
1

The Graphplan Planner

Searching the Planning
Graph

The Graphplan Planner 2

Literature

Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning – Theory
and Practice, chapter 6. Elsevier/Morgan
Kaufmann, 2004.

2

The Graphplan Planner 3

Neoclassical Planning
concerned with restricted state-transition
systems
representation is usually restricted to
propositional STRIPS
neoclassical vs. classical planning
• classical planning: search space consists of nodes

containing partial plans
• neoclassical planning: nodes can be seen as sets of

partial plans
resulted in significant speed-up and revival of
planning research

The Graphplan Planner 4

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm

3

The Graphplan Planner 5

Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions,

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states

The Graphplan Planner 6

Propositional Planning Domains
Let L={p1,…,pn} be a finite set of proposition
symbols. A propositional planning domain on L
is a restricted state-transition system Σ=(S,A,γ)
such that:
• S ⊆ 2L, i.e. each state s is a subset of L
• A ⊆ 2L×2L×2L, i.e. each action a is a triple

(precond(a), effects-(a), effects+(a)) where effects-(a)
and effects+(a) must be disjoint

• γ:S×A→2L where
• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if precond(a) ⊆ s
• γ(s,a)=undefined otherwise

• S is closed under γ

4

The Graphplan Planner 7

s0

DWR Example: State Space

location1 location2

palletcont.

crane s2

location1 location2

palletcont.

crane

s1

location1 location2

pallet

cont.

crane s3

location1 location2

pallet

cont.

crane s4

location1 location2

pallet

crane

robot robot

robot

robot

robot

cont.

s5

location1 location2

pallet

crane

robot
cont.

take put

move1

move2

move2

move1

take put

load

unload

move2move1

The Graphplan Planner 8

DWR Example: Propositional
States

L={onpallet,onrobot,holding,at1,at2}
S={s0,…,s5}
• s0={onpallet,at2}
• s1={holding,at2}
• s2={onpallet,at1}
• s3={holding,at1}
• s4={onrobot,at1}
• s5={onrobot,at2}

s0

location1 location2

palletcont.

crane

robot

5

The Graphplan Planner 9

DWR Example: Propositional
Actions

{at2}{at1}{at1}move2

{at1}{at2}{at2}move1

{holding}{onrobot}{onrobot,at1}unload

{onrobot}{holding}{holding,at1}load

{onpallet}{holding}{holding}put

{holding}{onpallet}{onpallet}take

effects+(a)effects-(a)precond(a)a

The Graphplan Planner 10

DWR Example: Propositional
State Transitions

s5s3s2move2

s4s1s0move1

s3unload

s4load

s2s0put

s3s1take

s5s4s3s2s1s0

6

The Graphplan Planner 11

Propositional Planning Problems

A propositional planning problem is a
triple P=(Σ,si,g) where:
• Σ=(S,A,γ) is a propositional planning domain

on L={p1,…,pn}
• si∈S is the initial state
• g⊆L is a set of goal propositions that define

the set of goal states Sg={s∈S | g⊆s}

The Graphplan Planner 12

DWR Example: Propositional
Planning Problem

Σ: propositional planning domain for
DWR domain
si: any state
• example: initial state = s0∈S

g: any subset of L
• example: g={onrobot,at2}, i.e. Sg={s5}

7

The Graphplan Planner 13

Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉,
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise

The Graphplan Planner 14

Classical Solutions

Let P=(Σ,si,g) be a propositional planning
problem. A plan π is a solution for P if
g⊆γ(si,π).
• A solution π is redundant if there is a proper

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains

fewer actions than π.

8

The Graphplan Planner 15

DWR Example: Plans and
Solutions

yesnoyess54〈move1,take,load,move2〉

yesnoyess54〈take,move1,load,move2〉

noyesyess58〈take,move1,put,move2,
take,move1,load,move2〉

--nos32〈take,move1〉

--noundef.2〈move2,move2〉

--nos00〈〉

min.red.sol.γ(si,π)| π |plan π

The Graphplan Planner 16

Reachable Successor States

The successor function Γm:2S→2S for a
propositional domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk)
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S

9

The Graphplan Planner 17

Relevant Actions and
Regression Sets

Let P=(Σ,si,g) be a propositional planning
problem. An action a∈A is relevant for g if
• g ⋂ effects+(a) ≠ {} and
• g ⋂ effects-(a) = {}.

