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State-Space vs. Plan-Space 
Search

state-space search: search through 
graph of nodes representing world 
states
plan-space search: search through 
graph of partial plans
• nodes: partially specified plans
• arcs: plan refinement operations
• solutions: partial-order plans

State-Space vs. Plan-Space Search
•state-space search: search through graph of nodes 
representing world states

•search space directly corresponds to graph representation 
of state-transition system

•plan-space search: search through graph of partial plans
•nodes: partially specified plans
•arcs: plan refinement operations

•least commitment principle: do not add constraints to 
the plan that are not strictly needed

•solutions: partial-order plans
•partial-order plan: set of actions + set of orderings; not 
necessarily total order
•state-space algorithms also maintain partial plan – but 
always in total order
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Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS 
Representation

Overview
The Search Space of Partial Plans

now: defining the search space: partial plans + plan 
refinement operations

•Plan-Space Search Algorithms
•Extensions of the STRIPS Representation
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Partial Plans

plan: set of actions organized into some 
structure
partial plan:
• subset of the actions
• subset of the organizational structure

• temporal ordering of actions
• rationale: what the action achieves in the plan

• subset of variable bindings

Partial Plans
•plan: set of actions organized into some structure

•organization e.g. sequence
•partial plan:

•subset of the actions
•subset of the organizational structure

•temporal ordering of actions
•rationale: what the action achieves in the plan
•refers only to subset of actions

•subset of variable bindings
•plan refinement operators accordingly: add actions, add ordering
constraints, add causal links, add variable bindings
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Adding Actions

partial plan contains actions
• initial state
• goal conditions
• set of operators with different variables

reason for adding new actions
• to achieve unsatisfied preconditions
• to achieve unsatisfied goal conditions

Adding Actions
•partial plan contains actions

•initial state
•goal conditions
•can be represented as two actions with only effects or 
preconditions
•set of operators with different variables

•least commitment principle: introduce actions only for a reason
•reason for adding new actions

•to achieve unsatisfied preconditions
•to achieve unsatisfied goal conditions

•note: new actions can be added anywhere in the current partial 
plan
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Adding Actions: Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

Adding Actions: Example
•empty plan:

•initial state: all initially satisfied conditions (green)
•goal: conditions that need to be satisfied (red)

•add operator: 1:move(r1,l1,m1)
•number (1) to provide unique reference to this operator 
instance
•also used as variable index for unique variables
•least commitment principle: choose values for variables only 
when necessary

•add operator:2:load(k2,l2,c2,r2)
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Adding Causal Links

partial plan contains causal links
• links from the provider

• an effect of an action or 
• an atom that holds in the initial state 

• to the consumer
• a precondition of an action or 
• a goal condition

reasons for adding causal links
• prevent interference with other actions

Adding Causal Links
•partial plan contains causal links

•links from the provider
•an effect of an action or 
•an atom that holds in the initial state 

•to the consumer
•a precondition of an action or 
•a goal condition

•causal link implies ordering constraint
•but: provider need not come directly before consumer

•reasons for adding causal links
•prevent interference with other actions
•keeping track of rationale: any action inserted between 
provider and consumer must not clobber conditions in causal 
link
•preconditions without a causal link pointing to them are 
open sub-gaols
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Adding Causal Links: Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

at(robot,loc2)
¬unloaded(robot)

adjacent(l1,m1)

causal link:

Adding Causal Links: Example
•add link from 1:move to goal

•changes colour of goal to green – now satisfied
•add link from 2:load to goal
•add link from initial state to 1:move
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Adding Variable Bindings

partial plan contains variable bindings
• new operators introduce new (copies of) variables into 

the plan
• solution plan must contain actions
• variable binding constraints keep track of possible 

values for variables and co-designation

reasons for adding variable bindings
• to turn operators into actions
• to unify and effect with the precondition it supports

Adding Variable Bindings
•partial plan contains variable bindings

•new operators introduce new (copies of) variables into 
the plan

•each copy of an operator has its own set of variables 
that are different from variables in other operators 
instances

•solution plan must contain actions
•variable binding constraints keep track of possible 
values for variables and co-designation
•convention (here): give number to operator instances to 
distinguish them; let variables have index of operator they 
belong to least commitment principle: 

•least commitment principle: add only necessary 
variable binding constraints

•reasons for adding variable bindings
•to turn operators into actions
•to unify and effect with the precondition it supports
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Adding Variable Bindings: 
Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

r1 robot

m1 loc2

variable = ≠

l1 loc1 loc2

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)
adjacent(l1,m1)

variable bindings:

Adding Variable Bindings: Example
•bind variables due to causal link:

•bind r1 to robot
•bind m1 to loc2
•note: variables in operator no longer red to indicate they are 
bound

•clobbering: move may also destroy goal condition
•introduce variable inequality: l1 ≠ loc2
•clobbering now impossible
•introduce causal link from initial state
•bind l1 to loc1

•note consistency with inequality
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Adding Ordering Constraints

partial plan contains ordering constraints
• binary relation specifying the temporal order 

between actions in the plan

reasons for adding ordering constraints
• all actions after initial state
• all actions before goal
• causal link implies ordering constraint
• to avoid possible interference

Adding Ordering Constraints
•partial plan contains ordering constraints

•binary relation specifying the temporal order between 
actions in the plan
•temporal relation: qualitative, not quantitative (at this stage)

•reasons for adding ordering constraints
•all actions after initial state
•all actions before goal
•causal link implies ordering constraint
•to avoid possible interference

