Planning to perform tasks rather than to achieve goals

Literature

- Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning – Theory and Practice, chapter 11. Elsevier/Morgan Kaufmann, 2004.
- E. Sacerdoti. The nonlinear nature of plans. In: *Proc. IJCAI*, pages 206-214, 1975.
- A. Tate. Generating project networks. In: *Proc. IJCAI*, pages 888-893, 1977.

HTN Planning

- HTN planning:
 - objective: perform a given set of tasks
- input includes:
 - set of operators
 - set of methods: recipes for decomposing a complex task into more primitive subtasks
- planning process:
 - decompose non-primitive tasks recursively until primitive tasks are reached

Hierarchical Task Networks

3

Hierarchical Task Networks

STN Planning

- STN: Simple Task Network
- what remains:
 - terms, literals, operators, actions, state transition function, plans
- what's new:
 - tasks to be performed
 - methods describing ways in which tasks can be performed
 - organized collections of tasks called task networks

Hierarchical Task Networks

Hierarchical Task Networks

6

- task symbols: T_S = {t₁,...,t_n}
 operator names ⊊ T_S: primitive tasks

 - non-primitive task symbols: T_S operator names
- <u>task</u>: $t_i(r_1, \ldots, r_k)$
 - *t_i*: task symbol (primitive or non-primitive)
 - r_1, \ldots, r_k : terms, objects manipulated by the task
 - ground task: are ground
- action a <u>accomplishes</u> ground primitive task
 - $t_i(r_1, \dots, r_k)$ in state s iff
 - name(a) = t_i and
 - a is applicable in s

4

Totally Ordered STNs

- ordering: t_u≺t_v in w=(U,E) iff there is a path from t_u to t_v
- STN *w* is totally ordered iff *E* defines a total order on *U*
 - *w* is a sequence of tasks: $\langle t_1, \ldots, t_n \rangle$
- Let $w = \langle t_1, ..., t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $\pi(w) = \langle a_1, \dots, a_n \rangle$ where $a_i = t_i$; $1 \le i \le n$

Hierarchical Task Networks

STNS: DWR Example • tasks: • $t_1 = take(crane, loc, c1, c2, p1): primitive, ground$ $• <math>t_2 = take(crane, loc, c2, c3, p1): primitive, ground$ $• <math>t_3 = move-stack(p1,q): non-primitive, unground$ • task networks: • $w_1 = (\{t_1, t_2, t_3\}, \{(t_1, t_2), (t_1, t_3)\})$ • partially ordered, non-primitive, unground • $w_2 = (\{t_1, t_2\}, \{(t_1, t_2)\})$ • totally ordered: $w_2 = \langle t_1, t_2 \rangle$, ground, primitive • $\pi(w_2) = \langle take(crane, loc, c1, c2, p1), take(crane, loc, c2, c3, p1) \rangle$

Hierarchical Task Networks

10

STN Methods

- Let M_S be a set of method symbols. An <u>STN method</u> is a 4-tuple m=(name(m),task(m),precond(m),network(m)) where:
 - name(*m*):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - *n*∈*M_S*: unique method symbol
 - x_1, \dots, x_k : all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - precond(*m*): set of literals called the method's preconditions;
 - network(m): task network (U,E) containing the set of subtasks U of m.

Hierarchical Task Networks

11

STN Solutions

- A plan π = (a₁,...,a_n) is a solution for an STN planning problem *P*=(s_i, w_i, O, M) if:
 - w_i is empty and π is empty;
 - or:
 - there is a primitive task $t \in w_i$ that has no predecessors in w_i and
 - $a_1 = t$ is applicable in s_i and
 - $\pi' = \langle a_2, \dots, a_n \rangle$ is a solution for $\mathcal{P}' = (\gamma(s_i, a_1), w_i \{t\}, O, M)$
 - or:
 - there is a non-primitive task *t*∈*w_i* that has no predecessors in *w_i* and
 - *m*∈*M* is relevant for *t*, i.e. σ(*t*) = task(*m*) and applicable in *s_i* and

21

22

• π is a solution for $\mathcal{P}'=(s_i, \delta(w_i, t, m, \sigma), O, M)$.

Hierarchical Task Networks

Decomposition Tree: DWR Example move-stack(p1,q) recursive-move(p1,p2 c1.c2 move-topmost(p1,p2) move-stack(p1,p2) take-and-put(recursive-move(p1,p2,c2,c3) move-stack(p1,p2) take(crane,loc,c1,c2,p1) put(crane,loc,c1,pallet,p2) move-topmost(p1,p2) take-and-put(recursive-move(p1,p2,c3,pallet) take(crane,loc,c2,c3,p1) put(crane,loc,c2,c1,p2) move-topmost(p1,p2) move-stack(p1,p2) no-move(p1,p2) take-and-put(...) $\langle \rangle$ put(crane,loc,c3,c2,p2) take(crane,loc,c3,pallet,p1)

