
1

Plan-Space Search

Searching for a Solution
Plan in a Graph of Partial

Plans

Plan-Space Search
•Searching for a Solution Plan in a Graph of Partial Plans

2

Plan-Space Search 2

Literature

Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning – Theory and Practice,
chapter 2 and 5. Elsevier/Morgan Kaufmann,
2004.
J. Penberthy and D. S. Weld. UCPOP: A
sound, complete, partial-order for ADL. In
Proceeding s of the International Conference
on Knowledge Representation and Reasoning,
pages 103-114, 1992.

Literature
•Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning –
Theory and Practice, chapter 2 and 5. Elsevier/Morgan Kaufmann,
2004.
•J. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial-
order for ADL. In Proceeding s of the International Conference on
Knowledge Representation and Reasoning, pages 103-114, 1992.

3

Plan-Space Search 3

State-Space vs. Plan-Space
Search

state-space search: search through
graph of nodes representing world
states
plan-space search: search through
graph of partial plans
• nodes: partially specified plans
• arcs: plan refinement operations
• solutions: partial-order plans

State-Space vs. Plan-Space Search
•state-space search: search through graph of nodes
representing world states

•search space directly corresponds to graph representation
of state-transition system

•plan-space search: search through graph of partial plans
•nodes: partially specified plans
•arcs: plan refinement operations

•least commitment principle: do not add constraints to
the plan that are not strictly needed

•solutions: partial-order plans
•partial-order plan: set of actions + set of orderings; not
necessarily total order
•state-space algorithms also maintain partial plan – but
always in total order

4

Plan-Space Search 4

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

Overview
The Search Space of Partial Plans

now: defining the search space: partial plans + plan
refinement operations

•Plan-Space Search Algorithms
•Extensions of the STRIPS Representation

5

Plan-Space Search 5

Partial Plans

plan: set of actions organized into some
structure
partial plan:
• subset of the actions
• subset of the organizational structure

• temporal ordering of actions
• rationale: what the action achieves in the plan

• subset of variable bindings

Partial Plans
•plan: set of actions organized into some structure

•organization e.g. sequence
•partial plan:

•subset of the actions
•subset of the organizational structure

•temporal ordering of actions
•rationale: what the action achieves in the plan
•refers only to subset of actions

•subset of variable bindings
•plan refinement operators accordingly: add actions, add ordering
constraints, add causal links, add variable bindings

6

Plan-Space Search 6

Adding Actions

partial plan contains actions
• initial state
• goal conditions
• set of operators with different variables

reason for adding new actions
• to achieve unsatisfied preconditions
• to achieve unsatisfied goal conditions

Adding Actions
•partial plan contains actions

•initial state
•goal conditions
•can be represented as two actions with only effects or
preconditions
•set of operators with different variables

•least commitment principle: introduce actions only for a reason
•reason for adding new actions

•to achieve unsatisfied preconditions
•to achieve unsatisfied goal conditions

•note: new actions can be added anywhere in the current partial
plan

7

Plan-Space Search 7

Adding Actions: Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

Adding Actions: Example
•empty plan:

•initial state: all initially satisfied conditions (green)
•goal: conditions that need to be satisfied (red)

•add operator: 1:move(r1,l1,m1)
•number (1) to provide unique reference to this operator
instance
•also used as variable index for unique variables
•least commitment principle: choose values for variables only
when necessary

•add operator:2:load(k2,l2,c2,r2)

8

Plan-Space Search 8

Adding Causal Links

partial plan contains causal links
• links from the provider

• an effect of an action or
• an atom that holds in the initial state

• to the consumer
• a precondition of an action or
• a goal condition

reasons for adding causal links
• prevent interference with other actions

Adding Causal Links
•partial plan contains causal links

•links from the provider
•an effect of an action or
•an atom that holds in the initial state

•to the consumer
•a precondition of an action or
•a goal condition

•causal link implies ordering constraint
•but: provider need not come directly before consumer

•reasons for adding causal links
•prevent interference with other actions
•keeping track of rationale: any action inserted between
provider and consumer must not clobber conditions in causal
link
•preconditions without a causal link pointing to them are
open sub-gaols

9

Plan-Space Search 9

Adding Causal Links: Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

at(robot,loc2)
¬unloaded(robot)

adjacent(l1,m1)

causal link:

Adding Causal Links: Example
•add link from 1:move to goal

•changes colour of goal to green – now satisfied
•add link from 2:load to goal
•add link from initial state to 1:move

10

Plan-Space Search 10

Adding Variable Bindings

partial plan contains variable bindings
• new operators introduce new (copies of) variables into

the plan
• solution plan must contain actions
• variable binding constraints keep track of possible

values for variables and co-designation

reasons for adding variable bindings
• to turn operators into actions
• to unify and effect with the precondition it supports

Adding Variable Bindings
•partial plan contains variable bindings

•new operators introduce new (copies of) variables into
the plan

•each copy of an operator has its own set of variables
that are different from variables in other operators
instances

•solution plan must contain actions
•variable binding constraints keep track of possible
values for variables and co-designation
•convention (here): give number to operator instances to
distinguish them; let variables have index of operator they
belong to least commitment principle:

•least commitment principle: add only necessary
variable binding constraints

•reasons for adding variable bindings
•to turn operators into actions
•to unify and effect with the precondition it supports

11

Plan-Space Search 11

Adding Variable Bindings:
Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

r1 robot

m1 loc2

variable = ≠

l1 loc1 loc2

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)
adjacent(l1,m1)

variable bindings:

Adding Variable Bindings: Example
•bind variables due to causal link:

•bind r1 to robot
•bind m1 to loc2
•note: variables in operator no longer red to indicate they are
bound

•clobbering: move may also destroy goal condition
•introduce variable inequality: l1 ≠ loc2
•clobbering now impossible
•introduce causal link from initial state
•bind l1 to loc1