The regression set of g for a relevant action
a∈A is:
• γ -1(g,a)=(g - effects+(a)) ∪ precond(a)
• note: γ(s,a)∈Sg iff γ -1(g,a)⊆s

The Graphplan Planner 18

Regression Function

The regression function Γ-m for a propositional
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn}
• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))
The transitive closure of Γ-1 defines the set of
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L

10

The Graphplan Planner 19

Statement of a Propositional
Planning Problem

A statement of a propositional planning
problem is a triple P=(A,si,g) where:
• A is a set of actions in an appropriate

propositional planning domain Σ=(S,A,γ) on L
• si is the initial state in an appropriate

propositional planning problem P=(Σ,si,g)
• g is a set of goal propositions in the same

propositional planning problem P

The Graphplan Planner 20

Example: Ambiguity in Statement of
a Planning Problem

P1=(Σ1,si,g) where
Σ1=(
• {{p1},{p2}}, • {a1}, • {({p1},a1)→{p2}}) on

L1={p1,p2}

statement: P =({a1}, si, g) where
a1=({p1},{p1},{p2}), si={p1}, and g={p2}

P2=(Σ2,si,g) where
Σ2=(
• {{p1},{p2},{p1,p3},{p2,p3}},
• {a1},
• {({p1},a1)→{p2},

({p1,p3},a1)→{p2,p3}}) on
L2={p1,p2,p3}

11

The Graphplan Planner 21

Statement Ambiguity

Proposition: Let P1 and P2 be two
propositional planning problems that
have the same statement. Then both, P1
and P2, have
• the same set of reachable states Γ>({si}) and
• the same set of solutions.

The Graphplan Planner 22

Properties of the Propositional
Representation

Expressiveness: For every propositional
planning domain there is a corresponding
state-transition system, but what about vice
versa?
Conciseness: propositional action
representation is concise because it does not
mention what does not change
Consistency: not every assignment of truth
values to propositions must correspond to a
state in the underlying state-transition system

12

The Graphplan Planner 23

Grounding a STRIPS Planning
Problem

Let P=(O,si,g) be the statement of a STRIPS
planning problem and C the set of all the
constant symbols that are mentioned in si. Let
ground(O) be the set of all possible
instantiations of operators in O with constant
symbols from C consistently replacing
variables in preconditions and effects.
Then P’=(ground(O),si,g) is a statement of a
STRIPS planning problem and P’ has the
same solutions as P.

The Graphplan Planner 24

Translation: Propositional
Representation to Ground STRIPS

Let P=(A,si,g) be a statement of a
propositional planning problem. In the
actions A:
• replace every action (precond(a), effects-(a),

effects+(a)) with an operator o with
• some unique name(o),
• precond(o) = precond(a), and
• effects(o) = effects+(a) ∪ {¬p | p∈effects-(a)}.

13

The Graphplan Planner 25

Translation: Ground STRIPS to
Propositional Representation

Let P=(O,si,g) be a ground statement of a
classical planning problem.
• In the operators O, in the initial state si, and in the goal

g replace every atom P(v1,…,vn) with a propositional
atom Pv1,…,vn.• In every operator o:
• for all ¬p in precond(o), replace ¬p with p’,
• if p in effects(o), add ¬p’ to effects(o),
• if ¬p in effects(o), add p’ to effects(o).

• In the goal replace ¬p with p’.
• For every operator o create an action

(precond(o), effects-(a), effects+(a)).

