
1

Hierarchical Task 
Networks

Planning to perform tasks 
rather than to achieve goals

Hierarchical Task Networks 2

Literature

Malik Ghallab, Dana Nau, and Paolo 
Traverso. Automated Planning – Theory and 
Practice, chapter 11. Elsevier/Morgan 
Kaufmann, 2004.
E. Sacerdoti. The nonlinear nature of plans. 
In: Proc. IJCAI, pages 206-214, 1975.
A. Tate. Generating project networks. In: 
Proc. IJCAI, pages 888-893, 1977.



2

Hierarchical Task Networks 3

HTN Planning

HTN planning:
• objective: perform a given set of tasks

input includes:
• set of operators
• set of methods: recipes for decomposing a complex 

task into more primitive subtasks

planning process: 
• decompose non-primitive tasks recursively until 

primitive tasks are reached

Hierarchical Task Networks 4

Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation



3

Hierarchical Task Networks 5

STN Planning

STN: Simple Task Network
what remains:
• terms, literals, operators, actions, state transition 

function, plans

what’s new:
• tasks to be performed
• methods describing ways in which tasks can be 

performed
• organized collections of tasks called task networks 

Hierarchical Task Networks 6

DWR Stack Moving Example

task: move stack of containers 
from pallet p1 to pallet p3 in a 
way the preserves the order

(informal) methods:
• move via intermediate: move stack to intermediate pile 

(reversing order) and then to final destination 
(reversing order again)

• move stack: repeatedly move the topmost container 
until the stack is empty

• move topmost: take followed by put action

p1c3

crane

p2 p3

c2
c1



4

Hierarchical Task Networks 7

Tasks
task symbols: TS = {t1,…,tn}• operator names ⊊ TS: primitive tasks
• non-primitive task symbols: TS - operator names

task: ti(r1,…,rk)• ti: task symbol (primitive or non-primitive)
• r1,…,rk: terms, objects manipulated by the task
• ground task: are ground

action a accomplishes ground primitive task 
ti(r1,…,rk) in state s iff
• name(a) = ti and 
• a is applicable in s

Hierarchical Task Networks 8

Simple Task Networks

A simple task network w is an acyclic 
directed graph (U,E) in which 
• the node set U = {t1,…,tn} is a set of tasks and 
• the edges in E define a partial ordering of the 

tasks in U.

A task network w is ground/primitive if all 
tasks tu∈U are ground/primitive, 
otherwise it is unground/non-primitive.



5

Hierarchical Task Networks 9

Totally Ordered STNs

ordering: tu≺tv in w=(U,E) iff there is a path 
from tu to tv
STN w is totally ordered iff E defines a total 
order on U
• w is a sequence of tasks: 〈t1,…,tn〉

Let w = 〈t1,…,tn〉 be a totally ordered, ground, 
primitive STN. Then the plan π(w) is defined 
as:
• π(w) = 〈a1,…,an〉 where ai = ti; 1 ≤ i ≤ n

Hierarchical Task Networks 10

STNs: DWR Example
tasks:
• t1 = take(crane,loc,c1,c2,p1): primitive, ground
• t2 = take(crane,loc,c2,c3,p1): primitive, ground
• t3 = move-stack(p1,q): non-primitive, unground

task networks:
• w1 = ({t1,t2,t3}, {(t1,t2), (t1,t3)})• partially ordered, non-primitive, unground
• w2 = ({t1,t2}, {(t1,t2)})• totally ordered: w2 = 〈t1,t2〉, ground, primitive

• π(w2) = 
〈take(crane,loc,c1,c2,p1),take(crane,loc,c2,c3,p1)〉



6

Hierarchical Task Networks 11

STN Methods
Let MS be a set of method symbols. An STN method is a 
4-tuple m=(name(m),task(m),precond(m),network(m)) 
where:
• name(m): 

• the name of the method
• syntactic expression of the form n(x1,…,xk)

• n∈MS: unique method symbol
• x1,…,xk: all the variable symbols that occur in m;

• task(m): a non-primitive task;
• precond(m): set of literals called the method’s preconditions;
• network(m): task network (U,E) containing the set of 

subtasks U of m.

