Hierarchical Task
Networks

Planning to perform tasks
rather than to achieve goals

4 N

Literature

e Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning — Theory and
Practice, chapter 11. Elsevier/Morgan
Kaufmann, 2004.

e E. Sacerdoti. The nonlinear nature of plans.
In: Proc. IJCAI, pages 206-214, 1975.

e A. Tate. Generating project networks. In:
Proc. IJCAI, pages 888-893, 1977.

. %

Hierarchical Task Networks 2

-

HTN Planning

e HTN planning:

® objective: perform a given set of tasks
e input includes:

¢ set of operators

¢ set of methods: recipes for decomposing a complex
task into more primitive subtasks

e planning process:

¢ decompose non-primitive tasks recursively until
\ primitive tasks are reached

Hierarchical Task Networks

-

Overview

» Simple Task Networks

e HTN Planning

e Extensions

e State-Variable Representation

Hierarchical Task Networks

STN Planning

e STN: Simple Task Network

e what remains:
® terms, literals, operators, actions, state transition
function, plans
e what’s new:
® tasks to be performed

® methods describing ways in which tasks can be
performed

® organized collections of tasks called task networks

Hierarchical Task Networks

DWR Stack Moving Example

from pallet p1 to pallet p3in a

e task: move stack of containers Crane
way the preserves the order ./

p2 p3

e (informal) methods:

® move via intermediate: move stack to intermediate pile
(reversing order) and then to final destination
(reversing order again)

® move stack: repeatedly move the topmost container
until the stack is empty

® move topmost: take followed by put action

Hierarchical Task Networks

Tasks

e task symbols: T ={t,,....,t,}
® operator names & Tg: primitive tasks
¢ non-primitive task symbols: T - operator names
e task: t(ry,...,r)
® t: task symbol (primitive or non-primitive)
Al r,. terms, objects manipulated by the task
¢ ground task: are ground

e action a accomplishes ground primitive task
t(rq,....r) in state s iff
® name(a) = t;and
® ais applicablein s

Hierarchical Task Networks

Simple Task Networks

e A simple task network w is an acyclic
directed graph (U,E) in which
® the node set U = {t,,...,t } is a set of tasks and

¢ the edges in E define a partial ordering of the
tasks in U.

e A task network w is ground/primitive if all
tasks t €U are ground/primitive,
otherwise it is unground/non-primitive.

Hierarchical Task Networks

Totally Ordered STNs

e ordering: { <t in w=(U,E) iff there is a path
fromt,tof,

e STN w is totally ordered iff E defines a total
order on U
® wis a sequence of tasks: (t,,...,t)

o Letw=(t,,....t,) be a totally ordered, ground,
primitive STN. Then the plan m(w) is defined
as:

¢ m(w)=<(ay,....a,) where g;=t; 1<i<n

Hierarchical Task Networks 9

STNs: DWR Example

o tasks:
® t, = take(crane,loc,c1,c2,p1): primitive, ground
¢ t, = take(crane,loc,c2,c3,p1): primitive, ground
¢ t; = move-stack(p1,q): non-primitive, unground
e task networks:
* wy = ({t 6t} {(t,5), (8.5)))
¢ partially ordered, non-primitive, unground
* wy = ({6}, {6
® totally ordered: w, = (t,,t,), ground, primitive
* m(w,) =
(take(crane,loc,c1,c2,p1),take(crane,loc,c2,c3,p1))

Hierarchical Task Networks 10

STN Methods

e Let Mg be a set of method symbols. An STN method is a

4-tuple m=(name(m),task(m),precond(m),network(m))
where:

® name(m):
® the name of the method
¢ syntactic expression of the form n(x,
® neMg: unique method symbol
® Xy,...,X; all the variable symbols that occur in m;
¢ task(m): a non-primitive task;
® precond(m): set of literals called the method’s preconditions;

® network(m): task network (U,E) containing the set of
subtasks U of m.

