Plan-Space Search

Searching for a Solution
Plan in a Graph of Partial
Plans

4 N

Literature

e Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning — Theory and Practice,
chapter 2 and 5. Elsevier/Morgan Kaufmann,
2004.

e J. Penberthy and D. S. Weld. UCPOP: A
sound, complete, partial-order for ADL. In
Proceeding s of the International Conference
on Knowledge Representation and Reasoning,
pages 103-114, 1992.

%

Plan-Space Search 2

State-Space vs. Plan-Space
Search

e state-space search: search through
graph of nodes representing world
states

e plan-space search: search through
graph of partial plans
® nodes: partially specified plans
¢ arcs: plan refinement operations
® solutions: partial-order plans

Plan-Space Search

Overview

= The Search Space of Partial Plans
e Plan-Space Search Algorithms

e Extensions of the STRIPS
Representation

Plan-Space Search

Partial Plans

e plan: set of actions organized into some
structure

e partial plan:
¢ subset of the actions

¢ subset of the organizational structure
® temporal ordering of actions
® rationale: what the action achieves in the plan

¢ subset of variable bindings

Plan-Space Search

Adding Actions

e partial plan contains actions
¢ initial state
¢ goal conditions
¢ set of operators with different variables

e reason for adding new actions
® to achieve unsatisfied preconditions
¢ to achieve unsatisfied goal conditions

Plan-Space Search

-

Adding Actions: Example

~

1:move(r;,/4,m;)

initial state preconditions effects
[atrl)]
[~occupied(m.)]
[_top(cont,pile)] [adiacent(r,m,)]
[-at(r,l,) -
aiobotiosz |
[Sunloadedrobo?) |
2:load(ky,l5,C,15)
preconditions || effects
[belong(k, 1)]
[holding(k,.c,)]
T
\ Cunioaded(z,) | /

Plan-Space Search

7

-

Adding Causal Links

~

e partial plan contains causal links

® links from the provider
® an effect of an action or
® an atom that holds in the initial state

¢ to the consumer
® a precondition of an action or
® a goal condition

e reasons for adding causal links
¢ prevent interference with other actions

%

Plan-Space Search

4 N

Adding Causal Links: Example

1:move(r;,/4,m;)

initial state preconditions || effects
attached(pile,loc [at(rl)]
Wadjacent(l,,m,)] || [moccupied(l,)]| | *
on(cont,pallet [mat(r,l) | goal
belong(crane,loc1 O
-
adjacent(loc1,loc2)e] 2:load(ky,l,C5,15)
adjacent(loc2,loc1 preconditions effects
at(robot,loc2 [belong(k,.1,) |
unloaded(robot EaHERI || [~holding(k,.c,)] || Lo
[unloaded(r,)| causal link:
P— >
Plan-Space Search 9

4 N

Adding Variable Bindings

e partial plan contains variable bindings

® new operators introduce new (copies of) variables into
the plan

® solution plan must contain actions
¢ variable binding constraints keep track of possible
values for variables and co-designation
e reasons for adding variable bindings
® to turn operators into actions
® to unify and effect with the precondition it supports

- J

Plan-Space Search 10

/Adding Variable Bindings: \
Example

1:move(r;,/;,m;)

initial state preconditions effects
N | [ai(r,m) H1.... -
[occupied(m,)] “__at(robotloc2) |
Wadjacent(l,,m,)] | | [occupied(/,)] - “ || [~unloaded(robot) |
[adjacent(iocT,loc2)$] variable bindings:
.
variable = #
g robot
lh loc1 | loc2
\ m, loc2 J
Plan-Space Search 1

4 N

Adding Ordering Constraints

e partial plan contains ordering constraints

® binary relation specifying the temporal order
between actions in the plan

e reasons for adding ordering constraints
¢ all actions after initial state
¢ all actions before goal
¢ causal link implies ordering constraint
¢ to avoid possible interference

- J

Plan-Space Search 12

~

/Adding Ordering Constraints:
Example

1:move(ry,ly,m;)

preconditions effects

EaEAT || [atrum,) ¢
n \
~occupied(m,)]

vadjacent(/,,m,)] || [Toccupied(/,)|

-at(ry,l)

attached(pile,loc

in(cont,pile

on(cont,pallet \"| goal

belong(crane,loc1
empty(crane
adjacent(loc1,loc2

e

2:Ioad(k2,/2,02,f'z)

at(robot,loc2

—unloaded(robot

preconditions || effects

adjacent(loc2,loc1

at(robot,loc2
occupied(loc2
unloaded(robot

K =)
=1
<

2 n
23
g
)
@

ordering constraint)
Ol

Plan-Space Search 13

4 N

Definition of Partial Plans

e A partial plan is a tuple m = (A,<,B,L), where:
* A={ay,...,a,} is a set of partially instantiated planning
operators;
® <is a set of ordering constraints on A of the form (a<a));
® Bis a set of binding constraints on the variables of actions
in A of the form x=y, x#y, or xeD,;
® Lis a set of causal links of the form (a; -[p]>a) such that:
® a;and g are actions in A;
® the constraint (a<a)) is in <;
® proposition p is an effect of a; and a precondition of a; and

¢ the binding constraints for variables in a; and a; appearing in
p are in B.