Hierarchical Task Networks 12

STN Methods: DWR Example (1)

move topmost: take followed by put 
action
take-and-put(c,k,l,po,pd,xo,xd)
• task: move-topmost(po,pd)
• precond: top(c,po), on(c,xo), attached(po,l), 

belong(k,l), attached(pd,l), top(xd,pd)
• subtasks: 〈take(k,l,c,xo,po),put(k,l,c,xd,pd)〉



7

Hierarchical Task Networks 13

STN Methods: DWR Example (2)
move stack: repeatedly move the topmost 
container until the stack is empty
recursive-move(po,pd,c,xo)
• task: move-stack(po,pd)
• precond: top(c,po), on(c,xo)
• subtasks: 〈move-topmost(po,pd), move-stack(po,pd)〉

no-move(po,pd)
• task: move-stack(po,pd)
• precond: top(pallet,po)
• subtasks: 〈〉

Hierarchical Task Networks 14

STN Methods: DWR Example (3)

move via intermediate: move stack to 
intermediate pile (reversing order) and 
then to final destination (reversing order 
again)
move-stack-twice(po,pi,pd)
• task: move-ordered-stack(po,pd)
• precond: -
• subtasks: 

〈move-stack(po,pi),move-stack(pi,pd)〉



8

Hierarchical Task Networks 15

Applicability and Relevance

A method instance m is applicable in a state s if 
• precond+(m) ⊆ s and 
• precond-(m) ∩ s = { }.

A method instance m is relevant for a task t if
• there is a substitution σ such that σ(t) = task(m).

The decomposition of a task t by a relevant 
method m under σ is
• δ(t,m,σ) = σ(network(m)) or
• δ(t,m,σ) = σ(〈subtasks(m)〉) if m is totally ordered.

Hierarchical Task Networks 16

Method Applicability and 
Relevance: DWR Example

task t = move-stack(p1,q)
state s (as shown)

method instance mi =
recursive-move(p1,p2,c1,c2)
• mi is applicable in s
• mi is relevant for t under σ = {q←p2}

p1c3

crane

p2 p3

c2
c1



9

Hierarchical Task Networks 17

Method Decomposition: DWR 
Example

δ(t,mi,σ) = 
〈move-topmost(p1,p2), move-stack(p1,p2)〉

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

{q←p2}: recursive-move(p1,p2,c1,c2)

Hierarchical Task Networks 18

Decomposition of Tasks in STNs

Let 
• w = (U,E) be a STN and 
• t∈U be a task with no predecessors in w and
• m a method that is relevant for t under some 

substitution σ with network(m) = (Um,Em).
The decomposition of t in w by m under σ is 
the STN δ(w,u,m,σ) where:
• t is replaced in U by σ(Um) and
• edges in E involving t are replaced by edges to 

appropriate nodes in σ(Um).



10

Hierarchical Task Networks 19

STN Planning Domains

An STN planning domain is a pair 
D=(O,M) where:
• O is a set of STRIPS planning operators and
• M is a set of STN methods.

D is a total-order STN planning domain if 
every m∈M is totally ordered.

Hierarchical Task Networks 20

STN Planning Problems

An STN planning problem is a 4-tuple 
P=(si,wi,O,M) where:
• si is the initial state (a set of ground atoms)
• wi is a task network called the initial task network and
• D=(O,M) is an STN planning domain.

P is a total-order STN planning domain if wi
and D are both totally ordered.



11

Hierarchical Task Networks 21

STN Solutions
A plan π = 〈a1,…,an〉 is a solution for an STN planning 
problem P=(si,wi,O,M) if:

• wi is empty and π is empty;
• or:

• there is a primitive task t∈wi that has no predecessors in wi and
• a1=t is applicable in si and
• π’ = 〈a2,…,an〉 is a solution for P’=(γ(si,a1), wi-{t}, O, M)

• or:
• there is a non-primitive task t∈wi that has no predecessors in 

wi and
• m∈M is relevant for t, i.e. σ(t) = task(m) and applicable in si

and
• π is a solution for P’=(si, δ(wi,t,m,σ), O, M).