Hierarchical Task Networks 11

STN Methods: DWR Example (1)

e move topmost: take followed by put
action

e take-and-put(c,k,/,p,,04X0:Xy)
¢ task: move-topmost(p,.p,)

® precond: top(c,p,), on(c,x,), attached(p,,/),
belong(k,/), attached(p,,/), top(x,.p,)

¢ subtasks: (take(k,/,c,x,,p,),put(k,/,c,x,,p4))

Hierarchical Task Networks 12

STN Methods: DWR Example (2)

e move stack: repeatedly move the topmost
container until the stack is empty

e recursive-move(p,,p,;C,X,)
® task: move-stack(p,,p,)
¢ precond: top(c,p,), on(c,x,)
® subtasks: (move-topmost(p,,p,), move-stack(p,.p,))

e no-move(p,,p,)
¢ task: move-stack(p,,py)
® precond: top(pallet,p,)
® subtasks: ()

Hierarchical Task Networks

STN Methods: DWR Example (3)

e move via intermediate: move stack to
intermediate pile (reversing order) and
then to final destination (reversing order
again)

e move-stack-twice(p,,p;,p,)

¢ task: move-ordered-stack(p,,p,)
¢ precond: -

¢ subtasks:
(move-stack(p,,p;),move-stack(p;,p,))

Hierarchical Task Networks

13

14

-

Applicability and Relevance

~

.

e A method instance m is applicable in a state s if

® precond*(m) € s and
® precond-(m)ns={}.
e A method instance m is relevant for a task t if
® there is a substitution o such that o(t) = task(m).
e The decomposition of a task t by a relevant
method m under o is
® &(t,m,o0) = o(network(m)) or
® d(t,m,0) = o((subtasks(m))) if m is totally ordered.

J

Hierarchical Task Networks

15

-

Method Applicability and
Relevance: DWR Example

~

-

[taSk t = move_stack(p1 ,q) crane
e state s (as shown)

l p2 p3

e method instance m; =
recursive-move(p1,p2,c1,c2)
® m;is applicable in s
® m;is relevant for t under o = {q—p2}

Hierarchical Task Networks

16

/Method Decomposition: DWR \
Example

e O(t,m,0) =
(move-topmost(p1,p2), move-stack(p1,p2))

‘ move-stack(p1,q) ‘

{thzm,m 2)

‘ move-topmost(p1,p2) ‘ ‘ move-stack(p1,p2) ‘

.

Hierarchical Task Networks 17

4 N

Decomposition of Tasks in STNs

o Let
® w= (U,E)beaSTN and
¢ teU be a task with no predecessors in w and
® m a method that is relevant for f under some
substitution o with network(m) = (U,,,E,,,).
e The decomposition of fin w by m under o is
the STN &(w,u,m,o) where:
® tis replaced in U by o(U,,) and

® edges in E involving t are replaced by edges to
appropriate nodes in o(U,,,).

- J

Hierarchical Task Networks 18

STN Planning Domains

e An STN planning domain is a pair
2=(0,M) where:
® Ois a set of STRIPS planning operators and
® Mis a set of STN methods.

e 2 is a total-order STN planning domain if
every meM is totally ordered.

Hierarchical Task Networks 19

STN Planning Problems

e An STN planning problem is a 4-tuple
P=(s;w;,O,M) where:

Y
® s;is the initial state (a set of ground atoms)

® w; is a task network called the initial task network and
® 2=(0O,M) is an STN planning domain.

e 2 is a total-order STN planning domain if w;
and 2 are both totally ordered.

Hierarchical Task Networks 20

10

4 N

STN Solutions

e Anplan T =(a;,...,a,) is a solution for an STN planning
problem 2=(s;w;, O,M) if:
® w;is empty and 1T is empty;
® or:
¢ there is a primitive task few, that has no predecessors in w; and
® a,=tis applicable in s; and
® 1’ =(a,,...,a,) is a solution for 2'=(y(s;a,), w-{t}, O, M)

¢ there is a non-primitive task tew; that has no predecessors in
w;and

®* meM s relevant for t, i.e. o(f) = task(m) and applicable in s;
and

\ ® mis a solution for 2'=(s,, 8(w,t,m,c), O, M). J

Hierarchical Task Networks 21

KDecomposition Tree: DWR \
Example

move-stack(p1,q)
recursive-move(p1,p&c1,c2)
N

—
| move-topmost(p1,p2) | | move-stack(p1,p2) |

take=and-put(...) resyrsive-mo 2,c2,c3)

ltake(crane,loc,c1,02,p1)Hput(crane,loc,c1,pallet,p2)l | move-topmost(p1,p2) || move-stack(p1,p2)|

take-: recursive- e(p1,p2,c3,pallet)

/ /
ltake(crane,loc,c2,03,p1)‘l put(crane,loc,c2,c1,p2) ‘ |move-topmost(p1,p2)|| move-stack(p1,p2) |

=and-put(...) no—r&e(m ,p2)