-

Plan-Space Search 14

/Plan-Space Search: Initial
Search State

N\

e represent initial state and goal as dummy
actions

® init: no preconditions, initial state as effects
® goal: goal conditions as preconditions, no effects

e empty plan m, = ({init, goal},{(init<goal)},{}.{}):
¢ two dummy actions init and goal;
® one ordering constraint: init before goal,
® no variable bindings; and
® no causal links.

/

Plan-Space Search

15

/Plan-Space Search: Initial
Search State Example

init

attached(pile,loc
in(cont,pile
top(cont,pile
on(cont,pallet

belong(crane,loc1

goal

empty(crane
adjacent(loc1,loc2
adjacent(loc2,loc1
at(robot,loc2
occupied(loc2

unloaded(robot

Plan-Space Search

16

Plan-Space Search: Successor
Function

e states are partial plans

e generate successor through plan
refinement operators (one or more):
¢ adding an action to A
¢ adding an ordering constraint to <
¢ adding a binding constraint to B
¢ adding a causal link to L

Plan-Space Search 17

Total vs. Partial Order

e Let 2=(2,s;9) be a planning problem. A plan
is a solution for 2 if s;,) satisfies g.

e problem: Y (s, 7) only defined for sequence of
ground actions

® partial order corresponds to total order in which all
partial order constraints are respected

® partial instantiation corresponds to grounding in which
variables are assigned values consistent with binding
constraints

Plan-Space Search 18

-

Partial Order Solutions

.

o Let 2=(2,s,,g) be a planning problem. A
plan m = (A,X,B,L) is a (partial order)
solution for 2 if:

¢ its ordering constraints < and binding
constraints B are consistent; and

¢ for every sequence (a,,...,a,) of all the actions
in A-{init, goal} that is
® totally ordered and grounded and respects < and B

~

® Us; (@4,...,a,) must satisfy g. J

Plan-Space Search

-

Threat: Example

19

~

1:move(robot,loc1,loc2)

preconditions effects

[at(robotoct) | --[at(robot,loc2)] 0:goal

[ISGectpiedice2)l | | [occupied(loc2)

adjacent(ost joc2] 47 atrobotio?)] H
~at(robot,loc1)

~unloaded(robot)

3:move(robot,loc2,loc1) 2:load(crane,loc1 ,cont,ro'lqot)
preconditions effects preconditions effectd
[ai(robotioc2) T | | [at(robot.oct
PN :

[Soccupied(ioct)] | | [ocoupied(ioct) [Rolding(eraneicont)l || [loadedfyobot,cont

: at(robot,loc1)|., -
[adjacent(ioeaeet) | | [-occupied(loc2 M at(robotloc1) ||| [-holding(erane,cont)]

—at(robot,loc2) [inicaded(robenn || [—unloaded roboj

Plan-Space Search

20

10

Threats

e An action a, in a partial plan =
(A,X,B,L) is a threat to a causal link
(a;=[p]>a) iff:

¢ a, has an effect 7q that is possibly
inconsistent with p, i.e. g and p are unifiable;

¢ the ordering constraints (a;<a,) and (a,<a)) are
consistent with <; and

¢ the binding constraints for the unification of g
and p are consistent with B.

Plan-Space Search

Flaws

e Aflaw in a plan 7= (A,X,B,L) is either:
¢ an unsatisfied sub-goal, i.e. a precondition of
an action in A without a causal link that
supports it; or
¢ athreat, i.e. an action that may interfere with
a causal link.