Hierarchical Task Networks 22

Decomposition Tree: DWR 
Example

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

recursive-move(p1,p2,c1,c2)

take(crane,loc,c1,c2,p1) put(crane,loc,c1,pallet,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c2,c3,p1) put(crane,loc,c2,c1,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c3,pallet,p1) put(crane,loc,c3,c2,p2) 〈〉

recursive-move(p1,p2,c2,c3)take-and-put(…)

no-move(p1,p2)

recursive-move(p1,p2,c3,pallet)take-and-put(…)

take-and-put(…)



12

Hierarchical Task Networks 23

Ground-TFD: Pseudo Code
function Ground-TFD(s,〈t1,…,tk〉,O,M)

if k=0 return 〈〉
if t1.isPrimitive() then

actions = {(a,σ) | a=σ(t1) and a applicable in s}
if actions.isEmpty() then return failure
(a,σ) = actions.chooseOne()
plan Ground-TFD(γ(s,a),σ(〈t2,…,tk〉),O,M)
if plan = failure then return failure
else return 〈a〉 ∙ plan

else
methods = {(m,σ) | m is relevant for σ(t1) and m is applicable in s}
if methods.isEmpty() then return failure
(m,σ) = methods.chooseOne()
plan subtasks(m) ∙ σ(〈t2,…,tk〉)
return Ground-TFD(s,plan,O,M)

Hierarchical Task Networks 24

TFD vs. Forward/Backward 
Search

choosing actions:
• TFD considers only applicable actions like forward 

search
• TFD considers only relevant actions like backward 

search
plan generation:
• TFD generates actions execution order; current world 

state always known
lifting:
• Ground-TFD can be generalized to Lifted-TFD 

resulting in same advantages as lifted backward 
search



13

Hierarchical Task Networks 25

Ground-PFD: Pseudo Code
function Ground-PFD(s,w,O,M)

if w.U={} return 〈〉
task {t∈U | t has no predecessors in w.E}.chooseOne()
if task.isPrimitive() then

actions = {(a,σ) | a=σ(t1) and a applicable in s}
if actions.isEmpty() then return failure
(a,σ) = actions.chooseOne()
plan Ground-PFD(γ(s,a),σ(w-{task}),O,M)
if plan = failure then return failure
else return 〈a〉 ∙ plan

else
methods = {(m,σ) | m is relevant for σ(t1) and m is applicable in s}
if methods.isEmpty() then return failure
(m,σ) = methods.chooseOne()
return Ground-PFD(s, δ(w,task,m,σ),O,M)

Hierarchical Task Networks 26

Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation



14

Hierarchical Task Networks 27

Preconditions in STN Planning

STN planning constraints:
• ordering constraints: maintained in network
• preconditions: 

• enforced by planning procedure
• must know state to test for applicability
• must perform forward search

HTN Planning
• additional bookkeeping maintains general 

constraints explicitly

Hierarchical Task Networks 28

First and Last Network Nodes

Let 
• π = 〈a1,…,an〉 be a solution for w, 
• U’⊆U be a set of tasks in w, and 
• A(U’) the subset of actions in π such that each 

ai∈A(U’) is a descendant of some t∈U’ in the 
decomposition tree.

Then we define:
• first(U’,π) = the action ai∈A(U’) that occurs first in π; 

and
• last(U’,π) = the action ai∈A(U’) that occurs last in π.



15

Hierarchical Task Networks 29

Hierarchical Task Networks

A (hierarchical) task network is a pair w=(U,C), 
where:
• U is a set of tasks and 
• C is a set of constraints of the following types:

• t1≺t2: precedence constraint between tasks
satisfied if in every solution π: last({t},π) ≺ first({t},π);

• before(U’,l): satisfied if in every solution π: literal l holds 
in the state just before first(U’,π);

• after(U’,l): satisfied if in every solution π: literal l holds in 
the state just after last(U’,π);

• between(U’,U’’,l): satisfied if in every solution π: literal l
holds in every state after last(U’,π) and before first(U’’,π).

Hierarchical Task Networks 30

HTN Methods
Let MS be a set of method symbols. An HTN 
method is a 4-tuple 
m=(name(m),task(m),subtasks(m),constr(m)) 
where:
• name(m): 

• the name of the method
• syntactic expression of the form n(x1,…,xk)

• n∈MS: unique method symbol
• x1,…,xk: all the variable symbols that occur in m;

• task(m): a non-primitive task;
• (subtasks(m),constr(m)): a task network.