/ ¢
K ltake(crane,Ioc,cS,paIIet,p1)ll put(crane,loc,c3,c2,p2) ‘ /
22

Hierarchical Task Networks

11

Ground-TFD: Pseudo Code

function Ground-TFD(s,(t,,....t,),O,M)

if k=0 return ()

if t,.isPrimitive() then
actions = {(a,0) | a=0(t,) and a applicable in s}
if actions.isEmpty() then return failure
(a,0) = actions.chooseOne()
plan € Ground-TFD(y(s,a),0((t,,....t,)),0,M)
if plan = failure then return failure
else return (a) plan

else
methods = {(m,o) | mis relevant for o(t,) and m is applicable in s}
if methods.isEmpty() then return failure
(m,o) = methods.chooseOne()
plan & subtasks(m) « o((t,,...,t))
return Ground-TFD(s,plan,O,M)

Hierarchical Task Networks 23

TFD vs. Forward/Backward
Search

e choosing actions:

® TFD considers only applicable actions like forward
search

® TFD considers only relevant actions like backward
search

e plan generation:

® TFD generates actions execution order; current world
state always known

e lifting:
® Ground-TFD can be generalized to Lifted-TFD

resulting in same advantages as lifted backward
search

Hierarchical Task Networks 24

12

-

Ground-PFD: Pseudo Code

~

function Ground-PFD(s,w,O,M)
if w.U={} return ()
fask € {teU | t has no predecessors in w.E}.chooseOne()
if task.isPrimitive() then
actions = {(a,0) | a=0(t,) and a applicable in s}
if actions.isEmpty() then return failure
(a,0) = actions.chooseOne()
plan € Ground-PFD(y(s,a),o(w-{task}),O,M)
if plan = failure then return failure
else return (a) plan
else
methods = {(m,o) | mis relevant for o(t,) and m is applicable in s}
if methods.isEmpty() then return failure
(m,o) = methods.chooseOne()

\ return Ground-PFD(s, &(w,task,m,c),0,M)

J

Hierarchical Task Networks

25

-

Overview

~

e Simple Task Networks

» HTN Planning

e Extensions

e State-Variable Representation

Hierarchical Task Networks

26

13

Preconditions in STN Planning

e STN planning constraints:
¢ ordering constraints: maintained in network
¢ preconditions:
¢ enforced by planning procedure

® must know state to test for applicability
® must perform forward search

e HTN Planning

¢ additional bookkeeping maintains general
constraints explicitly

Hierarchical Task Networks

First and Last Network Nodes

o Let
® m={(ay,...,a,) be a solution for w,
® U’cU be a set of tasks in w, and
® A(U’) the subset of actions in 7 such that each
aEcA(U’) is a descendant of some teU’ in the
decomposition tree.
e Then we define:
¢ first(U’,mr) = the action acA(U’) that occurs first in ;
and
¢ last(U’,mm) = the action acA(U’) that occurs last in 1.

Hierarchical Task Networks

27

28

14

Hierarchical Task Networks

e A (hierarchical) task network is a pair w=(U,C),
where:
® Uis a set of tasks and

® Cis a set of constraints of the following types:

® t,<t,: precedence constraint between tasks
satisfied if in every solution : last({},) < first({f},m);

® before(U’,/): satisfied if in every solution : literal / holds
in the state just before first(U’,m);

¢ after(U’,/): satisfied if in every solution m: literal / holds in
the state just after last(U’,m);

® between(U’,U”,/): satisfied if in every solution 7: literal /
holds in every state after last(U’,11) and before first(U”,).

Hierarchical Task Networks 29

HTN Methods

e Let M be a set of method symbols. An HTN
method is a 4-tuple
m=(name(m),task(m),subtasks(m),constr(m))
where:

® name(m):
¢ the name of the method
¢ syntactic expression of the form n(x;,...,x,)

® neMg: unique method symbol
® Xy,...,X,: all the variable symbols that occur in m;

® task(m): a non-primitive task;
® (subtasks(m),constr(m)): a task network.