•note consistency with inequality

12

Plan-Space Search 12

Adding Ordering Constraints

partial plan contains ordering constraints
• binary relation specifying the temporal order

between actions in the plan

reasons for adding ordering constraints
• all actions after initial state
• all actions before goal
• causal link implies ordering constraint
• to avoid possible interference

Adding Ordering Constraints
•partial plan contains ordering constraints

•binary relation specifying the temporal order between
actions in the plan
•temporal relation: qualitative, not quantitative (at this stage)

•reasons for adding ordering constraints
•all actions after initial state
•all actions before goal
•causal link implies ordering constraint
•to avoid possible interference

•interference can be avoided by ordering the potentially
interfering action before the provider or after the
consumer of a causal link
•least commitment principle: introduce ordering
constraints only if necessary

•result: solution plan not necessarily totally ordered

13

Plan-Space Search 13

Adding Ordering Constraints:
Example

initial state

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

1:move(r1,l1,m1)
effectspreconditions

adjacent(l1,m1)

at(r1,l1)
¬occupied(m1)

at(r1,m1)
occupied(m1)
¬occupied(l1)

¬at(r1,l1)

2:load(k2,l2,c2,r2)
effectspreconditions

belong(k2,l2)
holding(k2,c2)

at(r2,l2)

empty(k2)
loaded(r2,c2)

¬holding(k2,c2)
¬unloaded(r2)unloaded(r2)

at(robot,loc2)
¬unloaded(robot)

adjacent(l1,m1)

ordering constraint:

Adding Ordering Constraints: Example
•ordering constraints

•due to causal links
•also: all actions before goal

•ordering: all actions after initial state
•orderings may occur between actions

14

Plan-Space Search 14

Definition of Partial Plans
A partial plan is a tuple π = (A,≺,B,L), where:
• A = {a1,…,ak} is a set of partially instantiated planning

operators;
• ≺ is a set of ordering constraints on A of the form (ai≺aj);
• B is a set of binding constraints on the variables of actions

in A of the form x=y, x≠y, or x∈Dx;
• L is a set of causal links of the form 〈ai −[p] aj〉 such that:

• ai and aj are actions in A;
• the constraint (ai≺aj) is in ≺;
• proposition p is an effect of ai and a precondition of aj; and
• the binding constraints for variables in ai and aj appearing in

p are in B.

Definition of Partial Plans
•A partial plan is a tuple π = (A,≺,B,L), where:

•A = {a1,…,ak} is a set of partially instantiated planning
operators;
•≺ is a set of ordering constraints on A of the form
(ai≺aj);
•B is a set of binding constraints on the variables of
actions in A of the form x=y, x≠y, or x∈Dx;
•L is a set of causal links of the form 〈ai −[p] aj〉 such
that:

•ai and aj are actions in A;
•the constraint (ai≺aj) is in ≺;
•proposition p is an effect of ai and a precondition
of aj; and
•the binding constraints for variables in ai and aj
appearing in p are in B.

•sub-gaols in a partial plan: preconditions without causal links
•different view: partial plan as set of (sequential) plans

•those that meet the specified constraints and can be refined
to a total order plan by adding constraints

•note: partial plans with two types of additional flexibility:
•actions only partially ordered and
•not all variables need to be instantiated

15

Plan-Space Search 15

Plan-Space Search: Initial
Search State

represent initial state and goal as dummy
actions
• init: no preconditions, initial state as effects
• goal: goal conditions as preconditions, no effects

empty plan π0 = ({init, goal},{(init≺goal)},{},{}):
• two dummy actions init and goal;
• one ordering constraint: init before goal;
• no variable bindings; and
• no causal links.

Plan-Space Search: Initial Search State
•problem: plan space representation does not maintain states, but
need to give initial state and goal description
•represent initial state and goal as dummy actions

•init: no preconditions, initial state as effects
•goal: goal conditions as preconditions, no effects

•empty plan π0 = ({init, goal},{(init≺goal)},{},{}):
•two dummy actions init and goal;
•one ordering constraint: init before goal;
•no variable bindings; and
•no causal links.

16

Plan-Space Search 16

Plan-Space Search: Initial
Search State Example

init

attached(pile,loc)
in(cont,pile)

top(cont,pile)
on(cont,pallet)

belong(crane,loc1)
empty(crane)

adjacent(loc1,loc2)
adjacent(loc2,loc1)

at(robot,loc2)
occupied(loc2)

unloaded(robot)

goal

at(robot,loc2)
¬unloaded(robot)

Plan-Space Search: Initial Search State Example
•note empty box for preconditions in init and empty box for effects
in goal

17

Plan-Space Search 17

Plan-Space Search: Successor
Function

states are partial plans
generate successor through plan
refinement operators (one or more):
• adding an action to A
• adding an ordering constraint to ≺
• adding a binding constraint to B
• adding a causal link to L

Plan-Space Search: Successor Function
•states are partial plans
•generate successor through plan refinement operators (one
or more):

•more required to keep partial plans consistent, e.g. adding a
causal link implies adding an ordering constraint
•adding an action to A
•adding an ordering constraint to ≺
•adding a binding constraint to B
•adding a causal link to L

•successors must be consistent: constraints in a partial plan must
be satisfiable
•plan-space planning decouple two sub-problems:

•which actions need to be performed
•how to organize these actions

•partial plan as set of plans: refinement operation reduces the set
to smaller subset
•next: to define planning as plan-space search problem: need to
define goal state

18

Plan-Space Search 18

Total vs. Partial Order
Let P=(Σ,si,g) be a planning problem. A plan π
is a solution for P if γ(si,π) satisfies g.

problem: γ(si,π) only defined for sequence of
ground actions
• partial order corresponds to total order in which all

partial order constraints are respected
• partial instantiation corresponds to grounding in which

variables are assigned values consistent with binding
constraints

Total vs. Partial Order
•Let P=(Σ,si,g) be a planning problem. A plan π is a solution
for P if γ(si,π) satisfies g.