16

Hierarchical Task Networks 31

HTN Methods: DWR Example (1)

move topmost: take followed by put 
action
take-and-put(c,k,l,po,pd,xo,xd)
• task: move-topmost(po,pd)
• network: 

• subtasks: {t1=take(k,l,c,xo,po), t2=put(k,l,c,xd,pd)}
• constraints: {t1≺t2, before({t1}, top(c,po)), 

before({t1}, on(c,xo)), before({t1}, attached(po,l)), 
before({t1}, belong(k,l)), before({t2}, attached(pd,l)), 
before({t2}, top(xd,pd))}

Hierarchical Task Networks 32

HTN Methods: DWR Example (2)
move stack: repeatedly move the topmost container 
until the stack is empty
recursive-move(po,pd,c,xo)• task: move-stack(po,pd)• network: 

• subtasks: {t1=move-topmost(po,pd), t2=move-stack(po,pd)}• constraints: {t1≺t2, before({t1}, top(c,po)), before({t1}, on(c,xo))}
move-one(po,pd,c)
• task: move-stack(po,pd)• network: 

• subtasks: {t1=move-topmost(po,pd)}• constraints: {before({t1}, top(c,po)), before({t1}, on(c,pallet))}



17

Hierarchical Task Networks 33

HTN Decomposition
Let w=(U,C) be a task network, t∈U a task, and m a 
method such that σ(task(m))=t. Then the decomposition 
of t in w using m under σ is defined as:

δ(w,t,m,σ) = ((U-{t})∪σ(subtasks(m)), C’∪σ(constr(m)))

where C’ is modified from C as follows:
• for every precedence constraint in C that contains t, replace 

it with precedence constraints containing σ(subtasks(m)) 
instead of t; and

• for every before-, after-, or between constraint over tasks U’
containing t, replace U’ with (U’-{t})∪σ(subtasks(m)).

Hierarchical Task Networks 34

HTN Decomposition: Example
network: w = ({t1= move-stack(p1,q)}, {})

δ(w, t1, recursive-move(po,pd,c,xo), {po←p1,pd←q}) = w’ = 
• ({t2=move-topmost(p1,q), t3=move-stack(p1,q)}, 
• {t2≺t3, before({t2}, top(c,p1)), before({t2}, on(c,xo))})

δ(w’, t2, take-and-put(c,k,l,po,pd,xo,xd), {po←p1,pd←q}) =
• ({t3=move-stack(p1,q), t4=take(k,l,c,xo,p1), t5=put(k,l,c,xd,q)},
• {t4≺t3, t5≺t3, before({t4,t5}, top(c,p1)), before({t4,t5}, on(c,xo))} ∪

{t4≺t5, before({t4}, top(c,p1)), before({t4}, on(c,xo)), before({t4}, 
attached(p1,l)), before({t4}, belong(k,l)), before({t5}, 
attached(q,l)), before({t5}, top(xd,q))})



18

Hierarchical Task Networks 35

HTN Planning Domains and 
Problems

An HTN planning domain is a pair D=(O,M) 
where:
• O is a set of STRIPS planning operators and
• M is a set of HTN methods.

An HTN planning problem is a 4-tuple 
P=(si,wi,O,M) where:
• si is the initial state (a set of ground atoms)
• wi is a task network called the initial task network and
• D=(O,M) is an HTN planning domain.

Hierarchical Task Networks 36

Solutions for Primitive HTNs
Let (U,C) be a primitive HTN. A plan π = 〈a1,…,an〉 is a 
solution for P=(si,(U,C),O,M) if there is a ground instance 
(σ(U),σ(C)) of (U,C) and a total ordering 〈t1,…,tn〉 of tasks in 
σ(U) such that:
• for i=1…n: name(ai) = ti; • π is executable in si, i.e. γ(si,π) is defined;
• the ordering of 〈t1,…,tn〉 respects the ordering constraints in 
σ(C);

• for every constraint before(U’,l) in σ(C) where tk=first(U’,π): l
must hold in γ(si, 〈a1,…,ak-1〉); • for every constraint after(U’,l) in σ(C) where tk=last(U’,π): l must 
hold in γ(si, 〈a1,…,ak〉);• for every constraint between(U’,U’’,l) in σ(C) where tk=first(U’,π) 
and tm=last(U’’,π): l must hold in every state γ(si, 〈a1,…,aj〉), 
j∈{k…m-1}.



19

Hierarchical Task Networks 37

Solutions for Non-Primitive 
HTNs

Let w = (U,C) be a non-primitive HTN. A 
plan π = 〈a1,…,an〉 is a solution for 
P=(si,w,O,M) if there is a sequence of 
task decompositions that can be applied 
to w such that:
• the result of the decompositions is a primitive 

HTN w’; and
• π is a solution for P’=(si,w’,O,M).