Hierarchical Task Networks 30

15

HTN Methods: DWR Example (1)

e move topmost: take followed by put
action

e take-and-put(c,k,/,p,,04X 5 Xy)
¢ task: move-topmost(p,.p,)

® network:
® subtasks: {t,=take(k./,c,x,,p,), t,=put(k,/,c,x,,p,)}
® constraints: {t,<t,, before({t,}, top(c,p,)),
before({t,}, on(c,x,)), before({t,}, attached(p,,/)),
before({t,}, belong(k,/)), before({t,}, attached(p,./)),
before({t,}, top(x,p,)}

Hierarchical Task Networks

HTN Methods: DWR Example (2)

e move stack: repeatedly move the topmost container
until the stack is empty

e recursive-move(p,,p4C,X,)
® task: move-stack(p,.p,)
® network:
® subtasks: {t,=move-topmost(p,,p,), t,=move-stack(p,.p4)}
® constraints: {t,<t,, before({t,}, top(c,p,)), before({t,}, on(c,x,))}
e move-one(p,,P,,C)
® task: move-stack(p,.p,)
® network:
® subtasks: {t,=move-topmost(p,,p,)}
® constraints: {before({t,}, top(c,p,)), before({t,}, on(c,pallet))}

Hierarchical Task Networks

31

32

16

HTN Decomposition

e Let w=(U,C) be a task network, teU a task, and m a
method such that o(task(m))=t. Then the decomposition
of tin w using m under o is defined as:

o(w,t,m,o0) = ((U-{t})uc(subtasks(m)), C'uc(constr(m)))

where C’is modified from C as follows:

¢ for every precedence constraint in C that contains t, replace
it with precedence constraints containing a(subtasks(m))
instead of t; and

¢ for every before-, after-, or between constraint over tasks U’
containing t, replace U’ with (U-{f})ua(subtasks(m)).

Hierarchical Task Networks

HTN Decomposition: Example

e network: w = ({t,= move-stack(p1,q9)}, {})

o O(w, t,, recursive-move(p,,p4C.X,), {P,—pP1.py—q}) = w’ =
® ({t,=move-topmost(p1,q), t;=move-stack(p1,q)},
® {t,<t;, before({t,}, top(c,p1)), before({t,}, on(c,x,))})

o J(wW/, t,, take-and-put(c,k./,0,,P 4 X5 Xg): PP 1.05—Gq}) =
® ({t;=move-stack(p1,q), {,=take(k,/,c,x,,p1), ts=put(k./,c,x,,q)},
® {t,<t;, t:<t;, before({t,,ts}, top(c,p1)), before({,,t}, on(c,x,))} U
{t,<ts, before({t,}, top(c,p1)), before({t,}, on(c,x,)), before({t,},
attached(p1,/)), before({t,}, belong(k.l)), before({ts},
attached(q,/)), before({ts}, top(x4;q))})

Hierarchical Task Networks

33

34

17

HTN Planning Domains and
Problems

e An HTN planning domain is a pair 2=(O,M)
where:

O is a set of STRIPS planning operators and
M is a set of HTN methods.

e An HTN planning problem is a 4-tuple
P=(s;w;,0,M) where:

s; is the initial state (a set of ground atoms)
w; is a task network called the initial task network and
2=(0,M) is an HTN planning domain.

Hierarchical Task Networks 35

Solutions for Primitive HTNs

o Let (tU C% be a primitive HTN. A plan m = (a,,...,a,)is a
solution for 2=(s,,(U,C),O,M) if there is a ground instance

(o(U),0(C)) of (U C) and a total ordering (t,,...,t,) of tasks in
o(U) such that:

¢ for i=1...n: name(a;) =

1T is executable in s, i. e y(s,-,n) is defined;

the ordering of <t1,...,tn> respects the ordering constraints in
o(C);

for every constraint before(U’,/) in o(C) where t,=first(U’,mm): |
must hold in y(s; (@,...,a,1));

for every constralnt after(U /) in o(C) where t,=last(U’,m): I must
hold in y(s; (ay,...

for every constramt between(U U”,l) in o(C) where t,=first(U’,T)
and t,=last(U”,m): I must hold in every state y(s;, (a;,...,a)),
Jelk...m-1}.

Hierarchical Task Networks 36

18

Solutions for Non-Primitive
HTNs

o Let w= (U,C) be a non-primitive HTN. A
plan = (a,,...,a,) is a solution for
7=(s;,w,0,M) if there is a sequence of
task decompositions that can be applied
to w such that:

¢ the result of the decompositions is a primitive
HTN w’; and

® mris a solution for 2'=(s,w’,O,M).