•interference can be avoided by ordering the potentially 
interfering action before the provider or after the 
consumer of a causal link
•least commitment principle: introduce ordering 
constraints only if necessary

•result: solution plan not necessarily totally ordered
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Adding Ordering Constraints: 
Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

at(robot,loc2)
¬unloaded(robot)

adjacent(l1,m1)

ordering constraint:

Adding Ordering Constraints: Example
•ordering constraints

•due to causal links
•also: all actions before goal

•ordering: all actions after initial state
•orderings may occur between actions
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Definition of Partial Plans
A partial plan is a tuple π = (A,≺,B,L), where:
• A = {a1,…,ak} is a set of partially instantiated planning 

operators;
• ≺ is a set of ordering constraints on A of the form (ai≺aj);
• B is a set of binding constraints on the variables of actions 

in A of the form x=y, x≠y, or x∈Dx;
• L is a set of causal links of the form 〈ai −[p] aj〉 such that:

• ai and aj are actions in A;
• the constraint (ai≺aj) is in ≺; 
• proposition p is an effect of ai and a precondition of aj; and 
• the binding constraints for variables in ai and aj appearing in 

p are in B.

Definition of Partial Plans
•A partial plan is a tuple π = (A,≺,B,L), where:

•A = {a1,…,ak} is a set of partially instantiated planning 
operators;
•≺ is a set of ordering constraints on A of the form 
(ai≺aj);
•B is a set of binding constraints on the variables of 
actions in A of the form x=y, x≠y, or x∈Dx;
•L is a set of causal links of the form 〈ai −[p] aj〉 such 
that:

•ai and aj are actions in A;
•the constraint (ai≺aj) is in ≺; 
•proposition p is an effect of ai and a precondition 
of aj; and 
•the binding constraints for variables in ai and aj
appearing in p are in B.

•sub-gaols in a partial plan: preconditions without causal links
•different view: partial plan as set of (sequential) plans

•those that meet the specified constraints and can be refined 
to a total order plan by adding constraints

•note: partial plans with two types of additional flexibility: 
•actions only partially ordered and 
•not all variables need to be instantiated
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Plan-Space Search: Initial 
Search State

represent initial state and goal as dummy 
actions
• init: no preconditions, initial state as effects
• goal: goal conditions as preconditions, no effects

empty plan π0 = ({init, goal},{(init≺goal)},{},{}):
• two dummy actions init and goal;
• one ordering constraint: init before goal;
• no variable bindings; and
• no causal links.

Plan-Space Search: Initial Search State
•problem: plan space representation does not maintain states, but
need to give initial state and goal description
•represent initial state and goal as dummy actions

•init: no preconditions, initial state as effects
•goal: goal conditions as preconditions, no effects

•empty plan π0 = ({init, goal},{(init≺goal)},{},{}):
•two dummy actions init and goal;
•one ordering constraint: init before goal;
•no variable bindings; and
•no causal links.
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Plan-Space Search: Initial 
Search State Example

init

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

Plan-Space Search: Initial Search State Example
•note empty box for preconditions in init and empty box for effects 
in goal
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Plan-Space Search: Successor 
Function

states are partial plans
generate successor through plan 
refinement operators (one or more):
• adding an action to A
• adding an ordering constraint to ≺
• adding a binding constraint to B
• adding a causal link to L

Plan-Space Search: Successor Function
•states are partial plans
•generate successor through plan refinement operators (one 
or more):

•more required to keep partial plans consistent, e.g. adding a 
causal link implies adding an ordering constraint
•adding an action to A
•adding an ordering constraint to ≺
•adding a binding constraint to B
•adding a causal link to L

•successors must be consistent: constraints in a partial plan must 
be satisfiable
•plan-space planning decouple two sub-problems:

•which actions need to be performed
•how to organize these actions

•partial plan as set of plans: refinement operation reduces the set 
to smaller subset
•next: to define planning as plan-space search problem: need to 
define goal state
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Total vs. Partial Order
Let P=(Σ,si,g) be a planning problem. A plan π
is a solution for P if γ(si,π) satisfies g.

problem: γ(si,π) only defined for sequence of 
ground actions
• partial order corresponds to total order in which all 

partial order constraints are respected
• partial instantiation corresponds to grounding in which 

variables are assigned values consistent with binding 
constraints

Total vs. Partial Order
•Let P=(Σ,si,g) be a planning problem. A plan π is a solution
for P if γ(si,π) satisfies g.

•solution defined for state transition system
•problem: γ(si,π) only defined for sequence of ground actions

•partial order corresponds to total order in which all 
partial order constraints are respected

•partial ordering is consistent iff it is free of loops
•note: there may be an exponential number of total 
ordering consistent with a given partial ordering

•partial instantiation corresponds to grounding in which 
variables are assigned values consistent with binding 
constraints

•note: exponential combinatorics of assigning values to 
variables
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Partial Order Solutions

Let P=(Σ,si,g) be a planning problem. A 
plan π = (A,≺,B,L) is a (partial order) 
solution for P if:
• its ordering constraints ≺ and binding 

constraints B are consistent; and
• for every sequence 〈a1,…,ak〉 of all the actions 

in A-{init, goal} that is 
• totally ordered and grounded and respects ≺ and B
• γ(si, 〈a1,…,ak〉) must satisfy g.