•solution defined for state transition system
•problem: γ(si,π) only defined for sequence of ground actions

•partial order corresponds to total order in which all
partial order constraints are respected

•partial ordering is consistent iff it is free of loops
•note: there may be an exponential number of total
ordering consistent with a given partial ordering

•partial instantiation corresponds to grounding in which
variables are assigned values consistent with binding
constraints

•note: exponential combinatorics of assigning values to
variables

19

Plan-Space Search 19

Partial Order Solutions

Let P=(Σ,si,g) be a planning problem. A
plan π = (A,≺,B,L) is a (partial order)
solution for P if:
• its ordering constraints ≺ and binding

constraints B are consistent; and
• for every sequence 〈a1,…,ak〉 of all the actions

in A-{init, goal} that is
• totally ordered and grounded and respects ≺ and B
• γ(si, 〈a1,…,ak〉) must satisfy g.

Partial Order Solutions
•Let P=(Σ,si,g) be a planning problem. A plan π = (A,≺,B,L) is
a (partial order) solution for P if:

•its ordering constraints ≺ and binding constraints B are
consistent; and
•for every sequence 〈a1,…,ak〉 of all the actions in A-{init,
goal} that is

•totally ordered and grounded and respects ≺ and B
•γ(si, 〈a1,…,ak〉) must satisfy g.

•note: causal links do not play a role in the definition of a solution
•with exponential number of sequences to check, definition is not
very useful (as computational procedure for goal test)
•idea: use causal links to verify that every precondition of every
action is supported by some other action

•problem: condition not strong enough

20

Plan-Space Search 20

Threat: Example
1:move(robot,loc1,loc2)

effectspreconditions

adjacent(loc1,loc2)

at(robot,loc1)
¬occupied(loc2)

at(robot,loc2)
occupied(loc2)

¬occupied(loc1)
¬at(robot,loc1)

2:load(crane,loc1,cont,robot)
effectspreconditions

belong(crane,loc1)
holding(crane,cont)

at(robot,loc1)

empty(crane)
loaded(robot,cont)

¬holding(crane,cont)
¬unloaded(robot)unloaded(robot)

0:goal

at(robot,loc2)
¬unloaded(robot)

3:move(robot,loc2,loc1)
effectspreconditions

adjacent(loc2,loc1)

at(robot,loc2)
¬occupied(loc1)

at(robot,loc1)
occupied(loc1)

¬occupied(loc2)
¬at(robot,loc2)

at(robot,loc1)
at(robot,loc1)

¬unloaded(robot)

at(robot,loc2)

Threat: Example
•start with partial plan from previous example (grounded; initial
state not shown due to limited space on slide)
•introduce new 3:move action to achieve at(robot,loc1)
precondition of 2:load action

•note: still many unachieved preconditions – not a solution
yet

•add causal link to maintain rationale
•add ordering to be consistent with causal link
•new: label causal link with condition it protects
•threat: effect of 1:move is negation of condition protected by
causal link

•if 1:move is executed between 3:move and 2:load the plan
is no longer valid

•possible solution: additional ordering constraint

21

Plan-Space Search 21

Threats

An action ak in a partial plan π =
(A,≺,B,L) is a threat to a causal link
〈ai −[p] aj〉 iff:
• ak has an effect ¬q that is possibly

inconsistent with p, i.e. q and p are unifiable;
• the ordering constraints (ai≺ak) and (ak≺aj) are

consistent with ≺; and
• the binding constraints for the unification of q

and p are consistent with B.

Threats
•An action ak in a partial plan π = (A,≺,B,L) is a threat to a
causal link
〈ai −[p] aj〉 iff:

•ak has an effect ¬q that is possibly inconsistent with p,
i.e. q and p are unifiable;
•the ordering constraints (ai≺ak) and (ak≺aj) are
consistent with ≺; and
•the binding constraints for the unification of q and p are
consistent with B.

22

Plan-Space Search 22

Flaws

A flaw in a plan π = (A,≺,B,L) is either:
• an unsatisfied sub-goal, i.e. a precondition of

an action in A without a causal link that
supports it; or

• a threat, i.e. an action that may interfere with
a causal link.

Flaws
•A flaw in a plan π = (A,≺,B,L) is either:

•an unsatisfied sub-goal, i.e. a precondition of an action
in A without a causal link that supports it; or
•a threat, i.e. an action that may interfere with a causal
link.

23

Plan-Space Search 23

Flawless Plans and Solutions

Proposition: A partial plan π = (A,≺,B,L) is a
solution to the planning problem P=(Σ,si,g) if:
• π has no flaw;
• the ordering constraints ≺ are not circular; and
• the variable bindings B are consistent.

Proof: by induction on number of actions in A
• base case: empty plan
• induction step: totally ordered plan minus first step is

solution implies plan including first step is a solution:
γ(si, 〈a1,…,ak〉) = γ(γ(si, a1), 〈a2,…,ak〉)

Flawless Plans and Solutions
•Proposition: A partial plan π = (A,≺,B,L) is a solution to the
planning problem P=(Σ,si,g) if:

•π has no flaw;
•the ordering constraints ≺ are not circular; and
•the variable bindings B are consistent.