Hierarchical Task Networks 37

Abstract-HTN: Pseudo Code

function Abstract-HTN(s,U,C,O,M)
If (U,C).isInconsistent() then return failure
iIf U.isPrimitive() then
return extractSolution(s,U,C,0)
else
return decomposeTask(s,U,C,O,M)

Hierarchical Task Networks 38

19

extractSolution: Pseudo Code

function extractSolution(s,U,C,0O)
(ty,...,t,y € U.chooseSequence(C)
(@4,...,a,) €
(ty,...,t,).chooseGrounding(s,C,O)
if (a4,...,a,).satisfies(C) then
return (ay,...,a,)
return failure

Hierarchical Task Networks 39

decomposeTask: Pseudo Code

function decomposeTask(s,U,C,0O,M)
t € U.nonPrimitives().selectOne()
methods € {(m,c) | meM and o(task(m))= o(t)}
if methods.isEmpty() then return failure
(m,0) € methods.chooseOne()
(U’,C") « d((U,C),t,m,0)
(U’,C’) €« (U’,C").applyCritic()
return Abstract-HTN(s,U’,C’,O,M)

Hierarchical Task Networks 40

20

HTN vs. STRIPS Planning

e Since
® HTN is generalization of STN Planning, and
® STN problems can encode undecidable problems, but
® STRIPS cannot encode such problems:

e STN/HTN formalism is more expressive

e non-recursive STN can be translated into
equivalent STRIPS problem

® but exponentially larger in worst case

e “regular” STN is equivalent to STRIPS

Hierarchical Task Networks

Overview

e Simple Task Networks

e HTN Planning

» Extensions

e State-Variable Representation

Hierarchical Task Networks

a1

42

21

Functions in Terms

e allow function terms in world state and method
constraints

e ground versions of all planning algorithms may
fail
® potentially infinite number of ground instances of a
given term

e lifted algorithms can be applied with most
general unifier

® |east commitment approach instantiates only as far as
necessary

® plan-existence may not be decidable

Hierarchical Task Networks

Axiomatic Inference

e use theorem prover to infer derived
knowledge within world states
¢ undecidability of first-order logic in general

e idea: use restricted (decidable) subset of
first-order logic: Horn clauses
¢ only positive preconditions can be derived

¢ precondition p is satisfied in state s iff p can
be provedin s

Hierarchical Task Networks

43

44

22

Attached Procedures

e associate predicates with procedures

e modify planning algorithm

¢ evaluate preconditions by

¢ calling the procedure attached to the predicate
symbol if there is such a procedure

® test against world state (set-relation, theorem
prover) otherwise

e soundness and completeness: depends
on procedures

Hierarchical Task Networks 45

High-Level Effects

e allow user to declare effects for non-
primitive methods

e aim:
¢ establish preconditions

® prune partial plans if high-level effects
threaten preconditions

e increases efficiency
e problem: semantics

Hierarchical Task Networks 46

23

Other Extensions

e other constraints
® time constraints
® resource constraints

e extended goals
¢ states to be avoided
® required intermediate states
¢ limited plan length
¢ visit states multiple times

o

Hierarchical Task Networks

a7

Overview

e Simple Task Networks

e HTN Planning

e Extensions

» State-Variable Representation

Hierarchical Task Networks

48

24

State Variables

e some relations are functions
¢ example: at(r1,loc1): relates robot r1 to location loc1 in
some state
® truth value changes from state to state
¢ will only be true for exactly one location /in each state
e idea: represent such relations using state-
variable functions mapping states into objects
¢ example: functional representation:
rloc:robotsxS—locations

Hierarchical Task Networks 49

States in the State-Variable
Representation

e Let X be a set of state-variable functions. A
k-ary state variable is an expression of the
form x(vy,...v,) where:

¢ xeXis a state-variable function and
® v;is either an object constant or an object
variable.

e A state-variable state description is a set of
expressions of the form x,;=c where:

® X, is a ground state variable x(v;,...v,) and
® cis an object constant.

Hierarchical Task Networks 50

25

/DWR Example: State-Variable \
State Descriptions

e simplified: no cranes, no piles

e state-variable functions:
® rloc: robotsxS — locations
® rolad: robotsxS—containers U {nil}
® cpos: containersxS — locations U robots

e sample state-variable state descriptions:
® {rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1,
cpos(c2)=loc2, cpos(c3)=loc2}
® {rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1,
cpos(c2)=loc2, cpos(c3)=loc2}

J

Hierarchical Task Networks 51

/Operators in the State-Variable \
Representation

e A state-variable planning operator is a triple
(name(0), precond(o), effects(o)) where:
® name(0) is a syntactic expression of the form
n(x,,...,x,) where nis a (unique) symbol and x,,...,x,
are all the object variables that appear in o,
¢ precond(o) are the unions of a state-variable state
description and some rigid relations, and
¢ effects(o) are sets of expressions of the form x v,
where:
® X, is a ground state variable x(v,,...v,) and
® v, IS @n object constant or an object variable.