Partial Order Solutions
•Let P=(Σ,si,g) be a planning problem. A plan π = (A,≺,B,L) is 
a (partial order) solution for P if:

•its ordering constraints ≺ and binding constraints B are 
consistent; and
•for every sequence 〈a1,…,ak〉 of all the actions in A-{init, 
goal} that is 

•totally ordered and grounded and respects ≺ and B
•γ(si, 〈a1,…,ak〉) must satisfy g.

•note: causal links do not play a role in the definition of a solution
•with exponential number of sequences to check, definition is not
very useful (as computational procedure for goal test)
•idea: use causal links to verify that every precondition of every 
action is supported by some other action

•problem: condition not strong enough
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Threat: Example
1:move(robot,loc1,loc2)

effectspreconditions

adjacent(loc1,loc2)

at(robot,loc1)
¬occupied(loc2)

at(robot,loc2)
occupied(loc2)

¬occupied(loc1)
¬at(robot,loc1)

2:load(crane,loc1,cont,robot)
effectspreconditions

belong(crane,loc1)
holding(crane,cont)

at(robot,loc1)

empty(crane)
loaded(robot,cont)

¬holding(crane,cont)
¬unloaded(robot)unloaded(robot)

0:goal

at(robot,loc2)
¬unloaded(robot)

3:move(robot,loc2,loc1)
effectspreconditions

adjacent(loc2,loc1)

at(robot,loc2)
¬occupied(loc1)

at(robot,loc1)
occupied(loc1)

¬occupied(loc2)
¬at(robot,loc2)

at(robot,loc1)
at(robot,loc1)

¬unloaded(robot)

at(robot,loc2)

Threat: Example
•start with partial plan from previous example (grounded; initial
state not shown due to limited space on slide)
•introduce new 3:move action to achieve at(robot,loc1) 
precondition of 2:load action

•note: still many unachieved preconditions – not a solution 
yet

•add causal link to maintain rationale
•add ordering to be consistent with causal link
•new: label causal link with condition it protects
•threat: effect of 1:move is negation of condition protected by 
causal link

•if 1:move is executed between 3:move and 2:load the plan 
is no longer valid

•possible solution: additional ordering constraint
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Threats

An action ak in a partial plan π = 
(A,≺,B,L) is a threat to a causal link 
〈ai −[p] aj〉 iff:
• ak has an effect ¬q that is possibly 

inconsistent with p, i.e. q and p are unifiable;
• the ordering constraints (ai≺ak) and (ak≺aj) are 

consistent with ≺; and
• the binding constraints for the unification of q

and p are consistent with B.

Threats
•An action ak in a partial plan π = (A,≺,B,L) is a threat to a 
causal link 
〈ai −[p] aj〉 iff:

•ak has an effect ¬q that is possibly inconsistent with p, 
i.e. q and p are unifiable;
•the ordering constraints (ai≺ak) and (ak≺aj) are 
consistent with ≺; and
•the binding constraints for the unification of q and p are 
consistent with B.
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Flaws

A flaw in a plan π = (A,≺,B,L) is either:
• an unsatisfied sub-goal, i.e. a precondition of 

an action in A without a causal link that 
supports it; or

• a threat, i.e. an action that may interfere with 
a causal link.

Flaws
•A flaw in a plan π = (A,≺,B,L) is either:

•an unsatisfied sub-goal, i.e. a precondition of an action 
in A without a causal link that supports it; or
•a threat, i.e. an action that may interfere with a causal 
link.
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Flawless Plans and Solutions

Proposition: A partial plan π = (A,≺,B,L) is a 
solution to the planning problem P=(Σ,si,g) if: 
• π has no flaw;
• the ordering constraints ≺ are not circular; and
• the variable bindings B are consistent.

Proof: by induction on number of actions in A
• base case: empty plan
• induction step: totally ordered plan minus first step is 

solution implies plan including first step is a solution:
γ(si, 〈a1,…,ak〉) = γ(γ(si, a1), 〈a2,…,ak〉) 

Flawless Plans and Solutions
•Proposition: A partial plan π = (A,≺,B,L) is a solution to the 
planning problem P=(Σ,si,g) if: 

•π has no flaw;
•the ordering constraints ≺ are not circular; and
•the variable bindings B are consistent.

•computation:
•let partial plans in the search space only violate the first 
condition (have flaws)
•partial plans that violate either of the last two conditions 
cannot be refined into a solution and need not be generated

•Proof: by induction on number of actions in A
•base case: empty plan

•no flaws – every goal condition is supported by causal 
link from initial state

•induction step: totally ordered plan minus first step is 
solution implies plan including first step is a solution:
γ(si, 〈a1,…,ak〉) = γ(γ(si, a1), 〈a2,…,ak〉)

•truncated plan is solution to different problem
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Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS 
Representation

Overview
The Search Space of Partial Plans

just done: defining the search space: partial plans + plan 
refinement operations

•Plan-Space Search Algorithms
•now: an algorithm that performs the search through the 
space of partial plans

•Extensions of the STRIPS Representation
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Plan-Space Planning as a 
Search Problem

given: statement of a planning problem 
P=(O,si,g) 
define the search problem as follows:
• initial state: π0 = ({init, goal},{(init≺goal)},{},{})
• goal test for plan state p: p has no flaws
• path cost function for plan π: |π|
• successor function for plan state p: 

refinements of p that maintain ≺ and B

Plan-Space Planning as a Search Problem
•given: statement of a planning problem P=(O,si,g) 
•define the search problem as follows:

•initial state: π0 = ({init, goal},{(init≺goal)},{},{})
•goal test for plan state p: p has no flaws
•path cost function for plan π: |π|
•successor function for plan state p: refinements of p 
that maintain ≺ and B