Hierarchical Task Networks

Ground-TFD: Pseudo Code

Hierarchical Task Networks

Ground-PFD: Pseudo Code

function Ground-PFD(s,w,O,M) if w.U={} return $\langle \rangle$ $task \leftarrow \{t \in U \mid t \text{ has no predecessors in } w.E\}.chooseOne()$ if task.isPrimitive() then $actions = \{(a,\sigma) \mid a = \sigma(t_1) \text{ and } a \text{ applicable in } s\}$ if actions.isEmpty() then return failure $(a,\sigma) = actions.chooseOne()$ $plan \leftarrow Ground-PFD(\gamma(s,a),\sigma(w-\{task\}),O,M)$ if plan = failure then return failure else return $\langle a \rangle \bullet plan$ else $methods = \{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}$ if methods.isEmpty() then return failure $(m,\sigma) = methods.chooseOne()$ return Ground-PFD($s, \delta(w,task,m,\sigma),O,M$)

Hierarchical Task Networks

- A <u>(hierarchical) task network</u> is a pair *w*=(*U*,*C*), where:
 - U is a set of tasks and
 - *C* is a set of constraints of the following types:
 - t₁≺t₂: precedence constraint between tasks satisfied if in every solution π: last({t},π) ≺ first({t},π);
 - before(U',I): satisfied if in every solution π: literal I holds in the state just before first(U',π);
 - after(U',I): satisfied if in every solution π: literal I holds in the state just after last(U',π);
 - between(U',U",I): satisfied if in every solution π: literal I holds in every state after last(U',π) and before first(U",π).

29

Hierarchical Task Networks

HTN Decomposition

 Let w=(U,C) be a task network, t∈U a task, and m a method such that σ(task(m))=t. Then the decomposition of t in w using m under σ is defined as:

 $\delta(w,t,m,\sigma) = ((U - \{t\}) \cup \sigma(\text{subtasks}(m)), C' \cup \sigma(\text{constr}(m)))$

where C' is modified from C as follows:

- for every precedence constraint in C that contains t, replace it with precedence constraints containing σ(subtasks(m)) instead of t; and
- for every before-, after-, or between constraint over tasks U' containing t, replace U' with (U'-{t})υσ(subtasks(m)).

Hierarchical Task Networks

33

Hierarchical Task Networks

- Let w = (U,C) be a non-primitive HTN. A plan π = ⟨a₁,...,a_n⟩ is a solution for *P*=(s_i,w,O,M) if there is a sequence of task decompositions that can be applied to w such that:
 - the result of the decompositions is a primitive HTN *w*'; and
 - π is a solution for $\mathcal{P}'=(s_i, w', O, M)$.

Abstract-HTN: Pseudo Code function Abstract-HTN(*s*,*U*,*C*,*O*,*M*) if (*U*,*C*).isInconsistent() then return failure if *U*.isPrimitive() then return extractSolution(*s*,*U*,*C*,*O*) else return decomposeTask(*s*,*U*,*C*,*O*,*M*)

Hierarchical Task Networks

38

Functions in Terms

- allow function terms in world state and method constraints
- ground versions of all planning algorithms may fail
 - potentially infinite number of ground instances of a given term
- lifted algorithms can be applied with most general unifier
 - least commitment approach instantiates only as far as necessary
 - plan-existence may not be decidable

Hierarchical Task Networks

43

DWR Example: State-Variable State Descriptions

- simplified: no cranes, no piles
- state-variable functions:
 - rloc: robots× $S \rightarrow$ locations
 - rolad: robots×S→containers ∪ {nil}
 - cpos: containers× $S \rightarrow$ locations \cup robots
- sample state-variable state descriptions:
 - {rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, cpos(c2)=loc2, cpos(c3)=loc2}
 - {rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, cpos(c2)=loc2, cpos(c3)=loc2}

Hierarchical Task Networks

Operators in the State-Variable Representation
A state-variable planning operator is a triple (name(o), precond(o), effects(o)) where:

name(o) is a syntactic expression of the form

- $n(x_1,...,x_k)$ where *n* is a (unique) symbol and $x_1,...,x_k$ are all the object variables that appear in *o*,
- precond(o) are the unions of a state-variable state description and some rigid relations, and
- effects(o) are sets of expressions of the form x_s ← v_{k+1} where:
 - x_s is a ground state variable $x(v_1, \dots v_k)$ and
 - v_{k+1} is an object constant or an object variable.

Hierarchical Task Networks

52

Translation: STRIPS to State-Variable Representation

- Let P=(O,s_i,g) be a statement of a classical planning problem. In the operators O, in the initial state s_i, and in the goal g:
 - replace every positive literal p(t₁,...,t_n) with a statevariable expression p(t₁,...,t_n)=1 or p(t₁,...,t_n)←1 in the operators' effects, and
 - replace every negative literal ¬p(t₁,...,t_n) with a statevariable expression p(t₁,...,t_n)=0 or p(t₁,...,t_n)←0 in the operators' effects.

Hierarchical Task Networks

Translation: State-Variable to STRIPS Representation

- Let P=(O,s_i,g) be a statement of a statevariable planning problem. In the operators' preconditions, in the initial state s_i, and in the goal g:
 - replace every state-variable expression $p(t_1,...,t_n)=v$ with an atom $p(t_1,...,t_n,v)$, and
- in the operators' effects:
 - replace every state-variable assignment $p(t_1,...,t_n) \leftarrow v$ with a pair of literals $p(t_1,...,t_n,v)$, $\neg p(t_1,...,t_n,w)$, and add $p(t_1,...,t_n,w)$ to the respective operators preconditions.

Hierarchical Task Networks

60

Overview

- Simple Task Networks
- HTN Planning
- Extensions
- State-Variable Representation

Hierarchical Task Networks