N /

Hierarchical Task Networks 52

26

/ DWR Example: State-Variable \
Operators

e move(r,l,m)
¢ precond: rloc(r)=/, adjacent(/,m)
¢ effects: rloc(r)«m

e load(r,c,/)
® precond: rloc(r)=/, cpos(c)=/, rload(r)=nil
¢ effects: cpos(c)«r, rload(r)«<c

e unload(r,c,/)
® precond: rloc(r)=/, rload(r)=c

K ¢ effects: rload(r)«nil, cpos(c)«/ j

Hierarchical Task Networks 53

prpIicabiIity and State \
Transitions

e Let a be an action and s a state. Then a is
applicable in s iff:

¢ all rigid relations mentioned in precond(a) hold, and
¢ if x,=c € precond(a) then x;=c € s.

e The state transition function yfor an action a in
state s is defined as y(s.a) = {x;=c | xeX}
where:

® x,—c € effects(a) or

® xg=c € s otherwise.

o /

Hierarchical Task Networks 54

27

State-Variable Planning
Domains

e Let X be a set of state-variable functions. A
state-variable planning domain on Xis a
restricted state-transition system 2=(S,A,y) such
that:

® Sis a set of state-variable state descriptions,

® Ais a set of ground instances of some state-variable
planning operators O,

® y:SxA—S where
® y(s,a)= {x,=c | xeX and x «c < effects(a) or x;=c € s
otherwise} if a is applicable in s
® y(s,a)=undefined otherwise,
® Sis closed under y

Hierarchical Task Networks 55

State-Variable Planning
Problems

e A state-variable planning problem is a
triple 2=(,s;,9) where:
® 2=(S,A,y) is a state-variable planning domain
on some set of state-variable functions X
® seSis the initial state

® g is a set of expressions of the form x,=c
describing the goal such that the set of goal
states is: S={seS | x;=c € s}

Hierarchical Task Networks 56

28

Relevance and Regression Sets

e Let 2=(Z,s,9) be a state-variable planning
problem. An action a<A is relevant for g if
® gn effects(a) # {} and
® for every x,=c € g, there is no x,d < effects(a) such
that c*d.
e The regression set of g for a relevant action
acA is:
* y(g,a)=(g - 9(a)) u precond(a) where
® 9(a) = {x;=c | x,<c < effects(a)}
e definition for all regression sets '<(g) exactly
as for propositional case

Hierarchical Task Networks

Statement of a State-Variable
Planning Problem

e A statement of a state-variable planning

problem is a triple P=(0O,s;,g) where:

® O s a set of planning operators in an
appropriate state-variable planning domain
2=(S,A,y)on X

¢ s;is the initial state in an appropriate state-
variable planning problem 72=(Z,s;,9)

® g is a goal in the same state-variable planning

problem 2

Hierarchical Task Networks

57

58

Translation: STRIPS to State-
Variable Representation

e Let P=(0,s;g) be a statement of a classical
planning problem. In the operators O, in the
initial state s;, and in the goal g:

® replace every positive literal p(t,,...,t,) with a state-
variable expression p(t,,..., t)=1orp(t,..., t.)<1inthe
operators’ effects, and

® replace every negative literal p(t,,...,t,) with a state-
variable expression p(t,,...,t,)=0 or p(t,,...,t,)<0 in the
operators’ effects.

Hierarchical Task Networks 59

Translation: State-Variable to
STRIPS Representation

e Let P=(0,s;g) be a statement of a state-
variable planning problem. In the operators’
preconditions, in the initial state s;, and in the
goal g:

® replace every state-variable expression p(t,,...,t,)=v
with an atom p(t,,....t,,v), and

e in the operators’ effects:

® replace every state-variable assignment p(t,,...,t,)<v
with a pair of literals p(t;,...,t,,v), 7p(ty,..., t,w), and
add p(t,,...,t,,w) to the respective operators
preconditions.

Hierarchical Task Networks 60

30

Overview

e Simple Task Networks
e HTN Planning

e Extensions

e State-Variable Representation

Hierarchical Task Networks

61

31

