

Literature

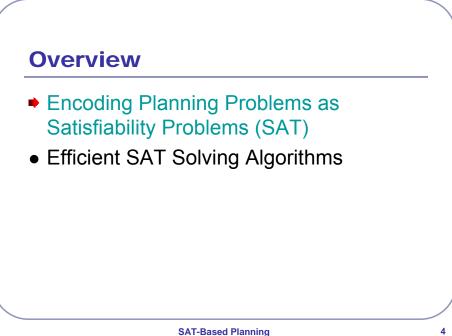
 Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning – Theory and Practice, chapter 7. Elsevier/Morgan Kaufmann, 2004.

SAT-Based Planning

The General Idea

- idea: transform planning problem into other problem for which efficient solvers are known
- approach here:
 - transform planning problem into propositional satisfiability problem (SAT)
 - solve transformed problem using (efficient) SAT solver, e.g. GSAT
 - extract a solution to the planning problem from the solution to transformed problem

SAT-Based Planning



Encoding a Planning Problem

- aim: encode a propositional planning problem *P*=(Σ,*s_i,g*) into a propositional formula Φ such that:
 - \mathcal{P} has a solution if and only if Φ is satisfiable, and
 - every model μ of Φ corresponds to a solution plan π of \mathcal{P} .
- key elements to encode:
 - world states
 - state-transitions (actions)

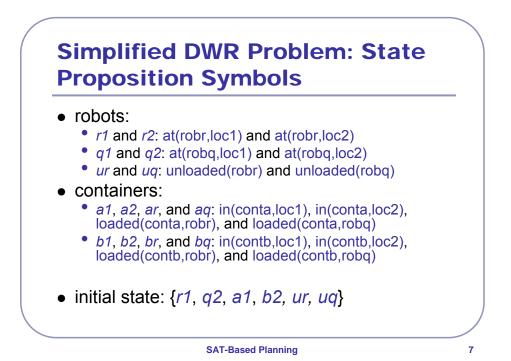
SAT-Based Planning

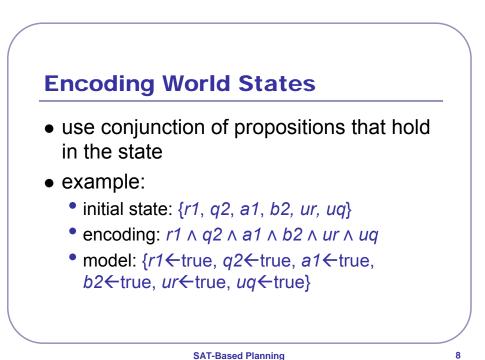
5

6

<section-header><section-header><list-item><list-item><list-item><list-item>

SAT-Based Planning





Intended vs. Unintended Models

- possible models:
 - intended model: {r1←true, <u>r2←false</u>, q1←false, q2←true, ur←true, uq←true, a1←true, a2←false, <u>ar←false</u>, aq←false, b1←false, b2←true, br←false, bq ←false}
 - unintended model: {r1 ← true, <u>r2← true</u>, q1← false, q2← true, ur← true, uq← true, a1← true, a2← false, <u>ar← true</u>, aq← false, b1← false, b2← true, br← false, bq ← false}
- encoding: add negated propositions not in state
 - example: r1 \wedge r2 \wedge r2 \wedge q1 \wedge q2 \wedge ur \wedge uq \wedge a1 \wedge ra2 \wed

SAT-Based Planning

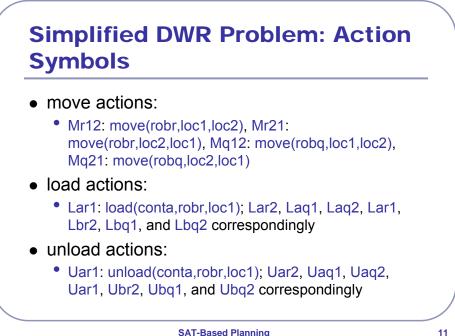
Encoding the Set of Goal States
goal: defined as set of states
example:

swap the containers
all states in which a2 and b1 are true

propositional formula can encode nultiple states:

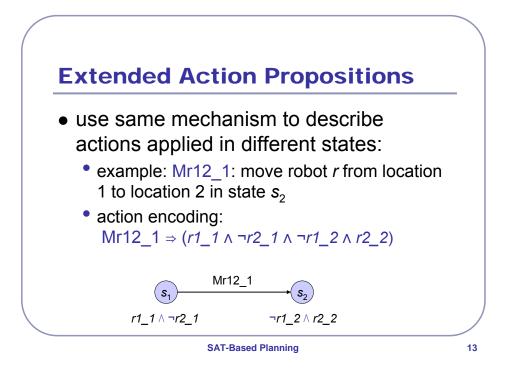
example: a2 ∧ b1 (2¹² possible models)
use disjunctions for other types of goals