•note: plan space may be infinite even when state space is finite
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PSP Procedure: Basic 
Operations

PSP: Plan-Space Planner
main principle: refine partial π plan while 
maintaining ≺ and B consistent until π has no 
more flaws
basic operations:
• find the flaws of π, i.e. its sub-goals and its threats
• select one of the flaws
• find ways to resolve the chosen flaw
• choose one of the resolvers for the flaw
• refine π according to the chosen resolver

PSP Procedure: Basic Operations
•PSP: Plan-Space Planner
•main principle: refine partial π plan while maintaining ≺ and 
B consistent until π has no more flaws
•basic operations:

•find the flaws of π, i.e. its sub-goals and its threats
•simple for empty plan – all goal conditions are 
unachieved sub-goals and no threats

•select one of the flaws
•find ways to resolve the chosen flaw
•choose one of the resolvers for the flaw
•refine π according to the chosen resolver

•modify the plan in such a way that ≺ and B are in a 
consistent state for the generated successor

•aim: no need to verify consistency of ≺ and B for 
goal test
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PSP: Pseudo Code

function PSP(plan)
allFlaws plan.openGoals() + plan.threats() 
if allFlaws.empty() then return plan
flaw allFlaws.selectOne()
allResolvers flaw.getResolvers(plan)
if allResolvers.empty() then return failure
resolver allResolvers.chooseOne()
newPlan plan.refine(resolver)
return PSP(newPlan)

•PSP: Pseudo Code
•function PSP(plan)

•refines the given partial plan into a solution plan; start with 
initial plan π0

•allFlaws plan.openGoals() + plan.threats() 
•if allFlaws.empty() then return plan

•see proposition in previous section: no flaws implies solution
•flaw allFlaws.selectOne()
•allResolvers flaw.getResolvers(plan)

•represents all possible ways of removing the selected flaw 
from the partial plan

•if allResolvers.empty() then return failure
•no resolvers means plan cannot be made flawless

•resolver allResolvers.chooseOne()
•newPlan plan.refine(resolver)

•must maintain consistency of ≺ and B; new plan may 
contain new flaws

•return PSP(newPlan)



28

Plan-Space Search 28

PSP: Choice Points

resolver allResolvers.chooseOne()
• non-deterministic choice

flaw allFlaws.selectOne()
• deterministic selection
• all flaws need to be resolved before a plan 

becomes a solution
• order not important for completeness
• order is important for efficiency

PSP: Choice Points
•resolver allResolvers.chooseOne()

•non-deterministic choice
•flaw allFlaws.selectOne()

•deterministic selection
•all flaws need to be resolved before a plan becomes a 
solution
•order not important for completeness
•order is important for efficiency

•for finding first plan, not so for finding all plans
•deterministic implementation: using IDA*, for example
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Implementing plan.openGoals()

finding unachieved sub-goals 
(incrementally):
• in π0: goal conditions
• when adding an action: all preconditions are 

unachieved sub-goals
• when adding a causal link: protected 

proposition is no longer unachieved

Implementing plan.openGoals()
•finding unachieved sub-goals (incrementally):

•in π0: goal conditions
•when adding an action: all preconditions are 
unachieved sub-goals
•when adding a causal link: protected proposition is no 
longer unachieved
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Implementing plan.threats()
finding threats (incrementally):
• in π0: no threats
• when adding an action anew to π = (A,≺,B,L): 

• for every causal link 〈ai −[p] aj〉 ∈ L
if (anew≺ai) or (aj≺anew) then next link
else for every effect q of anew

if (∃σ: σ(p)=σ(¬q)) then q of anew threatens 〈ai −[p] aj〉
• when adding a causal link 〈ai −[p] aj〉 to π = (A,≺,B,L): 

• for every action aold∈A
if (aold≺ai) or (aj=aold) or (aj≺aold) then next action
else for every effect q of aold

if (∃σ: σ(p)=σ(¬q)) then q of aold threatens 〈ai −[p] aj〉

Implementing plan.threats()
•finding threats (incrementally):

•in π0: no threats
•when adding an action anew to π = (A,≺,B,L): 

•for every causal link 〈ai −[p] aj〉 ∈ L
•if (anew≺ai) or (aj≺anew) then next link

•if the new action must occur before the provider or 
after the consumer of the link

•else for every effect q of anew

•if (∃σ: σ(p)=σ(¬q)) then q of anew threatens 〈ai −[p] aj〉
•∃σ: test whether there is a substitution consistent 
with B!

•when adding a causal link 〈ai −[p] aj〉 to π = (A,≺,B,L): 
•for every action aold∈A
•if (aold≺ai) or (aj=aold) or (aj≺aold) then next action
•else for every effect q of aold

•if (∃σ: σ(p)=σ(¬q)) then q of aold threatens 〈ai −[p] aj〉
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Implementing 
flaw.getResolvers(plan)

for unachieved precondition p of ag:
• add causal links to an existing action:

• for every action aold∈A
if (ag=aold) or (ag≺aold) then next action
else for every effect q of aold

if (∃σ: σ(p)=σ(q)) then adding 
〈aold−[σ(p)] ag〉 is a resolver

• add a new action and a causal link:
• for every effect q of every operator o

if (∃σ: σ(p)=σ(q)) then adding 
anew=o.newInstance() and 
〈anew−[σ(p)] ag〉 is a resolver

Implementing flaw.getResolvers(plan)
•for unachieved precondition p of ag:

•add causal links to an existing action:
•for every action aold∈A
•if (ag=aold) or (ag≺aold) then next action
•else for every effect q of aold

•if (∃σ: σ(p)=σ(q)) then adding 
〈aold−[σ(p)] ag〉 is a resolver

•add a new action and a causal link:
•for every effect q of every operator o
•if (∃σ: σ(p)=σ(q)) then adding 
anew=o.newInstance() and 
〈anew−[σ(p)] ag〉 is a resolver
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Implementing 
flaw.getResolvers(plan)

for effect q of action at threatening 〈ai −[p] aj〉:
• order action before threatened link:

• if (at=ai) or (aj≺at) then not a resolver
else adding (at≺ai) is a resolver

• order threatened link before action:
• if (at=ai) or (at≺ai) then not a resolver

else adding (aj≺at) is a resolver
• extend variable bindings such that unification fails:

• for every variable v in p or q
if v≠σ(v) is consistent with B then 

adding v≠σ(v) is a resolver

Implementing flaw.getResolvers(plan)
•for effect q of action at threatening 〈ai −[p] aj〉:

•order action before threatened link:
•if (at=ai) or (aj≺at) then not a resolver
•else adding (at≺ai) is a resolver

•order threatened link before action:
•if (at=ai) or (at≺ai) then not a resolver
•else adding (aj≺at) is a resolver

•extend variable bindings such that unification fails:
•for every variable v in p or q
•if v≠σ(v) is consistent with B then 
adding v≠σ(v) is a resolver
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Implementing 
plan.refine(resolver)

refines partial plan with elements in resolver by 
adding:
• an ordering constraint;
• one or more binding constraints;
• a causal link; and/or
• a new action.

no testing required
must update flaws:
• unachieved preconditions (see: plan.openGoals())
• threats (see: plan.threats())

Implementing plan.refine(resolver)
•refines partial plan with elements in resolver by adding:

•an ordering constraint;
•one or more binding constraints;
•a causal link; and/or
•a new action.

•no testing required
•all testing already done in flaw.getResolvers(plan)

•must update flaws:
•unachieved preconditions (see: plan.openGoals())
•threats (see: plan.threats())
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Maintaining Ordering 
Constraints

required operations:
• query whether (ai≺aj) 
• adding (ai≺aj)

possible internal representations:
• maintain set of predecessors/successors for 

each action as given
• maintain only direct predecessors/successors 

for each action 
• maintain transitive closure of ≺ relation

Maintaining Ordering Constraints
•required operations:

•query whether (ai≺aj) 
•adding (ai≺aj)

•without consistency testing
•possible internal representations:

•maintain set of predecessors/successors for each 
action as given
•maintain only direct predecessors/successors for each 
action 
•maintain transitive closure of ≺ relation
•operations have different time and space complexity

•note: query performed more often than addition



35

Plan-Space Search 35

Maintaining Variable Binding 
Constraints

types of constraints:
• unary constraints: x ∈ Dx

• equality constraints: x = y
• inequalities: x ≠ y

note: general CSP problem is NP-
complete

Maintaining Variable Binding Constraints
•types of constraints:

•unary constraints: x ∈ Dx

•equality constraints: x = y
•unary and equality constraints can be solved in linear 
time

•inequalities: x ≠ y
•inequalities give rise to general CSP problem

•note: general CSP problem is NP-complete



36

Plan-Space Search 36

PSP: Data Flow
plan = (A,≺,B,L)

compute open goalscompute threats

has flaw? select flaw

compute resolvers

has resolver? choose resolver

maintain
ordering 

constraints

maintain
binding 

constraints

apply resolversreturn failure

return plan

π0

PSP: Data Flow
•deterministic step: selecting a a flaw

•no backtracking required
•selection important for efficiency
•heuristic guidance required

•non-deterministic step: choosing a resolver for a flaw
•implemented as backtracking

•order in which resolvers are tried important for 
efficiency
•heuristic guidance required

•note: admissible heuristics (A*) must have step cost greater than 
zero
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PSP: Sound and Complete

Proposition: The PSP procedure is 
sound and complete: whenever π0 can 
be refined into a solution plan, PSP(π0) 
returns such a plan.
Proof:
• soundness: ≺ and B are consistent at every 

stage of the refinement
• completeness: induction on the number of 

actions in the solution plan

PSP: Sound and Complete
•Proposition: The PSP procedure is sound and complete: 
whenever π0 can be refined into a solution plan, PSP(π0) 
returns such a plan.
•Proof:

•soundness: ≺ and B are consistent at every stage of the 
refinement
•completeness: induction on the number of actions in 
the solution plan

•note: non-deterministic version is complete, 
deterministic implementation must avoid infinite 
branches
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PSP Implementation: PoP

extended input:
• partial plan (as before)
• agenda: set of pairs (a,p) where a is an action 

an p is one of its preconditions

search control by flaw type
• unachieved sub-goal (on agenda): as before
• threats: resolved as part of the successor 

generation process

PSP Implementation: PoP
•based on UCPOP
•extended input:

•partial plan (as before)
•agenda: set of pairs (a,p) where a is an action an p is 
one of its preconditions
•initial agenda: one pair for each precondition of the goal 
step