Hierarchical Task Networks 38

Abstract-HTN: Pseudo Code

function Abstract-HTN(s,U,C,O,M)
if (U,C).isInconsistent() then return failure
if U.isPrimitive() then

return extractSolution(s,U,C,O)
else

return decomposeTask(s,U,C,O,M)



20

Hierarchical Task Networks 39

extractSolution: Pseudo Code

function extractSolution(s,U,C,O)
〈t1,…,tn〉 U.chooseSequence(C)
〈a1,…,an〉

〈t1,…,tn〉.chooseGrounding(s,C,O)
if 〈a1,…,an〉.satisfies(C) then

return 〈a1,…,an〉
return failure

Hierarchical Task Networks 40

decomposeTask: Pseudo Code

function decomposeTask(s,U,C,O,M)
t U.nonPrimitives().selectOne()
methods {(m,σ) | m∈M and σ(task(m))= σ(t)}
if methods.isEmpty() then return failure
(m,σ) methods.chooseOne()
(U’,C’) δ((U,C),t,m,σ)
(U’,C’) (U’,C’).applyCritic()
return Abstract-HTN(s,U’,C’,O,M)



21

Hierarchical Task Networks 41

HTN vs. STRIPS Planning

Since
• HTN is generalization of STN Planning, and
• STN problems can encode undecidable problems, but
• STRIPS cannot encode such problems:

STN/HTN formalism is more expressive
non-recursive STN can be translated into 
equivalent STRIPS problem
• but exponentially larger in worst case

“regular” STN is equivalent to STRIPS

Hierarchical Task Networks 42

Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation



22

Hierarchical Task Networks 43

Functions in Terms
allow function terms in world state and method 
constraints
ground versions of all planning algorithms may 
fail
• potentially infinite number of ground instances of a 

given term 
lifted algorithms can be applied with most 
general unifier
• least commitment approach instantiates only as far as 

necessary
• plan-existence may not be decidable

Hierarchical Task Networks 44

Axiomatic Inference

use theorem prover to infer derived 
knowledge within world states
• undecidability of first-order logic in general

idea: use restricted (decidable) subset of 
first-order logic: Horn clauses
• only positive preconditions can be derived
• precondition p is satisfied in state s iff p can 

be proved in s



23

Hierarchical Task Networks 45

Attached Procedures

associate predicates with procedures
modify planning algorithm
• evaluate preconditions by 

• calling the procedure attached to the predicate 
symbol if there is such a procedure

• test against world state (set-relation, theorem 
prover) otherwise

soundness and completeness: depends 
on procedures

Hierarchical Task Networks 46

High-Level Effects

allow user to declare effects for non-
primitive methods
aim:
• establish preconditions
• prune partial plans if high-level effects 

threaten preconditions
increases efficiency
problem: semantics



24

Hierarchical Task Networks 47

Other Extensions

other constraints
• time constraints
• resource constraints

extended goals
• states to be avoided
• required intermediate states
• limited plan length
• visit states multiple times

Hierarchical Task Networks 48

Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation



25

Hierarchical Task Networks 49

State Variables

some relations are functions
• example: at(r1,loc1): relates robot r1 to location loc1 in 

some state
• truth value changes from state to state
• will only be true for exactly one location l in each state

idea: represent such relations using state-
variable functions mapping states into objects
• example: functional representation: 

rloc:robots×S→locations

Hierarchical Task Networks 50

States in the State-Variable 
Representation

Let X be a set of state-variable functions. A 
k-ary state variable is an expression of the 
form x(v1,…vk) where: 
• x∈X is a state-variable function and 
• vi is either an object constant or an object 

variable.
A state-variable state description is a set of 
expressions of the form xs=c where:
• xs is a ground state variable x(v1,…vk) and 
• c is an object constant.



26

Hierarchical Task Networks 51

DWR Example: State-Variable 
State Descriptions

simplified: no cranes, no piles
state-variable functions:
• rloc: robots×S → locations
• rolad: robots×S→containers ∪ {nil}
• cpos: containers×S → locations ∪ robots

sample state-variable state descriptions:
• {rloc(r1)=loc1, rload(r1)=nil, cpos(c1)=loc1, 

cpos(c2)=loc2, cpos(c3)=loc2} 
• {rloc(r1)=loc1, rload(r1)=c1, cpos(c1)=r1, 

cpos(c2)=loc2, cpos(c3)=loc2}

Hierarchical Task Networks 52

Operators in the State-Variable 
Representation 

A state-variable planning operator is a triple 
(name(o), precond(o), effects(o)) where:
• name(o) is a syntactic expression of the form 

n(x1,…,xk) where n is a (unique) symbol and x1,…,xk
are all the object variables that appear in o,

• precond(o) are the unions of a state-variable state 
description and some rigid relations, and

• effects(o) are sets of expressions of the form xs←vk+1
where:
• xs is a ground state variable x(v1,…vk) and 
• vk+1 is an object constant or an object variable.