•computation:
•let partial plans in the search space only violate the first
condition (have flaws)
•partial plans that violate either of the last two conditions
cannot be refined into a solution and need not be generated

•Proof: by induction on number of actions in A
•base case: empty plan

•no flaws – every goal condition is supported by causal
link from initial state

•induction step: totally ordered plan minus first step is
solution implies plan including first step is a solution:
γ(si, 〈a1,…,ak〉) = γ(γ(si, a1), 〈a2,…,ak〉)

•truncated plan is solution to different problem

24

Plan-Space Search 24

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

Overview
The Search Space of Partial Plans

just done: defining the search space: partial plans + plan
refinement operations

•Plan-Space Search Algorithms
•now: an algorithm that performs the search through the
space of partial plans

•Extensions of the STRIPS Representation

25

Plan-Space Search 25

Plan-Space Planning as a
Search Problem

given: statement of a planning problem
P=(O,si,g)
define the search problem as follows:
• initial state: π0 = ({init, goal},{(init≺goal)},{},{})
• goal test for plan state p: p has no flaws
• path cost function for plan π: |π|
• successor function for plan state p:

refinements of p that maintain ≺ and B

Plan-Space Planning as a Search Problem
•given: statement of a planning problem P=(O,si,g)
•define the search problem as follows:

•initial state: π0 = ({init, goal},{(init≺goal)},{},{})
•goal test for plan state p: p has no flaws
•path cost function for plan π: |π|
•successor function for plan state p: refinements of p
that maintain ≺ and B

•note: plan space may be infinite even when state space is finite

26

Plan-Space Search 26

PSP Procedure: Basic
Operations

PSP: Plan-Space Planner
main principle: refine partial π plan while
maintaining ≺ and B consistent until π has no
more flaws
basic operations:
• find the flaws of π, i.e. its sub-goals and its threats
• select one of the flaws
• find ways to resolve the chosen flaw
• choose one of the resolvers for the flaw
• refine π according to the chosen resolver

PSP Procedure: Basic Operations
•PSP: Plan-Space Planner
•main principle: refine partial π plan while maintaining ≺ and
B consistent until π has no more flaws
•basic operations:

•find the flaws of π, i.e. its sub-goals and its threats
•simple for empty plan – all goal conditions are
unachieved sub-goals and no threats

•select one of the flaws
•find ways to resolve the chosen flaw
•choose one of the resolvers for the flaw
•refine π according to the chosen resolver

•modify the plan in such a way that ≺ and B are in a
consistent state for the generated successor

•aim: no need to verify consistency of ≺ and B for
goal test

27

Plan-Space Search 27

PSP: Pseudo Code

function PSP(plan)
allFlaws plan.openGoals() + plan.threats()
if allFlaws.empty() then return plan
flaw allFlaws.selectOne()
allResolvers flaw.getResolvers(plan)
if allResolvers.empty() then return failure
resolver allResolvers.chooseOne()
newPlan plan.refine(resolver)
return PSP(newPlan)

•PSP: Pseudo Code
•function PSP(plan)

•refines the given partial plan into a solution plan; start with
initial plan π0

•allFlaws plan.openGoals() + plan.threats()
•if allFlaws.empty() then return plan

•see proposition in previous section: no flaws implies solution
•flaw allFlaws.selectOne()
•allResolvers flaw.getResolvers(plan)

•represents all possible ways of removing the selected flaw
from the partial plan

•if allResolvers.empty() then return failure
•no resolvers means plan cannot be made flawless

•resolver allResolvers.chooseOne()
•newPlan plan.refine(resolver)

•must maintain consistency of ≺ and B; new plan may
contain new flaws

•return PSP(newPlan)

28

Plan-Space Search 28

PSP: Choice Points

resolver allResolvers.chooseOne()
• non-deterministic choice

flaw allFlaws.selectOne()
• deterministic selection
• all flaws need to be resolved before a plan

becomes a solution
• order not important for completeness
• order is important for efficiency

PSP: Choice Points
•resolver allResolvers.chooseOne()

•non-deterministic choice
•flaw allFlaws.selectOne()

•deterministic selection
•all flaws need to be resolved before a plan becomes a
solution
•order not important for completeness
•order is important for efficiency

•for finding first plan, not so for finding all plans
•deterministic implementation: using IDA*, for example

29

Plan-Space Search 29

Implementing plan.openGoals()

finding unachieved sub-goals
(incrementally):
• in π0: goal conditions
• when adding an action: all preconditions are

unachieved sub-goals
• when adding a causal link: protected

proposition is no longer unachieved

Implementing plan.openGoals()
•finding unachieved sub-goals (incrementally):

•in π0: goal conditions
•when adding an action: all preconditions are
unachieved sub-goals
•when adding a causal link: protected proposition is no
longer unachieved

30

Plan-Space Search 30

Implementing plan.threats()
finding threats (incrementally):
• in π0: no threats
• when adding an action anew to π = (A,≺,B,L):

• for every causal link 〈ai −[p] aj〉 ∈ L
if (anew≺ai) or (aj≺anew) then next link
else for every effect q of anew

if (∃σ: σ(p)=σ(¬q)) then q of anew threatens 〈ai −[p] aj〉
• when adding a causal link 〈ai −[p] aj〉 to π = (A,≺,B,L):

• for every action aold∈A
if (aold≺ai) or (aj=aold) or (aj≺aold) then next action
else for every effect q of aold

if (∃σ: σ(p)=σ(¬q)) then q of aold threatens 〈ai −[p] aj〉

Implementing plan.threats()
•finding threats (incrementally):

•in π0: no threats
•when adding an action anew to π = (A,≺,B,L):

•for every causal link 〈ai −[p] aj〉 ∈ L
•if (anew≺ai) or (aj≺anew) then next link

•if the new action must occur before the provider or
after the consumer of the link

•else for every effect q of anew

•if (∃σ: σ(p)=σ(¬q)) then q of anew threatens 〈ai −[p] aj〉
•∃σ: test whether there is a substitution consistent
with B!