The Graphplan Planner 26

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm

14

The Graphplan Planner 27

Example: Simplified DWR
Problem

robots can load and unload autonomously
locations may contain unlimited number of
robots and containers
problem: swap locations of containers

loc1 loc2

conta

robr

contb

robq

The Graphplan Planner 28

Simplified DWR Problem: STRIPS
Actions

move(r,l,l’)
• precond: at(r,l), adjacent(l,l’)
• effects: at(r,l’), ¬at(r,l)

load(c,r,l)
• precond: at(r,l), in(c,l), unloaded(r)
• effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)

unload(c,r,l)
• precond: at(r,l), loaded(r,c)
• effects: unloaded(r), in(c,l), ¬loaded(r,c)

15

The Graphplan Planner 29

Simplified DWR Problem: State
Proposition Symbols

robots:
• r1 and r2: at(robr,loc1) and at(robr,loc2)
• q1 and q2: at(robq,loc1) and at(robq,loc2)
• ur and uq: unloaded(robr) and unloaded(robq)

containers:
• a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2),

loaded(conta,robr), and loaded(conta,robq)
• b1, b2, br, and bq: in(contb,loc1), in(contb,loc2),

loaded(contb,robr), and loaded(contb,robq)

initial state: {r1, q2, a1, b2, ur, uq}

The Graphplan Planner 30

Simplified DWR Problem: Action
Symbols

move actions:
• Mr12: move(robr,loc1,loc2), Mr21:

move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2),
Mq21: move(robq,loc2,loc1)

load actions:
• Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1,

Lbr2, Lbq1, and Lbq2 correspondingly

unload actions:
• Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2,

Uar1, Ubr2, Ubq1, and Ubq2 correspondingly

16

The Graphplan Planner 31

Solution Existence

Proposition: A propositional planning
problem P=(Σ,si,g) has a solution iff
Sg ⋂ Γ>({si}) ≠ {}.

Proposition: A propositional planning
problem P=(Σ,si,g) has a solution iff
∃s∈Γ<({g}) : s⊆si.

The Graphplan Planner 32

Reachability Tree
tree structure, where:
• root is initial state si• children of node s are Γ({s})
• arcs are labelled with actions

all nodes in reachability tree are Γ>({si})
• all nodes to depth d are Γd({si}) • solves problems with up to d actions in solution

problem: O(kd) nodes;
k = applicable actions per state

17

The Graphplan Planner 33

DWR Example: Reachability
Tree

r1, q2, a1, b2, ur, uq

r1, q2, a1, bq, ur

r1, q2, ar, b2, ur

r1, q1, a1, b2, ur, uq

r2, q2, a1, b2, ur, uq

r2, q2, a1, bq, ur

r2, q2, a1, br, uq

r2, q1, a1, b2, ur, uq

r1, q2, a1, b2, ur, uq

Mq21Mr12
Lar1

Lbq2

Mr21 Mq21
Lbq2

Lbr2

The Graphplan Planner 34

Planning Graph: Nodes

layered directed graph G=(N,E):
• N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …

• state proposition layers: P0, P1, …
• action layers: A1, A2, …

first proposition layer P0:
• propositions in initial state si: P0=si

action layer Aj:
• all actions a where: precond(a)⊆Pj-1

proposition layer Pj:
• all propositions p where: p∈Pj-1 or ∃a∈Aj: p∈effects+(a)

18

The Graphplan Planner 35

Planning Graph: Arcs

from proposition p∈Pj-1 to action a∈Aj:
• if: p ∈ precond(a)

from action a∈Aj to layer p∈Pj:
• positive arc if: p ∈ effects+(a)
• negative arc if: p ∈ effects-(a)

no arcs between other layers

The Graphplan Planner 36

Planning Graph Example

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

r1
r2
q1
q2
a1

ar

b2

bq
ur
uq

aq

br

a2

b1

Mr12

Mq21

Lbq2

Lar1

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1

Ubq2

Uar2

Ubq1

Uaq1
Ubr2

P0 A1 P3P2P1 A3A2

19

The Graphplan Planner 37

Reachability in the Planning
Graph

reachability analysis:
• if a goal g is reachable from initial state si

• then there will be a proposition layer Pg in the planning
graph such that g⊆Pg

necessary condition, but not sufficient
low complexity:
• planning graph is of polynomial size and
• can be computed in polynomial time

The Graphplan Planner 38

Independent Actions: Examples
Mr12 and Lar1:
• cannot occur together
• Mr12 deletes precondition r1

of Lar1
Mr12 and Mr21:
• cannot occur together
• Mr12 deletes positive effect

r1 of Mr21
Mr12 and Mq21:
• may occur in same action

layer

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

P2P1 A2

20

The Graphplan Planner 39

Independent Actions

Two actions a1 and a2 are independent
iff:
• effects-(a1) ∩ (precond(a2) ∪ effects+(a2)) = {}

and
• effects-(a2) ∩ (precond(a1) ∪ effects+(a1)) = {}.