•search control by flaw type
•unachieved sub-goal (on agenda): as before
•threats: resolved as part of the successor generation 
process
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PoP: Pseudo Code (1)
function PoP(plan, agenda)

if agenda.empty() then return plan
(ag,pg) agenda.selectOne()
agenda agenda - (ag,pg)
relevant plan.getProviders(pg)
if relevant.empty() then return failure
(ap,pp,σ) relevant.chooseOne()
plan.L plan.L ∪ 〈ap −[p] ag〉
plan.B plan.B ∪ σ

PoP: Pseudo Code (1)
•function PoP(plan, agenda)
•if agenda.empty() then return plan
•(ag,pg) agenda.selectOne()

•deterministic choice point
•agenda agenda - (ag,pg)
•relevant plan.getProviders(pg)

•finds all actions 
•either from within the plan or 
•from new instances of an operator 

•that have an effect that unifies with condition
•if relevant.empty() then return failure
•(ap,pp,σ) relevant.chooseOne()

•non-deterministic choice point
•plan.L plan.L ∪ 〈ap −[p] ag〉
•plan.B plan.B ∪ σ

•must succeed for elements of relevant
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PoP: Pseudo Code (2)
if ap ∉ plan.A then 

plan.add(ap)
agenda agenda + ap.preconditions

newPlan plan
for each threat on 〈ap −[p] ag〉 or due to ap do

allResolvers threat.getResolvers(newPlan)
if allResolvers.empty() then return failure
resolver allResolvers.chooseOne()
newPlan newPlan.refine(resolver)

return PSP(newPlan,agenda)

PoP: Pseudo Code (2)
•if ap ∉ plan.A then 

•if the action is new and needs to be added to the plan
•plan.add(ap)

•involves updating set of actions and ordering constraints
•agenda agenda + ap.preconditions

•all preconditions of the new action are new sub-goals
•newPlan plan
•for each threat on 〈ap −[p] ag〉 or due to ap do

•note: two sources of threats are treated identically
•allResolvers threat.getResolvers(newPlan)
•if allResolvers.empty() then return failure
•resolver allResolvers.chooseOne()

•second non-deterministic choice point
•newPlan newPlan.refine(resolver)

•note: loop does not add to agenda
•return PSP(newPlan,agenda)
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State-Space vs. Plan-Space 
Planning

state-space planning
• finite search space
• explicit representation of 

intermediate states
• action ordering reflects 

control strategy
• causal structure only 

implicit
• search nodes relatively 

simple and successors 
easy to compute

plan-space planning
• finite search space
• no intermediate states
• choice of actions and 

organization 
independent

• explicit representation of 
rationale

• search nodes are 
complex and successors 
expensive to compute 

State-Space vs. Plan-Space Planning
•state-space planning vs. plan-space planning

•finite search space vs. finite search space
•important: portion of search space explored/generated

•explicit representation of intermediate states vs. no 
intermediate states

•explicit representation allows for efficient domain 
specific heuristics and control knowledge

•action ordering reflects control strategy vs. choice of 
actions and organization independent
•causal structure only implicit vs. explicit representation of 
rationale

•important for plan execution
•search nodes relatively simple and successors easy to 
compute vs. search nodes are complex and successors 
expensive to compute
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Using Partial-Order Plans: Main 
Advantages

more flexible during execution 
using constraint managers facilitates 
extensions such as:
• temporal constraints
• resource constraints

distributed and multi-agent planning fit 
naturally into the framework 

Using Partial-Order Plans: Main Advantages
•more flexible during execution 

•saved rationale facilitates execution monitoring and re-
planning

•using constraint managers facilitates extensions such as:
•temporal constraints
•resource constraints

•both very important for realistic planning
•distributed and multi-agent planning fit naturally into the 
framework 
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Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS 
Representation

Overview
The Search Space of Partial Plans

•Plan-Space Search Algorithms
•just done: an algorithm that performs the search through the 
space of partial plans

•Extensions of the STRIPS Representation
•now: extensions to the restricted STRIPS representation 
and approaches to deal with them
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Existential Quantification in 
Goals

allow existentially quantified conjunction 
of literals as goal:
• g = ∃x1,…,xn: l1 ⋀ … ⋀ lm

rewrite into equivalent planning problem:
• new goal g’ = {p} where p is an unused 

proposition symbol
• introduce additional operator 

o = (op-g(x1,…,xn),{l1,…,lm},{p})
in plan-space search: no change needed

Existential Quantification in Goals
•allow existentially quantified conjunction of literals as goal:

•g = ∃ x1,…,xn : l1 ⋀ … ⋀ lm
•but still no free variables in the goal literals

•rewrite into equivalent planning problem:
•new goal g’ = {p} where p is an unused proposition 
symbol
•introduce additional operator o = (op-
g(x1,…,xn),{l1,…,lm},{p})

•solution plans will be one step longer, with last step 
being an instantiation of op-g

•no increase in expressive power (can rewrite every problem), but
sometimes makes representation appear more natural
•in plan-space search: no change needed

•partial plans do not require all variables to be instantiated
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DWR Example: Existential 
Quantification in Goals

goal: ∃x,y: on(x,c1) ⋀ on(y,c2)

rewritten goal: p
new operator:
o = (op-g(x,y),{on(x,c1),on(y,c2)},{p})

plan-space search goal:
on(x,c1) ⋀ on(y,c2)

Example: Existential Quantification in Goals
•goal: ∃x,y: on(x,c1) ⋀ on(y,c2)
•rewritten goal: p
•new operator: o = (op-g(x,y),{on(x,c1),on(y,c2)},{p})
•plan-space search goal: on(x,c1) ⋀ on(y,c2)