•when adding a causal link 〈ai −[p] aj〉 to π = (A,≺,B,L):
•for every action aold∈A
•if (aold≺ai) or (aj=aold) or (aj≺aold) then next action
•else for every effect q of aold

•if (∃σ: σ(p)=σ(¬q)) then q of aold threatens 〈ai −[p] aj〉

31

Plan-Space Search 31

Implementing
flaw.getResolvers(plan)

for unachieved precondition p of ag:
• add causal links to an existing action:

• for every action aold∈A
if (ag=aold) or (ag≺aold) then next action
else for every effect q of aold

if (∃σ: σ(p)=σ(q)) then adding
〈aold−[σ(p)] ag〉 is a resolver

• add a new action and a causal link:
• for every effect q of every operator o

if (∃σ: σ(p)=σ(q)) then adding
anew=o.newInstance() and
〈anew−[σ(p)] ag〉 is a resolver

Implementing flaw.getResolvers(plan)
•for unachieved precondition p of ag:

•add causal links to an existing action:
•for every action aold∈A
•if (ag=aold) or (ag≺aold) then next action
•else for every effect q of aold

•if (∃σ: σ(p)=σ(q)) then adding
〈aold−[σ(p)] ag〉 is a resolver

•add a new action and a causal link:
•for every effect q of every operator o
•if (∃σ: σ(p)=σ(q)) then adding
anew=o.newInstance() and
〈anew−[σ(p)] ag〉 is a resolver

32

Plan-Space Search 32

Implementing
flaw.getResolvers(plan)

for effect q of action at threatening 〈ai −[p] aj〉:
• order action before threatened link:

• if (at=ai) or (aj≺at) then not a resolver
else adding (at≺ai) is a resolver

• order threatened link before action:
• if (at=ai) or (at≺ai) then not a resolver

else adding (aj≺at) is a resolver
• extend variable bindings such that unification fails:

• for every variable v in p or q
if v≠σ(v) is consistent with B then

adding v≠σ(v) is a resolver

Implementing flaw.getResolvers(plan)
•for effect q of action at threatening 〈ai −[p] aj〉:

•order action before threatened link:
•if (at=ai) or (aj≺at) then not a resolver
•else adding (at≺ai) is a resolver

•order threatened link before action:
•if (at=ai) or (at≺ai) then not a resolver
•else adding (aj≺at) is a resolver

•extend variable bindings such that unification fails:
•for every variable v in p or q
•if v≠σ(v) is consistent with B then
adding v≠σ(v) is a resolver

33

Plan-Space Search 33

Implementing
plan.refine(resolver)

refines partial plan with elements in resolver by
adding:
• an ordering constraint;
• one or more binding constraints;
• a causal link; and/or
• a new action.

no testing required
must update flaws:
• unachieved preconditions (see: plan.openGoals())
• threats (see: plan.threats())

Implementing plan.refine(resolver)
•refines partial plan with elements in resolver by adding:

•an ordering constraint;
•one or more binding constraints;
•a causal link; and/or
•a new action.

•no testing required
•all testing already done in flaw.getResolvers(plan)

•must update flaws:
•unachieved preconditions (see: plan.openGoals())
•threats (see: plan.threats())

34

Plan-Space Search 34

Maintaining Ordering
Constraints

required operations:
• query whether (ai≺aj)
• adding (ai≺aj)

possible internal representations:
• maintain set of predecessors/successors for

each action as given
• maintain only direct predecessors/successors

for each action
• maintain transitive closure of ≺ relation

Maintaining Ordering Constraints
•required operations:

•query whether (ai≺aj)
•adding (ai≺aj)

•without consistency testing
•possible internal representations:

•maintain set of predecessors/successors for each
action as given
•maintain only direct predecessors/successors for each
action
•maintain transitive closure of ≺ relation
•operations have different time and space complexity

•note: query performed more often than addition

35

Plan-Space Search 35

Maintaining Variable Binding
Constraints

types of constraints:
• unary constraints: x ∈ Dx

• equality constraints: x = y
• inequalities: x ≠ y

note: general CSP problem is NP-
complete

Maintaining Variable Binding Constraints
•types of constraints:

•unary constraints: x ∈ Dx

•equality constraints: x = y
•unary and equality constraints can be solved in linear
time

•inequalities: x ≠ y
•inequalities give rise to general CSP problem

•note: general CSP problem is NP-complete

36

Plan-Space Search 36

PSP: Data Flow
plan = (A,≺,B,L)

compute open goalscompute threats

has flaw? select flaw

compute resolvers

has resolver? choose resolver

maintain
ordering

constraints

maintain
binding

constraints

apply resolversreturn failure

return plan

π0

PSP: Data Flow
•deterministic step: selecting a a flaw

•no backtracking required
•selection important for efficiency
•heuristic guidance required

•non-deterministic step: choosing a resolver for a flaw
•implemented as backtracking

•order in which resolvers are tried important for
efficiency
•heuristic guidance required

•note: admissible heuristics (A*) must have step cost greater than
zero

37

Plan-Space Search 37

PSP: Sound and Complete

Proposition: The PSP procedure is
sound and complete: whenever π0 can
be refined into a solution plan, PSP(π0)
returns such a plan.
Proof:
• soundness: ≺ and B are consistent at every

stage of the refinement
• completeness: induction on the number of

actions in the solution plan

PSP: Sound and Complete
•Proposition: The PSP procedure is sound and complete:
whenever π0 can be refined into a solution plan, PSP(π0)
returns such a plan.
•Proof:

•soundness: ≺ and B are consistent at every stage of the
refinement
•completeness: induction on the number of actions in
the solution plan

•note: non-deterministic version is complete,
deterministic implementation must avoid infinite
branches

38

Plan-Space Search 38

PSP Implementation: PoP

extended input:
• partial plan (as before)
• agenda: set of pairs (a,p) where a is an action

an p is one of its preconditions

search control by flaw type
• unachieved sub-goal (on agenda): as before
• threats: resolved as part of the successor

generation process

PSP Implementation: PoP
•based on UCPOP
•extended input:

•partial plan (as before)
•agenda: set of pairs (a,p) where a is an action an p is
one of its preconditions
•initial agenda: one pair for each precondition of the goal
step

•search control by flaw type
•unachieved sub-goal (on agenda): as before
•threats: resolved as part of the successor generation
process

39

Plan-Space Search 39

PoP: Pseudo Code (1)
function PoP(plan, agenda)

if agenda.empty() then return plan
(ag,pg) agenda.selectOne()
agenda agenda - (ag,pg)
relevant plan.getProviders(pg)
if relevant.empty() then return failure
(ap,pp,σ) relevant.chooseOne()
plan.L plan.L ∪ 〈ap −[p] ag〉
plan.B plan.B ∪ σ

PoP: Pseudo Code (1)
•function PoP(plan, agenda)
•if agenda.empty() then return plan
•(ag,pg) agenda.selectOne()

•deterministic choice point
•agenda agenda - (ag,pg)
•relevant plan.getProviders(pg)

•finds all actions
•either from within the plan or
•from new instances of an operator

•that have an effect that unifies with condition
•if relevant.empty() then return failure
•(ap,pp,σ) relevant.chooseOne()

•non-deterministic choice point
•plan.L plan.L ∪ 〈ap −[p] ag〉
•plan.B plan.B ∪ σ

•must succeed for elements of relevant

40

Plan-Space Search 40

PoP: Pseudo Code (2)
if ap ∉ plan.A then

plan.add(ap)
agenda agenda + ap.preconditions

newPlan plan
for each threat on 〈ap −[p] ag〉 or due to ap do

allResolvers threat.getResolvers(newPlan)
if allResolvers.empty() then return failure
resolver allResolvers.chooseOne()
newPlan newPlan.refine(resolver)

return PSP(newPlan,agenda)

PoP: Pseudo Code (2)
•if ap ∉ plan.A then

•if the action is new and needs to be added to the plan
•plan.add(ap)

•involves updating set of actions and ordering constraints
•agenda agenda + ap.preconditions

•all preconditions of the new action are new sub-goals
•newPlan plan
•for each threat on 〈ap −[p] ag〉 or due to ap do

•note: two sources of threats are treated identically
•allResolvers threat.getResolvers(newPlan)
•if allResolvers.empty() then return failure
•resolver allResolvers.chooseOne()

•second non-deterministic choice point
•newPlan newPlan.refine(resolver)

•note: loop does not add to agenda
•return PSP(newPlan,agenda)

41

Plan-Space Search 41

State-Space vs. Plan-Space
Planning

state-space planning
• finite search space
• explicit representation of

intermediate states
• action ordering reflects

control strategy
• causal structure only

implicit
• search nodes relatively

simple and successors
easy to compute

plan-space planning
• finite search space
• no intermediate states
• choice of actions and

organization
independent

• explicit representation of
rationale

• search nodes are
complex and successors
expensive to compute

State-Space vs. Plan-Space Planning
•state-space planning vs. plan-space planning

•finite search space vs. finite search space
•important: portion of search space explored/generated

•explicit representation of intermediate states vs. no
intermediate states

•explicit representation allows for efficient domain
specific heuristics and control knowledge

•action ordering reflects control strategy vs. choice of
actions and organization independent
•causal structure only implicit vs. explicit representation of
rationale

•important for plan execution
•search nodes relatively simple and successors easy to
compute vs. search nodes are complex and successors
expensive to compute

42

Plan-Space Search 42

Using Partial-Order Plans: Main
Advantages

more flexible during execution
using constraint managers facilitates
extensions such as:
• temporal constraints
• resource constraints

distributed and multi-agent planning fit
naturally into the framework

Using Partial-Order Plans: Main Advantages
•more flexible during execution

•saved rationale facilitates execution monitoring and re-
planning

•using constraint managers facilitates extensions such as:
•temporal constraints
•resource constraints

•both very important for realistic planning
•distributed and multi-agent planning fit naturally into the
framework

43

Plan-Space Search 43

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

Overview
The Search Space of Partial Plans

•Plan-Space Search Algorithms
•just done: an algorithm that performs the search through the
space of partial plans

•Extensions of the STRIPS Representation
•now: extensions to the restricted STRIPS representation
and approaches to deal with them

44

Plan-Space Search 44

Existential Quantification in
Goals

allow existentially quantified conjunction
of literals as goal:
• g = ∃x1,…,xn: l1 ⋀ … ⋀ lm

rewrite into equivalent planning problem:
• new goal g’ = {p} where p is an unused

proposition symbol
• introduce additional operator

o = (op-g(x1,…,xn),{l1,…,lm},{p})
in plan-space search: no change needed

Existential Quantification in Goals
•allow existentially quantified conjunction of literals as goal:

•g = ∃ x1,…,xn : l1 ⋀ … ⋀ lm
•but still no free variables in the goal literals

•rewrite into equivalent planning problem:
•new goal g’ = {p} where p is an unused proposition
symbol
•introduce additional operator o = (op-
g(x1,…,xn),{l1,…,lm},{p})

•solution plans will be one step longer, with last step
being an instantiation of op-g

•no increase in expressive power (can rewrite every problem), but
sometimes makes representation appear more natural
•in plan-space search: no change needed

•partial plans do not require all variables to be instantiated

45

Plan-Space Search 45

DWR Example: Existential
Quantification in Goals

goal: ∃x,y: on(x,c1) ⋀ on(y,c2)

rewritten goal: p
new operator:
o = (op-g(x,y),{on(x,c1),on(y,c2)},{p})

plan-space search goal:
on(x,c1) ⋀ on(y,c2)

Example: Existential Quantification in Goals
•goal: ∃x,y: on(x,c1) ⋀ on(y,c2)
•rewritten goal: p
•new operator: o = (op-g(x,y),{on(x,c1),on(y,c2)},{p})
•plan-space search goal: on(x,c1) ⋀ on(y,c2)