A set of actions π is independent iff
every pair of actions a1,a2∈π is
independent.

The Graphplan Planner 40

Pseudo Code: independent

function independent(a1,a2)
for all p∈effects-(a1)

if p∈precond(a2) or p∈effects+(a2) then
return false

for all p∈effects-(a2)
if p∈precond(a1) or p∈effects+(a1) then

return false
return true

21

The Graphplan Planner 41

Applying Independent Actions

A set π of independent actions is applicable to
a state s iff
∪a∈πprecond(a) ⊆ s.
The result of applying the set π in s is defined
as:
γ(s,π) = (s - effects-(π)) ∪ effects+(π), where:
• precond(π) = ∪a∈πprecond(a),

• effects+(π) = ∪a∈πeffects+(a), and

• effects-(π) = ∪a∈πeffects-(a).

The Graphplan Planner 42

Execution Order of Independent
Actions

Proposition: If a set π of independent
actions is applicable in state s then, for
any permutation 〈a1,…,ak〉 of the
elements of π:
• the sequence 〈a1,…,ak〉 is applicable to s, and
• the state resulting from the application of π to

s is the same as from the application of
〈a1,…,ak〉, i.e.:
γ(s,π) = γ(s,〈a1,…,ak〉).

22

The Graphplan Planner 43

Layered Plans

Let P = (A,si,g) be a statement of a
propositional planning problem and G = (N,E),
N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …, the
corresponding planning graph.
A layered plan over G is a sequence of sets of
actions: ∏ = 〈π1,…,πk〉 where:
• πi ⊆ Ai ⊆ A,
• πi is applicable in state Pi-1, and
• the actions in πi are independent.

The Graphplan Planner 44

Layered Solution Plan

A layered plan ∏ = 〈π1,…,πk〉 is a
solution to a to a planning problem
P=(A,si,g) iff:
• π1 is applicable in si,
• for j∈{2…k}, πj is applicable in state
γ(…γ(γ(si,π1), π2), … πj-1), and

• g ⊆ γ(…γ(γ(si,π1), π2), …, πk).

23

The Graphplan Planner 45

Execution Order in Layered
Solution Plans

Proposition: If ∏ = 〈π1,…,πk〉 is a solution to a
to a planning problem P=(A,si,g), then:
• a sequence of actions corresponding to any

permutation of the elements of π1,
• followed by a sequence of actions corresponding to

any permutation of the elements of π2,
• …
• followed by a sequence of actions corresponding to

any permutation of the elements of πk

is a path from si to a goal state.

The Graphplan Planner 46

Problem: Dependent
Propositions: Example

r2 and ar:
• r2: positive effect of Mr12
• ar: positive effect of Lar1
• but: Mr12 and Lar1 not

independent
• hence: r2 and ar incompatible

in P1

r1 and r2:
• positive and negative effects

of same action: Mr12
• hence: r1 and r2 incompatible

in P1

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

P0 A1 P1

Mr12

Mq21

Lbq2

Lar1

24

The Graphplan Planner 47

Mr12

Mq21

Lbq2

Lar1

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

No-Operation Actions
No-Op for proposition p:
• name: Ap
• precondition: p
• effect: p

r1 and r2:
• r1: positive effect of Ar1
• r2: positive effect of Mr12
• but: Ar1 and Mr12 not

independent
• hence: r1 and r2 incompatible

in P1

only one incompatibility test

r1
q2
a1
b2
ur
uq

P0 A1 P1

Ar1

The Graphplan Planner 48

Mutex Propositions

Two propositions p and q in proposition
layer Pj are mutex (mutually exclusive) if:
• every action in the preceding action layer Aj

that has p as a positive effect (incl. no-op
actions) is mutex with every action in Aj that
has q as a positive effect, and