•variables in goals are implicitly existentially quantified
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Typed Variables

allow typed variables in operators:
• name(o) = n(x1:t1,…,xk:tk) where ti is the type 

of variable xi

rewrite into equivalent planning problem:
• add preconditions {t1(x1),…,tk(xk)} to o
• if constant ci is of type tj, add rigid relation tj(ci) 

to the initial state
• remove types from operator names

Typed Variables
•allow typed variables in operators:

•name(o) = n(x1:t1,…,xk:tk) where ti is the type of 
variable xi

•types usually given with problem specification
•exact syntax for typing not important

•rewrite into equivalent planning problem:
•add preconditions {t1(x1),…,tk(xk)} to o

•types are unary predicates here
•if constant ci is of type tj, add tj(ci) to the initial state
•remove types from operator names

•similarly: typed relations
•advantages: readability, reduced number of actions (operator 
instances)
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DWR Example: Typed Variables

operator: move(r:robot,l:location,m:location)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

rewritten operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m), robot(r), 

loaction(l), location(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

rewritten initial state:
• si ∪ {robot(r1),container(c1),container(c2),…}

DWR Example: Typed Variables
•operator: move(r:robot,l:location,m:location)

•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•rewritten operator:move(r,l,m)
•precond: adjacent(l,m), at(r,l), ¬occupied(m), robot(r), 
loaction(l), location(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•rewritten initial state:
•si ∪ {robot(r1),container(c1),container(c2),…}

•note: dealing with typed variables directly in the planner is far more 
efficient
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Conditional Operators
conditional planning operators:
• o = (n,(precond0,effects0),…,(precondn,effectsn)) 

where:
• n = o(x1,…,xn) as before,
• (precond0,effects0) are the unconditional preconditions 

and effects of the operator, and
• (precondi,effectsi)  for i≥1 are the conditional 

preconditions and effects of the operator.
• a ground instance a of o is applicable in state s if s

satisfies precond0• let I={i∈[0,n] | s satisfies precondi(a)}; then:
• γ(s,a)=(s - ∪(i∈I)effects-(a)) ∪ (∪(i∈I)effects+(a))

Conditional Operators
•conditional planning operators:

•o = (n,(precond0,effects0),…,(precondn,effectsn)) where:
•n = o(x1,…,xn) as before,
•(precond0,effects0) are the unconditional 
preconditions and effects of the operator, and

•not strictly necessary, could be added to every 
conditional pair

•(precondi,effectsi)  for i≥1 are the conditional 
preconditions and effects of the operator.

•a ground instance a of o is applicable in state s if s
satisfies precond0

•let I={i∈[0,n] | s satisfies precondi(a)}; then:
•γ(s,a)=(s - ∪(i∈I)effects-(a)) ∪ (∪(i∈I)effects+(a))
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DWR Example: Conditional 
Operators

relation at(o,l): object o is at location l
conditional move operator: 
move(r,l,m,c)
• precond0: adjacent(l,m), at(r,l), ¬occupied(m)
• effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
• precond1: loaded(r,c)
• effects1: at(c,m), ¬at(c,l)

DWR Example: Conditional Operators
•relation at(o,l): object o is at location l

•at previously only used for location of robot
•conditional move operator: 
move(r,l,m,c)

•new parameter c, the potentially loaded container
•precond0: adjacent(l,m), at(r,l), ¬occupied(m)
•effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•as before
•precond1: loaded(r,c)
•effects1: at(c,m), ¬at(c,l)

•if the container is loaded it will move with the robot
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Extending PoP to handle 
Conditional Operators 

modifying plan.getProviders(pg):
• new action with matching conditional effect
• add precondition of conditional effect to 

agenda
managing conditional threats:
• new alternative resolver: add negated 

precondition of threatening conditional 
effect to agenda

Extending PoP to handle Conditional Operators
•modifying plan.getProviders(pg):

•new action with matching conditional effect
•add precondition of conditional effect to agenda

•along with unconditional preconditions
•managing conditional threats:

•when the threatening effect is a conditional effect
•new alternative resolver: add negated precondition 
of threatening conditional effect to agenda

•other alternatives: ordering and binding constraints
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Quantified Expressions

allow universally quantified variables in 
conditional preconditions and effects:
• for-all x1,…,xn: (precondi,effectsi)

a is applicable in state s if s satisfies precond0

Let ϭ be a substitution for x1,…,xn such that 
ϭ(precondi(a)) and ϭ(effectsi(a)) are ground. 
• If s satisfies ϭ(precondi(a)) then 
• ϭ(effectsi(a)) are effects of the action.

Quantified Expressions
•allow universally quantified variables in conditional 
preconditions and effects:

•for-all x1,…,xn: (precondi,effectsi)
•a is applicable in state s if s satisfies precond0

•applicability depends only on unconditional preconditions
•Let ϭ be a substitution for x1,…,xn such that ϭ(precondi(a)) 
and ϭ(effectsi(a)) are ground. 

