
1

SAT-Based Planning

Using Propositional SAT-
Solvers to Search for Plans

SAT-Based Planning 2

Literature

Malik Ghallab, Dana Nau, and Paolo 
Traverso. Automated Planning – Theory 
and Practice, chapter 7. Elsevier/Morgan 
Kaufmann, 2004.



2

SAT-Based Planning 3

The General Idea

idea: transform planning problem into other 
problem for which efficient solvers are known
approach here:
• transform planning problem into propositional 

satisfiability problem (SAT)
• solve transformed problem using (efficient) SAT 

solver, e.g. GSAT
• extract a solution to the planning problem from the 

solution to transformed problem

SAT-Based Planning 4

Overview

Encoding Planning Problems as 
Satisfiability Problems (SAT)
Efficient SAT Solving Algorithms



3

SAT-Based Planning 5

Encoding a Planning Problem

aim: encode a propositional planning problem 
P=(Σ,si,g) into a propositional formula Φ such 
that:
• P has a solution if and only if Φ is satisfiable, and
• every model μ of Φ corresponds to a solution plan π

of P.

key elements to encode:
• world states
• state-transitions (actions)

SAT-Based Planning 6

Example: Simplified DWR 
Problem

robots can load and unload autonomously
locations may contain unlimited number of 
robots and containers
problem: swap locations of containers

loc1 loc2

conta

robr

contb

robq



4

SAT-Based Planning 7

Simplified DWR Problem: State 
Proposition Symbols

robots:
• r1 and r2: at(robr,loc1) and at(robr,loc2)
• q1 and q2: at(robq,loc1) and at(robq,loc2)
• ur and uq: unloaded(robr) and unloaded(robq)

containers:
• a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2), 

loaded(conta,robr), and loaded(conta,robq)
• b1, b2, br, and bq: in(contb,loc1), in(contb,loc2), 

loaded(contb,robr), and loaded(contb,robq)

initial state: {r1, q2, a1, b2, ur, uq}

SAT-Based Planning 8

Encoding World States

use conjunction of propositions that hold 
in the state
example:
• initial state: {r1, q2, a1, b2, ur, uq}
• encoding: r1 ⋀ q2 ⋀ a1 ⋀ b2 ⋀ ur ⋀ uq
• model: {r1 true, q2 true, a1 true,

b2 true, ur true, uq true}



5

SAT-Based Planning 9

Intended vs. Unintended Models
possible models:
• intended model: {r1 true, r2 false, q1 false, 

q2 true, ur true, uq true, a1 true, a2 false, 
ar false, aq false, b1 false, b2 true, br false, bq

false}
• unintended model: {r1 true, r2 true, q1 false, 

q2 true, ur true, uq true, a1 true, a2 false, 
ar true, aq false, b1 false, b2 true, br false, bq

false}
encoding: add negated propositions not in state
• example: r1 ⋀ ¬r2 ⋀ ¬q1 ⋀ q2 ⋀ ur ⋀ uq ⋀ a1 ⋀ ¬a2 ⋀
¬ar ⋀ ¬aq ⋀ ¬b1 ⋀ b2 ⋀ ¬br ⋀ ¬bq

SAT-Based Planning 10

Encoding the Set of Goal States

goal: defined as set of states
• example:

• swap the containers
• all states in which a2 and b1 are true

propositional formula can encode 
multiple states:
• example: a2 ⋀ b1 (212 possible models)
• use disjunctions for other types of goals



6

SAT-Based Planning 11

Simplified DWR Problem: Action 
Symbols

move actions:
• Mr12: move(robr,loc1,loc2), Mr21: 

move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), 
Mq21: move(robq,loc2,loc1)

load actions:
• Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1, 

Lbr2, Lbq1, and Lbq2 correspondingly

unload actions:
• Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, 

Uar1, Ubr2, Ubq1, and Ubq2 correspondingly

SAT-Based Planning 12

Extended State Propositions

state transition: γ(s1,Mr12) = s2 where:
• s1 described by r1 ⋀ ¬r2 and
• s2 described by ¬r1 ⋀ r2

problem: r1 ⋀ ¬r2 ⋀ ¬ r1 ⋀ r2 has no model
idea: extend propositions with state index
• example: r1_1 ⋀ ¬r2_1 ⋀ ¬r1_2 ⋀ r2_2 
• model: {r1_1 true, r2_1 false, r1_2 false, r2_2 true}

s1 s2

Mr12

r1 ⋀ ¬r2 ¬r1 ⋀ r2



7

SAT-Based Planning 13

Extended Action Propositions

use same mechanism to describe 
actions applied in different states:
• example: Mr12_1: move robot r from location 

1 to location 2 in state s2

• action encoding:
Mr12_1 ⇒ (r1_1 ⋀ ¬r2_1 ⋀ ¬r1_2 ⋀ r2_2)

s1 s2

Mr12_1

r1_1 ⋀ ¬r2_1 ¬r1_2 ⋀ r2_2

SAT-Based Planning 14

Bounded Planning Problems

encoding in two steps:
• bounded planning problem: for a given 

planning problem P=(Σ,si,g) find a solution 
plan of a fixed length n

• encode the bounded planning problem into 
a satisfiability problem
• state propositions with index 0 … n
• action propositions with index 0 … n-1