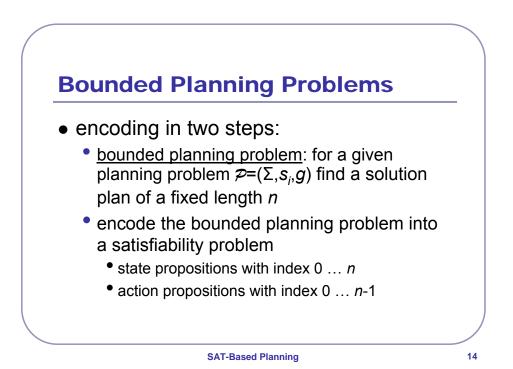
10

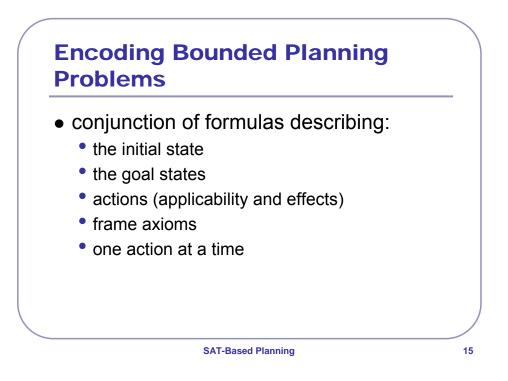


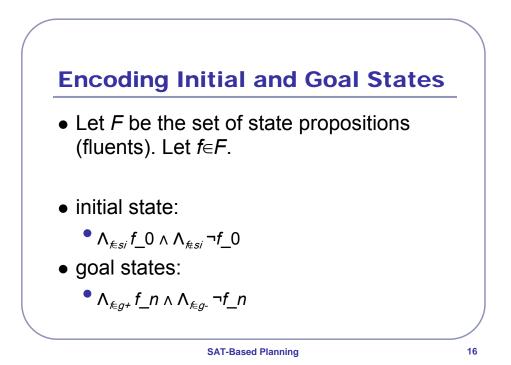
Extended State Propositions Mr12 **s**₂ S₁ *r*1 ∧ ¬*r*2 $\neg r1 \wedge r2$ • state transition: $\gamma(s_1, Mr12) = s_2$ where: • s_1 described by $r1 \land \neg r2$ and • s_2 described by $\neg r1 \land r2$ • problem: $r1 \land \neg r2 \land \neg r1 \land r2$ has no model idea: extend propositions with state index • example: *r1_1* ∧ ¬*r2_1* ∧ ¬*r1_2* ∧ *r2_2* • model: {*r1_1*←true, *r2_1*←false, *r1_2*←false, *r2_2*←true}