•If s satisfies ϭ(precondi(a)) then 
•ϭ(effectsi(a)) are effects of the action.
•conditional effect occurs for all possible substitutions where 
the state satisfies the conditional preconditions

•note: cannot use binding constraints to resolve conditional 
threats here
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DWR Example: Quantified 
Expressions

extension: robots can carry multiple 
containers
extended move operator: 
move(r,l,m)
• precond0: adjacent(l,m), at(r,l), ¬occupied(m)
• effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
• for-all x:

• precond1: loaded(r,x)
• effects1: at(x,m), ¬at(x,l))

DWR Example: Quantified Expressions
•extension: robots can carry multiple containers
•extended move operator: move(r,l,m)

•container is no longer a parameter
•precond0: adjacent(l,m), at(r,l), ¬occupied(m)
•effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
•for-all x: (the containers)

•precond1: loaded(r,x)
•effects1: at(x,m), ¬at(x,l))
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Disjunctive Preconditions

allow alternatives (disjunctions) in 
preconditions:
• precond = precond1 ⋁…⋁ precondn

• a is applicable in state s if s satisfies at least one of 
precond1 … precondn

• effects remain unchanged

rewrite:
• replace operator with n disjunctive preconditions by n

operators with precondi as precondition

Disjunctive Preconditions
•allow alternatives (disjunctions) in preconditions:

•precond = precond1 ⋁…⋁ precondn

•a is applicable in state s if s satisfies at least one of 
precond1 … precondn

•effects remain unchanged
•rewrite:

•replace operator with n disjunctive preconditions by n
operators with precondi as precondition
•leads to exponentially larger search space; more efficiently 
handled in the planner
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DWR Example: Disjunctive 
Preconditions

robot can move between locations if 
there is a road between them or the 
robot has all-wheel drive
extended move operator: 
move(r,l,m)
• precond: (road(l,m), at(r,l), ¬occupied(m)) ⋁

(all-wheel-drive(r), at(r,l), ¬occupied(m))
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

DWR Example: Disjunctive Preconditions
•robot can move between locations if there is a road between 
them or the robot has all-wheel drive
•extended move operator: 
move(r,l,m)

•precond: (road(l,m), at(r,l), ¬occupied(m)) ⋁ (all-wheel-
drive(r), at(r,l), ¬occupied(m))

•more complex formulae can be transformed into DNF
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
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Axiomatic Inference: Static 
Case

axioms over rigid relations:
• example: 

∀l1,l2: adjacent(l1,l2) ↔ adjacent(l2,l1)

state-specific axioms:
• example: 

∀c: container(c) ↔ at(c,loc1) holds in si

approach: pre-compute

Axiomatic Inference: Static Case
•idea: represent knowledge that is not explicit in the state of the 
world; derived knowledge
•axioms over rigid relations:

•example: ∀l1,l2: adjacent(l1,l2) ↔ adjacent(l2,l1)
•adjacent is a symmetric relationship

•state-specific axioms:
•example: ∀c: container(c) ↔ at(c,loc1) holds in si

•in the initial state, all containers are at location loc1
•approach: pre-compute

•rigid relations: cannot appear in effects, truth value does not 
change from state to state; hence, can be pre-computed
•state-specific axioms: expansion into ground atoms possible 
because of finite domains

•same technique for quantified effects
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Axiomatic Inference: Dynamic 
Case

axioms over flexible relations: 
• example: ∀k,x: ¬holding(k,x) ↔ empty(k)
• approach: 

• divide relations into primary and secondary where 
secondary relations do not appear in effects

• transform axioms into implications where primary 
relations must not appear in right-hand side

• example: 
• primary: holding / secondary: empty
• ∀k ¬∃x: holding(k,x) → empty(k)
• ∀k ∃x: holding(k,x) → ¬empty(k)

Axiomatic Inference: Dynamic Case
•axioms over flexible relations: 

•example: ∀k,x: ¬holding(k,x) ↔ empty(k)
•a crane is empty iff it is not holding anything

•approach: 
•divide relations into primary and secondary where 
secondary relations do not appear in effects

•primary relations may appear in preconditions and 
effects, secondary relations only in preconditions

•transform axioms into implications where primary 
relations must not appear in right-hand side

•truth value of secondary relations depends on 
primary relations which are modified by operators

•example: 
•primary: holding / secondary: empty

•must remove empty-relation from effects of all 
operators

•∀k ¬∃x: holding(k,x) → empty(k)
•∀k ∃x: holding(k,x) → ¬empty(k)
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Extended Goals

not part of classical planning formalisms
some problems can be translated into 
equivalent classical problems, e.g.
• states to be avoided: add corresponding 

preconditions to operators
• states to be visited twice: introduce visited 

relation and maintain in operators
• constraints on solution length: introduce count 

relation that is increased with each step

Extended Goals
•not part of classical planning formalisms
•some problems can be translated into equivalent classical 
problems, e.g.

•states to be avoided: add corresponding preconditions 
to operators
•states to be visited twice: introduce visited relation and 
maintain in operators
•constraints on solution length: introduce count relation 
that is increased with each step

•requires function symbols and integer arithmetic 
(attached procedures)
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Other Extensions

Function Symbols
• infinite domains, undecidable in general

Attached Procedures
• evaluate relations using special code rather 

than general inference
• efficiency may be necessary in real-world domains
• variables must usually be bound to evaluate 

relations
• semantics of such relations

Other Extensions
•Function Symbols

•infinite domains, undecidable in general
•expansion into ground atoms no longer possible, 
reasoning within one state is undecidable

•Attached Procedures
•evaluate relations using special code rather than 
general inference

•efficiency may be necessary in real-world domains
•example: numeric computations

•variables must usually be bound to evaluate 
relations

•difficult with least commitment approach taken by 
many planners

•semantics of such relations
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Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS 
Representation

Overview
The Search Space of Partial Plans

•Plan-Space Search Algorithms
•Extensions of the STRIPS Representation

•just done: extensions to the restricted STRIPS 
representation and approaches to deal with them