•variables in goals are implicitly existentially quantified

46

Plan-Space Search 46

Typed Variables

allow typed variables in operators:
• name(o) = n(x1:t1,…,xk:tk) where ti is the type

of variable xi

rewrite into equivalent planning problem:
• add preconditions {t1(x1),…,tk(xk)} to o
• if constant ci is of type tj, add rigid relation tj(ci)

to the initial state
• remove types from operator names

Typed Variables
•allow typed variables in operators:

•name(o) = n(x1:t1,…,xk:tk) where ti is the type of
variable xi

•types usually given with problem specification
•exact syntax for typing not important

•rewrite into equivalent planning problem:
•add preconditions {t1(x1),…,tk(xk)} to o

•types are unary predicates here
•if constant ci is of type tj, add tj(ci) to the initial state
•remove types from operator names

•similarly: typed relations
•advantages: readability, reduced number of actions (operator
instances)

47

Plan-Space Search 47

DWR Example: Typed Variables

operator: move(r:robot,l:location,m:location)
• precond: adjacent(l,m), at(r,l), ¬occupied(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

rewritten operator:move(r,l,m)
• precond: adjacent(l,m), at(r,l), ¬occupied(m), robot(r),

loaction(l), location(m)
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

rewritten initial state:
• si ∪ {robot(r1),container(c1),container(c2),…}

DWR Example: Typed Variables
•operator: move(r:robot,l:location,m:location)

•precond: adjacent(l,m), at(r,l), ¬occupied(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•rewritten operator:move(r,l,m)
•precond: adjacent(l,m), at(r,l), ¬occupied(m), robot(r),
loaction(l), location(m)
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•rewritten initial state:
•si ∪ {robot(r1),container(c1),container(c2),…}

•note: dealing with typed variables directly in the planner is far more
efficient

48

Plan-Space Search 48

Conditional Operators
conditional planning operators:
• o = (n,(precond0,effects0),…,(precondn,effectsn))

where:
• n = o(x1,…,xn) as before,
• (precond0,effects0) are the unconditional preconditions

and effects of the operator, and
• (precondi,effectsi) for i≥1 are the conditional

preconditions and effects of the operator.
• a ground instance a of o is applicable in state s if s

satisfies precond0• let I={i∈[0,n] | s satisfies precondi(a)}; then:
• γ(s,a)=(s - ∪(i∈I)effects-(a)) ∪ (∪(i∈I)effects+(a))

Conditional Operators
•conditional planning operators:

•o = (n,(precond0,effects0),…,(precondn,effectsn)) where:
•n = o(x1,…,xn) as before,
•(precond0,effects0) are the unconditional
preconditions and effects of the operator, and

•not strictly necessary, could be added to every
conditional pair

•(precondi,effectsi) for i≥1 are the conditional
preconditions and effects of the operator.

•a ground instance a of o is applicable in state s if s
satisfies precond0

•let I={i∈[0,n] | s satisfies precondi(a)}; then:
•γ(s,a)=(s - ∪(i∈I)effects-(a)) ∪ (∪(i∈I)effects+(a))

49

Plan-Space Search 49

DWR Example: Conditional
Operators

relation at(o,l): object o is at location l
conditional move operator:
move(r,l,m,c)
• precond0: adjacent(l,m), at(r,l), ¬occupied(m)
• effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
• precond1: loaded(r,c)
• effects1: at(c,m), ¬at(c,l)

DWR Example: Conditional Operators
•relation at(o,l): object o is at location l

•at previously only used for location of robot
•conditional move operator:
move(r,l,m,c)

•new parameter c, the potentially loaded container
•precond0: adjacent(l,m), at(r,l), ¬occupied(m)
•effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

•as before
•precond1: loaded(r,c)
•effects1: at(c,m), ¬at(c,l)

•if the container is loaded it will move with the robot

50

Plan-Space Search 50

Extending PoP to handle
Conditional Operators

modifying plan.getProviders(pg):
• new action with matching conditional effect
• add precondition of conditional effect to

agenda
managing conditional threats:
• new alternative resolver: add negated

precondition of threatening conditional
effect to agenda

Extending PoP to handle Conditional Operators
•modifying plan.getProviders(pg):

•new action with matching conditional effect
•add precondition of conditional effect to agenda

•along with unconditional preconditions
•managing conditional threats:

•when the threatening effect is a conditional effect
•new alternative resolver: add negated precondition
of threatening conditional effect to agenda

•other alternatives: ordering and binding constraints

51

Plan-Space Search 51

Quantified Expressions

allow universally quantified variables in
conditional preconditions and effects:
• for-all x1,…,xn: (precondi,effectsi)

a is applicable in state s if s satisfies precond0

Let ϭ be a substitution for x1,…,xn such that
ϭ(precondi(a)) and ϭ(effectsi(a)) are ground.
• If s satisfies ϭ(precondi(a)) then
• ϭ(effectsi(a)) are effects of the action.

Quantified Expressions
•allow universally quantified variables in conditional
preconditions and effects:

•for-all x1,…,xn: (precondi,effectsi)
•a is applicable in state s if s satisfies precond0

•applicability depends only on unconditional preconditions
•Let ϭ be a substitution for x1,…,xn such that ϭ(precondi(a))
and ϭ(effectsi(a)) are ground.

