

*An action a; of some job j, in P is unassigned if it does not
appear in S.

*An action a; of some job j, in P is assignable if it has no
unassigned predecessors in S.

«all predecessors in schedule; action is ready to be executed

e problem P:

® machines:
®* m, of typer,
®* m, of typer,

® jobs:
® ja(ru(1), 12(2))
® 1 (ru(3), r2(1))
® ot (ri(3), 1p(1), 1 (3))

Example: Assignable Actions

e partial schedule S:
(-
m, Ay

m,

® unassigned:

® Ay, 8y, Azp, Agg
® assignable:

® ay, g

Scheduling

19

Example: Assignable Actions
eproblem P:
emachines:
'm, of type r,
*m, of typer,
sjobs:
*jo: (re(1), ro(2))
*jo: {r1(3), r2(1))
*jo: (ra(3), ro(1), r1(3))
*[figure]
sunassigned:
*Ayp, 831, 832, Az3
sassignable:

*dyy, Az

19

Earliest Assignable Time

e Let a; be an assignable action in S. The
earliest assignable time for a; on
machine min S is:

® the end of the last action currently scheduled
onminS, or

¢ the end of the last predecessor (a; ... 8;,) in
S,

whichever comes later.

Scheduling 20

Earliest Assignable Time

*Let a; be an assignable action in S. The earliest assignable
time for a; on machine min Sis:

sthe end of the last action currently scheduled on m in S,
or

the end of the last predecessor (g ... ;) in S,
swhichever comes later.

enote: assignment not necessarily optimal!

20

Example: Earliest Assignable

Time
e problem P: e partial schedule S:
® machines: [
® m, of type r, m, an
®* m, of typer,
® jobs: m,
® i (n(1), r,(2) 6
® 21 (n(3), (1))
® i, (r,(3),), ,(3) ¢ earliest assignable time

for a,, on m,: 4
® earliest assignable time
for ag; on m,:4

Scheduling

21

Example: Earliest Assignable Time
eproblem P:
emachines:
'm, of type r,
*m, of typer,
sjobs:
*jo: (re(1), ro(2))
*jo: (ri(3), rp(1))
*jo: (ra(3), ro(1), r1(3))
*[figure]
searliest assignable time for a,, on m,: 4
ecarliest assignable time for a;; on m,:4

21

Heuristic Search

heuristicScheduler(P,S)
assignables € P.getAssignables(S)
if assignables.isEmpty() then return S
action < assignables.selectOne()
machines < P.getMachines(action)
machine €< machines.selectOne()
time €& S.getEarliestAssignableTime(action, machine)
S & S + assign(action, machine, time)
return heuristicScheduler(P,S)

Scheduling

22

Heuristic Search
heuristicScheduler(P,S)

assignables € P.getAssignables(S)

iIf assignables.isEmpty() then return S
action € assignables.selectOne()
machines € P.getMachines(action)
machine € machines.selectOne()

time € S.getEarliestAssignableTime(action, machine)

S & S + assign(action, machine, time)
return heuristicScheduler(P,S)

22

Using Local Search

e issues:
® representing schedules
® generating a random initial schedule
® generating neighbours
® evaluating neighbours (schedules)

Scheduling 23

Using Local Search
sissues:
srepresenting schedules
sgenerating a random initial schedule
sgenerating neighbours
sevaluating neighbours (schedules)

23

Schedule Representation

e representation:

® totally ordered list of all actions with assigned
machines

® example: {(a;3,my), (ay,My), (812,My), (8z5,M,))
e schedule:

® assign actions in sequence to given machines at
earliest assignable times

® example: [
m, 8

Scheduling 24

Schedule Representation
srepresentation:

stotally ordered list of all actions with assigned
machines

eexample: ((a;3,my), (ay1,My), (a32,M,), (az,mM5))
*schedule:

eassign actions in sequence to given machines at
earliest assignable times

sexample:
[figure]

24

Initial Schedule and Evaluation

e generating random schedules:
® randomly choose an assignable action

® randomly choose a machine of the right resource type
for that action

® append the action-machine pair to the list of
assignments

® do this until all actions are assigned
e evaluating schedules:

® generate schedule from list

® apply optimization criterion

Scheduling 25

Initial Schedule and Evaluation
sgenerating random schedules:
srandomly choose an assignable action

srandomly choose a machine of the right resource type
for that action

sappend the action-machine pair to the list of
assignments

«do this until all actions are assigned
sevaluating schedules:

sgenerate schedule from list

sapply optimization criterion

Generating Neighbours

e machine neighbours:
® change the machine assigned to an action to
any other machine
e position neighbours:

® change the position of an action a in the list:
® a.,:the latest predecessor of a in the current list
® a..the earliest successor of a in the current list
® move a anywhere between a,;, and a,,,

Scheduling 26

Generating Neighbours
machine neighbours:

schange the machine assigned to an action to any other
machine

sposition neighbours:
schange the position of an action a in the list:
*ain.the latest predecessor of ain the current list
:the earliest successor of ain the current list

°
amaX'

move a anywhere between a,;, and a,

26

LocalSearchScheduler: Pseudo
Code

function LocalSearchScheduler(P)
best € randomSchedule(P)
loop MAXLOOP times
S ¢ randomSchedule(P)
do
succs € S.getBestNeighbours(P)
next € succs.selectOne()
if S.evaluate() < next.evaluate() then
S € next
while S = next
if S.evaluate() > best.evaluate() then
best ¢ S
return best

Scheduling 27

sLocalSearchScheduler: Pseudo Code
«function LocalSearchScheduler(P)
sbest € randomSchedule(P)

*will contain best schedule found
sloop MAXLOOP times
S € randomSchedule(P)

*best schedule for local search
«do
ssuccs € S.getBestNeighbours(P)

sreturns set of neighbours with highest value for evaluation
function

*next € succs.selectOne()

srandomly select a (best) neighbour
oif S.evaluate() < next.evaluate() then
S < next

sremember best local neighbour
while S = next

stop local search when no uphill move possible
if S.evaluate() > best.evaluate() then
best € S

sremember best overall
sreturn best

27

/

-

Overview

e Scheduling Problems and Schedules
e Searching for Schedules

Scheduling

28

Overview

*Scheduling Problems and Schedules

»Searching for Schedules

w®just done: search algorithms that generate schedules

28