8

SAT-Based Planning 15

Encoding Bounded Planning 
Problems

conjunction of formulas describing:
• the initial state
• the goal states
• actions (applicability and effects)
• frame axioms
• one action at a time

SAT-Based Planning 16

Encoding Initial and Goal States

Let F be the set of state propositions 
(fluents). Let f∈F.

initial state:
• ⋀f∈si f_0 ⋀ ⋀f∉si ¬f_0 

goal states:
• ⋀f∈g+ f_n ⋀ ⋀f∈g- ¬f_n



9

SAT-Based Planning 17

Encoding Actions

Let A be the set of action propositions. 
Let a∈A.

for 0 ≤ i ≤ n-1:
• a_i ⇒ (⋀f∈precond(a) f_i ⋀

⋀f∈effects+(a) f_i+1 ⋀
⋀f∈effects-(a) ¬f_i+1 )

SAT-Based Planning 18

Encoding Frame Axioms

use explanation closure axioms for more 
compact SAT problem

for 0 ≤ i ≤ n-1:
• (f_i ⋀ ¬f_i+1) ⇒ (⋁a∈A ⋀ f∈effects-(a) a_i) ⋀
• (¬f_i ⋀ f_i+1) ⇒ (⋁a∈A ⋀ f∈effects+(a) a_i)



10

SAT-Based Planning 19

Encoding Exclusion Axioms

allow only exactly one action at each 
step

for 0 ≤ i ≤ n-1 and a≠a’, a,a’∈A:
• ¬a_i ⋁ ¬a’_i

SAT-Based Planning 20

Overview

Encoding Planning Problems as 
Satisfiability Problems (SAT)
Efficient SAT Solving Algorithms



11

SAT-Based Planning 21

Generic SAT Problem

given: set of m propositional formulas:
{F1 … Fm}
• containing n proposition symbols: P1 … Pn

find: an interpretation I
• that assigns truth values (T, F) to P1 … Pn, i.e. 

I(Fj) = T or I(Fj) = F, and
• under which all the formulas evaluate to T, i.e. 

I(F1 ⋀… ⋀ Fm) = T

SAT-Based Planning 22

Conjunctive Normal Form

formula F is in conjunctive normal form (CNF) 
iff:
• F has the form F1 ⋀… ⋀ Fn and
• each Fi, i ∈ 1…n, is a disjunction of literals 

Proposition: Let F be a propositional formula. 
Then there exists a propositional formula F’ in 
CNF such that:
• F and  F’ are equivalent, i.e.
• for every interpretation I, I(F) = I(F’)



12

SAT-Based Planning 23

Transformation into CNF

eliminate implications:
• F↔G = F→G ⋀ G→F
• F→G = ¬F⋁G

bring negations before atoms:
• ¬(F⋁G) = ¬F⋀¬G
• ¬(F⋀G) = ¬F⋁¬G
• ¬(¬F) = F

apply distributive laws:
• F⋀(G⋁H) = (F⋀G)⋁(F⋀H)
• F⋁(G⋀H) = (F⋁G)⋀(F⋁H)

SAT-Based Planning 24

SAT Solving Procedures

systematic:
• Davis-Putnam algorithm

• extend partial assignment into complete 
assignment

• sound and complete

stochastic:
• local search algorithms (GSAT, WalkSAT)

• modify randomly chosen total assignment
• sound, not complete, very fast



13

SAT-Based Planning 25

Local Search Algorithms
basic principles:
• keep only a single (complete) state in memory
• generate only the neighbours of that state
• keep one of the neighbours and discard others

key features:
• no search paths
• neither systematic nor incremental

key advantages:
• use very little memory (constant amount)
• find solutions in search spaces too large for 

systematic algorithms

SAT-Based Planning 26

Random-Restart Hill-Climbing

method:
• conduct a series of hill-climbing searches 

from randomly generated initial states
• stop when a goal is found

analysis:
• complete with probability approaching 1
• requires 1/p restarts where p is the probability 

of success
(1 success + 1/p-1 failures)



14

SAT-Based Planning 27

Hill Climbing: 
getBestSuccessors

getBestSuccessors(i,clauses)
tc -1; succs {}
for every proposition p in i

i’ i.flipValueOf(p)
n number of clauses true under i’
if n > tc then tc n; succs {}
if n = tc then succs succs + i’

return succs

SAT-Based Planning 28

GSAT: Pseudo Code
function GSAT(clauses)
props clauses.getPropositions()
loop at most MAXLOOP times

i randomInterpretation(props)
while not clauses.evaluate(i) do

succs getBestSuccessors(i,clauses)
i succs.selectOne()

if clauses.evaluate(i) return i
return unknown



15

SAT-Based Planning 29

GSAT Evaluation

experimental results:
• solved every problem correctly that Davis-

Putnam could solve, only much faster
• begins to return “unknown” on problems 

orders of magnitude larger than Davis-
Putnam can solve

analysis:
• problems with many local maxima are difficult 

for GSAT

SAT-Based Planning 30

WalkSAT

idea: 
• start with random interpretation
• choose a random proposition to flip
• accept if it represents an uphill or level move
• otherwise accept it with probability e-δ/T(s)

where:
• δ = decrease in number of true clauses under i’
• T(s) = monotonically decreasing function from 

number of steps taken to temperature value



16

SAT-Based Planning 31

Overview

Encoding Planning Problems as 
Satisfiability Problems (SAT)
Efficient SAT Solving Algorithms