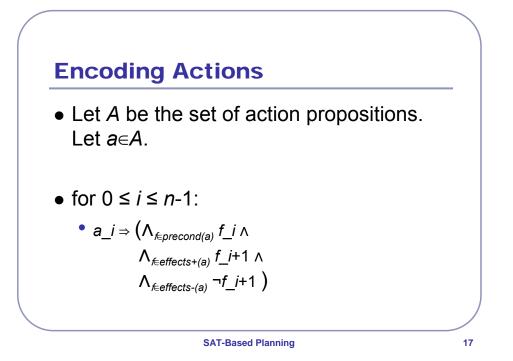
SAT-Based Planning

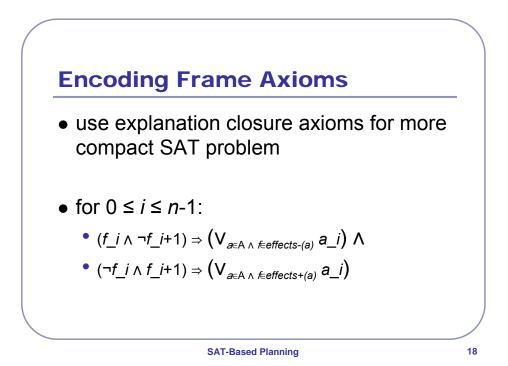


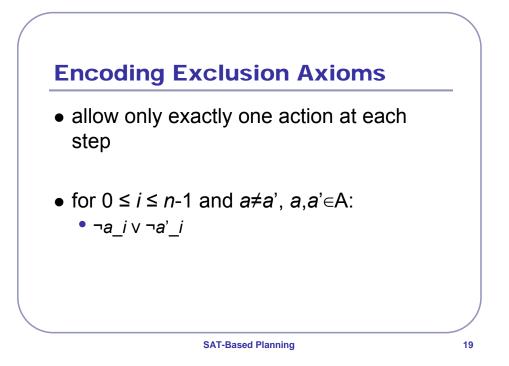


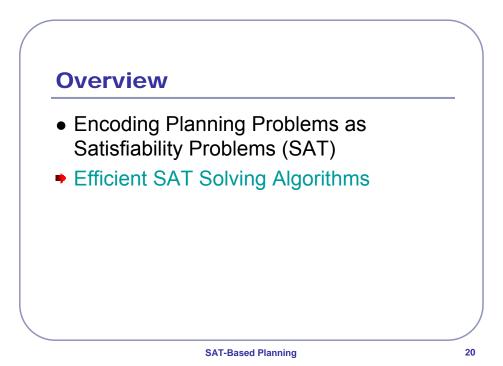


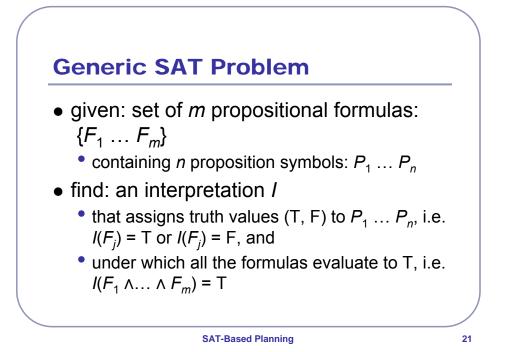


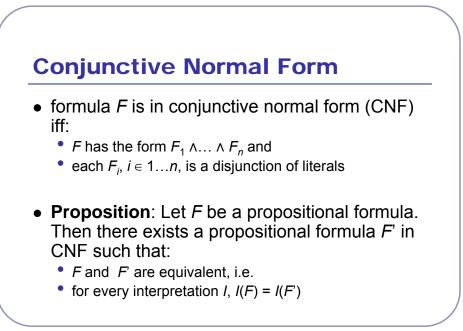


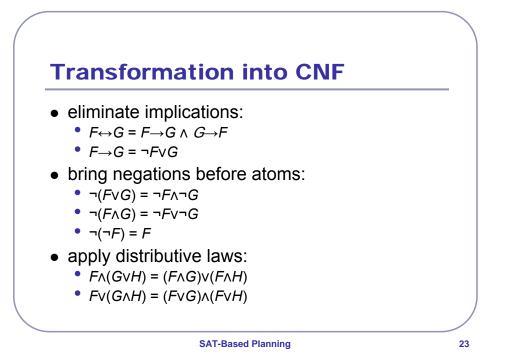








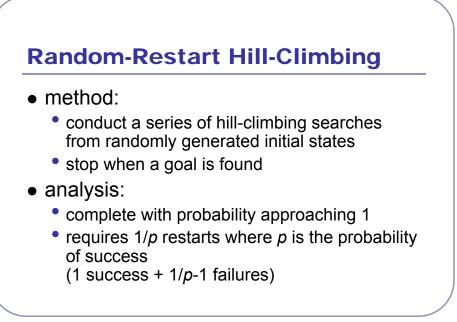


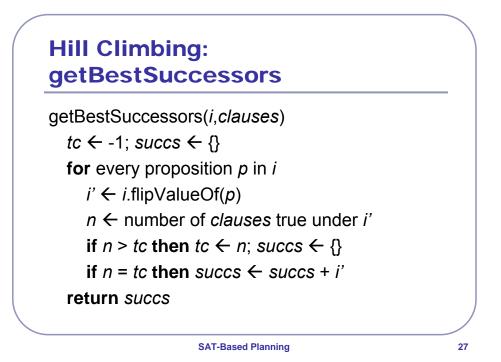


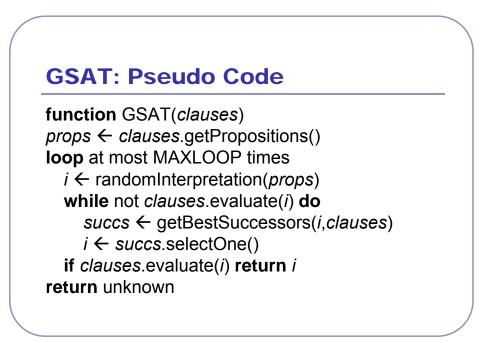


- basic principles:
 - keep only a single (complete) state in memory
 - generate only the neighbours of that state
 - keep one of the neighbours and discard others
- key features:
 - no search paths
 - neither systematic nor incremental
- key advantages:
 - use very little memory (constant amount)
 - find solutions in search spaces too large for systematic algorithms

25

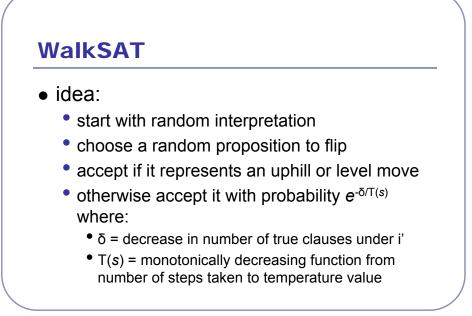






- experimental results:
 - solved every problem correctly that Davis-Putnam could solve, only much faster
 - begins to return "unknown" on problems orders of magnitude larger than Davis-Putnam can solve
- analysis:
 - problems with many local maxima are difficult for GSAT

29



SAT-Based Planning