Plan-Space Search

21

22

11

Flawless Plans and Solutions

e Proposition: A partial plan 7= (A,<X,B,L) is a
solution to the planning problem 2=(Z,s;,g) if:

® 17 has no flaw;
® the ordering constraints < are not circular; and
® the variable bindings B are consistent.

e Proof: by induction on number of actions in A
® base case: empty plan

® induction step: totally ordered plan minus first step is
solution implies plan including first step is a solution:

US;, (@4,-..,81) = UUS;y @), (@y,...,85))

Plan-Space Search

Overview

e The Search Space of Partial Plans
» Plan-Space Search Algorithms

e Extensions of the STRIPS
Representation

Plan-Space Search

23

24

12

Plan-Space Planning as a
Search Problem

e given: statement of a planning problem
P=(0,s;9)

e define the search problem as follows:
¢ initial state: m, = ({init, goal},{(init<goal)},{}.{})
¢ goal test for plan state p: p has no flaws
® path cost function for plan 1 |7]

¢ successor function for plan state p:
refinements of p that maintain < and B

Plan-Space Search 25

PSP Procedure: Basic
Operations

e PSP: Plan-Space Planner

e main principle: refine partial 17 plan while
maintaining < and B consistent until 77 has no
more flaws

e basic operations:

find the flaws of 7, i.e. its sub-goals and its threats
select one of the flaws

find ways to resolve the chosen flaw

choose one of the resolvers for the flaw

refine 1 according to the chosen resolver

Plan-Space Search 26

13

PSP: Pseudo Code

function PSP(plan)
allFlaws < plan.openGoals() + plan.threats()
if allFlaws.empty() then return plan
flaw < allFlaws.selectOne()
allResolvers < flaw.getResolvers(plan)
if allResolvers.empty() then return failure
resolver < allResolvers.chooseOne()
newPlan < plan.refine(resolver)
return PSP(newPlan)

Plan-Space Search 27

PSP: Choice Points

e resolver < allResolvers.chooseOne()
® non-deterministic choice
e flaw < allFlaws.selectOne()

® deterministic selection

¢ all flaws need to be resolved before a plan
becomes a solution

¢ order not important for completeness
¢ order is important for efficiency

Plan-Space Search 28

14

Implementing plan.openGoals()

e finding unachieved sub-goals
(incrementally):
¢ in m,: goal conditions
® when adding an action: all preconditions are
unachieved sub-goals

® when adding a causal link: protected
proposition is no longer unachieved

Plan-Space Search 29

Implementing plan.threats()

e finding threats (incrementally):
® in my: no threats
® when adding an action a,,, to m = (A,<,B,L):
® for every causal link (a;-[p]>a) e L
if (a,64X@) OF (8X@,,,) then next link
else for every effect q of a,,,,
if (30: o(p)=0(~q)) then q of a,,,, threatens (a,~[p]>a)
® when adding a causal link (a;=[p]>a) to m = (A,<,B,L):
¢ for every action a A
if (a,4<a)) or (a~a,q) or (a%a,,) then next action

else for every effect q of a,,,
if (30: o(p)=0(~q)) then q of a,, threatens (a,~[p]>a)

Plan-Space Search 30

15

Implementing
flaw.getResolvers(plan)

e for unachieved precondition p of a:
® add causal links to an existing action:
¢ for every action a A
if (ag=a,y) or (a;<a,q) then next action
else for every effect q of a,,
if (30: o(p)=0(q)) then adding
(@gg~[o(p)]=>a,) is a resolver
® add a new action and a causal link:
¢ for every effect q of every operator o
if (a: a(p)=0(q)) then adding
a,.,~0.newlnstance() and
(@new~la(p)]>ay) is a resolver

Plan-Space Search 31

Implementing
flaw.getResolvers(plan)

o for effect g of action a, threatening (a;—[p]>a):
® order action before threatened link:
¢ if (aFa)) or (a<a,) then not a resolver
else adding (a;<a)) is a resolver
® order threatened link before action:
¢ if (a~a,) or (a;<a;) then not a resolver
else adding (a<a,) is a resolver
® extend variable bindings such that unification fails:
¢ for every variable vin p or q

if v#a(v) is consistent with B then
adding v#a(v) is a resolver

Plan-Space Search 32

16

Implementing
plan.refine(resolver)

e refines partial plan with elements in resolver by
adding:
® an ordering constraint;
® one or more binding constraints;
® a causal link; and/or
® anew action.

e no testing required

e must update flaws:
® unachieved preconditions (see: plan.openGoals())
® threats (see: plan.threats())

Plan-Space Search

Maintaining Ordering
Constraints

e required operations:
® query whether (a<a))
¢ adding (a<a))
e possible internal representations:

® maintain set of predecessors/successors for
each action as given

® maintain only direct predecessors/successors
for each action

® maintain transitive closure of < relation

Plan-Space Search

33

34

17

Constraints

KMaintaining Variable Binding

~

e types of constraints:
¢ unary constraints: x € D,
¢ equality constraints: x = y
® inequalities: x # y

complete

.