•If s satisfies ϭ(precondi(a)) then
•ϭ(effectsi(a)) are effects of the action.
•conditional effect occurs for all possible substitutions where
the state satisfies the conditional preconditions

•note: cannot use binding constraints to resolve conditional
threats here

52

Plan-Space Search 52

DWR Example: Quantified
Expressions

extension: robots can carry multiple
containers
extended move operator:
move(r,l,m)
• precond0: adjacent(l,m), at(r,l), ¬occupied(m)
• effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
• for-all x:

• precond1: loaded(r,x)
• effects1: at(x,m), ¬at(x,l))

DWR Example: Quantified Expressions
•extension: robots can carry multiple containers
•extended move operator: move(r,l,m)

•container is no longer a parameter
•precond0: adjacent(l,m), at(r,l), ¬occupied(m)
•effects0: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)
•for-all x: (the containers)

•precond1: loaded(r,x)
•effects1: at(x,m), ¬at(x,l))

53

Plan-Space Search 53

Disjunctive Preconditions

allow alternatives (disjunctions) in
preconditions:
• precond = precond1 ⋁…⋁ precondn

• a is applicable in state s if s satisfies at least one of
precond1 … precondn

• effects remain unchanged

rewrite:
• replace operator with n disjunctive preconditions by n

operators with precondi as precondition

Disjunctive Preconditions
•allow alternatives (disjunctions) in preconditions:

•precond = precond1 ⋁…⋁ precondn

•a is applicable in state s if s satisfies at least one of
precond1 … precondn

•effects remain unchanged
•rewrite:

•replace operator with n disjunctive preconditions by n
operators with precondi as precondition
•leads to exponentially larger search space; more efficiently
handled in the planner

54

Plan-Space Search 54

DWR Example: Disjunctive
Preconditions

robot can move between locations if
there is a road between them or the
robot has all-wheel drive
extended move operator:
move(r,l,m)
• precond: (road(l,m), at(r,l), ¬occupied(m)) ⋁

(all-wheel-drive(r), at(r,l), ¬occupied(m))
• effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

DWR Example: Disjunctive Preconditions
•robot can move between locations if there is a road between
them or the robot has all-wheel drive
•extended move operator:
move(r,l,m)

•precond: (road(l,m), at(r,l), ¬occupied(m)) ⋁ (all-wheel-
drive(r), at(r,l), ¬occupied(m))

•more complex formulae can be transformed into DNF
•effects: at(r,m), occupied(m), ¬occupied(l), ¬at(r,l)

55

Plan-Space Search 55

Axiomatic Inference: Static
Case

axioms over rigid relations:
• example:

∀l1,l2: adjacent(l1,l2) ↔ adjacent(l2,l1)

state-specific axioms:
• example:

∀c: container(c) ↔ at(c,loc1) holds in si

approach: pre-compute

Axiomatic Inference: Static Case
•idea: represent knowledge that is not explicit in the state of the
world; derived knowledge
•axioms over rigid relations:

•example: ∀l1,l2: adjacent(l1,l2) ↔ adjacent(l2,l1)
•adjacent is a symmetric relationship

•state-specific axioms:
•example: ∀c: container(c) ↔ at(c,loc1) holds in si

•in the initial state, all containers are at location loc1
•approach: pre-compute

•rigid relations: cannot appear in effects, truth value does not
change from state to state; hence, can be pre-computed
•state-specific axioms: expansion into ground atoms possible
because of finite domains

•same technique for quantified effects

56

Plan-Space Search 56

Axiomatic Inference: Dynamic
Case

axioms over flexible relations:
• example: ∀k,x: ¬holding(k,x) ↔ empty(k)
• approach:

• divide relations into primary and secondary where
secondary relations do not appear in effects

• transform axioms into implications where primary
relations must not appear in right-hand side

• example:
• primary: holding / secondary: empty
• ∀k ¬∃x: holding(k,x) → empty(k)
• ∀k ∃x: holding(k,x) → ¬empty(k)

Axiomatic Inference: Dynamic Case
•axioms over flexible relations:

•example: ∀k,x: ¬holding(k,x) ↔ empty(k)
•a crane is empty iff it is not holding anything

•approach:
•divide relations into primary and secondary where
secondary relations do not appear in effects

•primary relations may appear in preconditions and
effects, secondary relations only in preconditions

•transform axioms into implications where primary
relations must not appear in right-hand side

•truth value of secondary relations depends on
primary relations which are modified by operators

•example:
•primary: holding / secondary: empty

•must remove empty-relation from effects of all
operators

•∀k ¬∃x: holding(k,x) → empty(k)
•∀k ∃x: holding(k,x) → ¬empty(k)

57

Plan-Space Search 57

Extended Goals

not part of classical planning formalisms
some problems can be translated into
equivalent classical problems, e.g.
• states to be avoided: add corresponding

preconditions to operators
• states to be visited twice: introduce visited

relation and maintain in operators
• constraints on solution length: introduce count

relation that is increased with each step

Extended Goals
•not part of classical planning formalisms
•some problems can be translated into equivalent classical
problems, e.g.

•states to be avoided: add corresponding preconditions
to operators
•states to be visited twice: introduce visited relation and
maintain in operators
•constraints on solution length: introduce count relation
that is increased with each step

•requires function symbols and integer arithmetic
(attached procedures)

58

Plan-Space Search 58

Other Extensions

Function Symbols
• infinite domains, undecidable in general

Attached Procedures
• evaluate relations using special code rather

than general inference
• efficiency may be necessary in real-world domains
• variables must usually be bound to evaluate

relations
• semantics of such relations

Other Extensions
•Function Symbols

•infinite domains, undecidable in general
•expansion into ground atoms no longer possible,
reasoning within one state is undecidable

•Attached Procedures
•evaluate relations using special code rather than
general inference

•efficiency may be necessary in real-world domains
•example: numeric computations

•variables must usually be bound to evaluate
relations

•difficult with least commitment approach taken by
many planners

•semantics of such relations

59

Plan-Space Search 59

Overview

The Search Space of Partial Plans
Plan-Space Search Algorithms
Extensions of the STRIPS
Representation

Overview
The Search Space of Partial Plans

•Plan-Space Search Algorithms
•Extensions of the STRIPS Representation

•just done: extensions to the restricted STRIPS
representation and approaches to deal with them