27

Hierarchical Task Networks 53

DWR Example: State-Variable 
Operators

move(r,l,m)
• precond: rloc(r)=l, adjacent(l,m)
• effects: rloc(r)←m

load(r,c,l)
• precond: rloc(r)=l, cpos(c)=l, rload(r)=nil
• effects: cpos(c)←r, rload(r)←c

unload(r,c,l)
• precond: rloc(r)=l, rload(r)=c
• effects: rload(r)←nil, cpos(c)←l

Hierarchical Task Networks 54

Applicability and State 
Transitions

Let a be an action and s a state. Then a is 
applicable in s iff:
• all rigid relations mentioned in precond(a) hold, and
• if xs=c ∈ precond(a) then xs=c ∈ s.

The state transition function γ for an action a in 
state s is defined as γ(s,a) = {xs=c | x∈X} 
where:
• xs←c ∈ effects(a) or
• xs=c ∈ s otherwise.



28

Hierarchical Task Networks 55

State-Variable Planning 
Domains

Let X be a set of state-variable functions. A 
state-variable planning domain on X is a 
restricted state-transition system Σ=(S,A,γ) such 
that:
• S is a set of state-variable state descriptions,
• A is a set of ground instances of some state-variable 

planning operators O,
• γ:S×A→S where 

• γ(s,a)= {xs=c | x∈X and xs←c ∈ effects(a) or xs=c ∈ s
otherwise} if a is applicable in s

• γ(s,a)=undefined otherwise,
• S is closed under γ

Hierarchical Task Networks 56

State-Variable Planning 
Problems

A state-variable planning problem is a 
triple P=(Σ,si,g) where:
• Σ=(S,A,γ) is a state-variable planning domain 

on some set of state-variable functions X
• si∈S is the initial state
• g is a set of expressions of the form xs=c

describing the goal such that the set of goal 
states is: Sg={s∈S | xs=c ∈ s}



29

Hierarchical Task Networks 57

Relevance and Regression Sets
Let P=(Σ,si,g) be a state-variable planning 
problem. An action a∈A is relevant for g if 
• g ⋂ effects(a) ≠ {} and
• for every xs=c ∈ g, there is no xs←d ∈ effects(a) such 

that c≠d. 
The regression set of g for a relevant action 
a∈A is:
• γ -1(g,a)=(g - ϑ(a)) ∪ precond(a) where
• ϑ(a) = {xs=c | xs←c ∈ effects(a)}

definition for all regression sets Γ<(g) exactly 
as for propositional case

Hierarchical Task Networks 58

Statement of a State-Variable 
Planning Problem

A statement of a state-variable planning 
problem is a triple P=(O,si,g) where:
• O is a set of planning operators in an 

appropriate state-variable planning domain 
Σ=(S,A,γ) on X

• si is the initial state in an appropriate state-
variable planning problem P=(Σ,si,g)

• g is a goal in the same state-variable planning 
problem P



30

Hierarchical Task Networks 59

Translation: STRIPS to State-
Variable Representation

Let P=(O,si,g) be a statement of a classical 
planning problem. In the operators O, in the 
initial state si, and in the goal g:
• replace every positive literal p(t1,…,tn) with a state-

variable expression p(t1,…,tn)=1 or p(t1,…,tn)←1 in the 
operators’ effects, and

• replace every negative literal ¬p(t1,…,tn) with a state-
variable expression p(t1,…,tn)=0 or p(t1,…,tn)←0 in the 
operators’ effects.

Hierarchical Task Networks 60

Translation: State-Variable to 
STRIPS Representation

Let P=(O,si,g) be a statement of a state-
variable planning problem. In the operators’
preconditions, in the initial state si, and in the 
goal g:
• replace every state-variable expression p(t1,…,tn)=v

with an atom p(t1,…,tn,v), and
in the operators’ effects:
• replace every state-variable assignment p(t1,…,tn)←v

with a pair of literals p(t1,…,tn,v), ¬p(t1,…,tn,w), and 
add p(t1,…,tn,w) to the respective operators 
preconditions.



31

Hierarchical Task Networks 61

Overview

Simple Task Networks
HTN Planning
Extensions
State-Variable Representation