e note: general CSP problem is NP-

Plan-Space Search

35

PSP: Data Flow

T, plan = (A,<,B,L)|

‘compute threats‘ ‘compute open goals‘

return plan ‘compute resolvers‘
has resolver?

choose resolver
apply resolvers

maintain

maintain
binding

constraint

ordering
constraints

L/

Plan-Space Search

36

18

PSP: Sound and Complete

e Proposition: The PSP procedure is
sound and complete: whenever m, can
be refined into a solution plan, PSP(r,)
returns such a plan.

e Proof:

® soundness: < and B are consistent at every
stage of the refinement

¢ completeness: induction on the number of
actions in the solution plan

Plan-Space Search 37

PSP Implementation: PoP

e extended input:
® partial plan (as before)
¢ agenda: set of pairs (a,p) where a is an action
an p is one of its preconditions
e search control by flaw type
® unachieved sub-goal (on agenda): as before

¢ threats: resolved as part of the successor
generation process

Plan-Space Search 38

19

PoP: Pseudo Code (1)

function PoP(plan, agenda)
if agenda.empty() then return plan
(agpy) € agenda.selectOne()
agenda € agenda - (ayp,)
relevant < plan.getProviders(p,)
if relevant.empty() then return failure
(a,.pp,0) € relevant.chooseOne()
plan.L < plan.L u (a,-[p]=>a,)
plan.B < plan.BuU o

Plan-Space Search 39

PoP: Pseudo Code (2)

if a, ¢ plan.A then
plan.add(a,)
agenda < agenda + a,.preconditions

newPlan < plan

for each threat on (a, —[p]>a,) or due to a, do
allResolvers < threat.getResolvers(newPlan)
if allResolvers.empty() then return failure
resolver < allResolvers.chooseOne()
newPlan < newPlan.refine(resolver)

return PSP(newPlan,agenda)

Plan-Space Search 40

20

State-Space vs. Plan-Space

Planning
e state-space planning e plan-space planning
¢ finite search space ¢ finite search space
¢ explicit representation of ® no intermediate states
intermediate states ® choice of actions and
® action ordering reflects organization
control strategy independent
® causal structure only ® explicit representation of
implicit rationale
® search nodes relatively ® search nodes are
simple and successors complex and successors
easy to compute expensive to compute

Plan-Space Search 41

Using Partial-Order Plans: Main
Advantages

e more flexible during execution

e using constraint managers facilitates
extensions such as:
¢ temporal constraints
® resource constraints

e distributed and multi-agent planning fit
naturally into the framework

Plan-Space Search 42

21

Overview

e The Search Space of Partial Plans
e Plan-Space Search Algorithms

» Extensions of the STRIPS
Representation

- J

Plan-Space Search 43

KExistential Quantification in \
Goals

e allow existentially quantified conjunction
of literals as goal:
Cg=3Ix...x LN N

e rewrite into equivalent planning problem:

® new goal g’ = {p} where p is an unused
proposition symbol

¢ introduce additional operator
0 = (op-9(X4,....x,),{l1,---,1 .}, {P})

k. in plan-space search: no change needed/

Plan-Space Search 44

22

Quantification in Goals

/DWR Example: Existential \

e goal: 4x,y: on(x,c1) A on(y,c2)
e rewritten goal: p
e new operator:

o = (op-g(x.y).{on(x,c1),on(y,c2)}.{p})

e plan-space search goal:

on(x,c1) A on(y,c2)
N /

Plan-Space Search

a5

4 N

Typed Variables

e allow typed variables in operators:
® name(0) = n(x4:t,,...,x,:t,) where t; is the type
of variable x;
e rewrite into equivalent planning problem:
® add preconditions {t,(x,),...,t(x,)} to o
¢ if constant c; is of type £, add rigid relation ¢(c;)
to the initial state
® remove types from operator names

J

Plan-Space Search

46

23

-

DWR Example: Typed Variables

~

.

e operator: move(r:robot,:location,m:location)
® precond: adjacent(/,m), at(r,/), "occupied(m)
¢ effects: at(r,m), occupied(m), "occupied(/), ~at(r,/)

e rewritten operator:move(r,;,m)
¢ precond: adjacent(/,m), at(r,/), moccupied(m), robot(r),
loaction(/), location(m)
¢ effects: at(r,m), occupied(m), ~occupied(/), ~at(r,/)
e rewritten initial state:
® s, U {robot(r1),container(c1),container(c2),...}

J

Plan-Space Search

47

-

Conditional Operators

~

.

e conditional planning operators:
® o = (n,(precond,,effects,),...,(precond ,effects,))
where:
® n=0(xy,...,X,) as before,

® (precond,,effects,) are the unconditional preconditions
and effects of the operator, and

® (precond,effects;) foriz1 are the conditional
preconditions and effects of the operator.

® aground instance a of o is applicable in state s if s
satisfies precond,

® let I={i[0,n] | s satisfies precond/a)}; then:
® Us,a)=(s - U effects(a)) u (U . effects*(a))

J

Plan-Space Search

48

24

/DWR Example: Conditional
Operators

~

e relation at(o,/): object o is at location /

e conditional move operator:
move(r,,m,c)
® precond,: adjacent(/,m), at(r,/), "occupied(m)

® precond,: loaded(r,c)
¢ effects,: at(c,m), —at(c,/)

-

® effects,: at(r,m), occupied(m), ~occupied(/), "at(r,/)

J

Plan-Space Search

49

KExtending PoP to handle
Conditional Operators

~

e modifying plan.getProviders(p,):

® add precondition of conditional effect to
agenda
e managing conditional threats:

® new alternative resolver: add negated
precondition of threatening conditional

\ effect to agenda

® new action with matching conditional effect

/

Plan-Space Search

50

25

Quantified Expressions

e allow universally quantified variables in
conditional preconditions and effects:
¢ for-all x4,...,x,: (precond,effects))
e ais applicable in state s if s satisfies precond,
e Let o be a substitution for x;,...,x,, such that
d(precond(a)) and o(effects(a)) are ground.
¢ If s satisfies a(precond,(a)) then
* o(effects(a)) are effects of the action.

- J

Plan-Space Search 51

KDWR Example: Quantified \
Expressions

e extension: robots can carry multiple
containers

e extended move operator:
move(r,l,m)
® precond,: adjacent(/,m), at(r,/), "occupied(m)
¢ effects,: at(r,m), occupied(m), ~occupied(/), "at(r,/)
¢ for-all x:
® precond,: loaded(r,x)
® effects,: at(x,m), 7at(x,/))

N /

Plan-Space Search 52

26

-

Disjunctive Preconditions

~

e allow alternatives (disjunctions) in
preconditions:
¢ precond = precond, V...V precond,

® ais applicable in state s if s satisfies at least one of
precond, ... precond,

¢ effects remain unchanged
e rewrite:

® replace operator with n disjunctive preconditions by n
operators with precond; as precondition

.

J

Plan-Space Search

53

KDWR Example: Disjunctive
Preconditions

~

e robot can move between locations if
there is a road between them or the
robot has all-wheel drive

e extended move operator:
move(r,l,m)

® precond: (road(/,m), at(r,/), "occupied(m)) vV
(all-wheel-drive(r), at(r,/), "occupied(m))
¢ effects: at(r,m), occupied(m), ~occupied(/), 7at(r,/)

-

J

Plan-Space Search

54

27

KAxiomatic Inference: Static
Case

e axioms over rigid relations:
® example:
vl,,l,: adjacent(/,,l,) < adjacent(/,,/,)
e state-specific axioms:

¢ example:
Vc: container(c) < at(c,loc1) holds in s;

e approach: pre-compute

.

Plan-Space Search

/Axiomatic Inference: Dynamic
Case

e axioms over flexible relations:
® example: Vk,x: 7holding(k,x) <+ empty(k)
¢ approach:

® divide relations into primary and secondary where
secondary relations do not appear in effects

® transform axioms into implications where primary
relations must not appear in right-hand side

® example:
® primary: holding / secondary: empty
® Vk =3x holding(k,x) - empty(k)
® Vk dx: holding(k,x) —» "empty(k)

.

Plan-Space Search

55

56

28

Extended Goals

e not part of classical planning formalisms

e some problems can be translated into
equivalent classical problems, e.g.

¢ states to be avoided: add corresponding
preconditions to operators

¢ states to be visited twice: introduce visited
relation and maintain in operators

¢ constraints on solution length: introduce count
relation that is increased with each step

Plan-Space Search 57

Other Extensions

e Function Symbols
¢ infinite domains, undecidable in general

e Attached Procedures

¢ evaluate relations using special code rather
than general inference
¢ efficiency may be necessary in real-world domains

® variables must usually be bound to evaluate
relations

® semantics of such relations

Plan-Space Search 58

29

Overview

e The Search Space of Partial Plans
e Plan-Space Search Algorithms

e Extensions of the STRIPS
Representation

Plan-Space Search

59

30