• there is no single action in Aj that has both, p
and q, as positive effects.

notation: μPj = { (p,q) | p,q∈Pj are mutex}

25

The Graphplan Planner 49

Pseudo Code: mutex for
Propositions

function mutex(p1,p2,μAj)
for all a1∈p1.producers()

for all a2∈p2.producers()
if (a1,a2)∉μAj then

return false
return true

The Graphplan Planner 50

Mutex Actions: Example

r1 and r2 are mutex in
P1

r1 is precondition for
Lar1 in A2

r2 is precondition for
Mr21 in A2

hence: Lar1 and Mr21
are mutex in A2

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

P2P1 A2

26

The Graphplan Planner 51

Mutex Actions

Two actions a1 and a2 in action layer Aj
are mutex if:
• a1 and a2 are dependent, or
• a precondition of a1 is mutex with a

precondition of a2.

notation:
μAj = { (a1,a2) | a1,a2 ∈Aj are mutex}

The Graphplan Planner 52

Pseudo Code: mutex for Actions

function mutex(a1,a2,μP)
if ¬independent(a1,a2) then

return true
for all p1∈precond(a1)

for all p2∈precond(a2)
if (p1,p2)∈μP then return true

return false

27

The Graphplan Planner 53

Decreasing Mutex Relations
Proposition: If p,q∈Pj-1 and (p,q)∉μPj-1 then (p,q)∉μPj.• Proof:

• if p,q∈Pj-1 then Ap,Aq∈Aj• if (p,q)∉μPj-1 then (Ap,Aq)∉μAj• since Ap,Aq∈Aj and (Ap,Aq)∉μAj, (p,q)∉μPj must hold
Proposition: If a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then
(a1,a2)∉μAj.
• Proof:

• if a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then
• a1 and a2 are independent and
• their preconditions in Pj-1 are not mutex

• both properties remain true for Pj
• hence: a1,a2∈Aj and (a1,a2)∉μAj

The Graphplan Planner 54

Removing Impossible Actions

actions with mutex
preconditions p and
q are impossible
• example:

preconditions r2 and
ar of Uar2 in A2 are
mutex

can be removed
from the graph
• example: remove

Uar2 from A2

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a2
ar

b2

bq
ur
uq

aq

br

Uar2

P2P1 A2

28

The Graphplan Planner 55

Reachability in Planning Graphs

Proposition: Let P = (A,si,g) be a
propositional planning problem and G =
(N,E), N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …,
the corresponding planning graph. If
• g is reachable from si

then
• there is a proposition layer Pg such that

• g ⊆ Pg and
• ¬∃ g1,g2∈g: (g1,g2)∈μPg.

The Graphplan Planner 56

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm

29

The Graphplan Planner 57

The Graphplan Algorithm: Basic
Idea

expand the planning graph, one action
layer and one proposition layer at a time
from the first graph for which Pg is the
last proposition layer such that
• g ⊆ Pg and
• ¬∃ g1,g2∈g: (g1,g2)∈μPg

search backwards from the last
(proposition) layer for a solution

The Graphplan Planner 58

Planning Graph Data Structure
k-th planning graph Gk:• nodes N:

• array of proposition layers P0 … Pk• proposition layer j: set of proposition symbols
• array of action layers A1 … Ak• proposition layer j: set of action symbols

• edges E:
• precondition links: prej ⊆ Pj-1×Aj, j∈{1…k}
• positive effect links: ej

+ ⊆ Aj×Pj, j∈{1…k}
• negative effect links: ej

– ⊆ Aj×Pj, j∈{1…k}
• proposition mutex links: μAj ⊆ Aj×Aj, j∈{1…k}
• action mutex links: μPj ⊆ Pj×Pj, j∈{1…k}

30

The Graphplan Planner 59

Pseudo Code: expand
function expand(Gk-1)

Ak {a∈A | precond(a)⊆Pk-1 and
{(p1,p2) | p1,p2∈precond(a)} ∩ μPk-1 = {} }

μAk {(a1,a2) | a1,a2∈Ak, a1≠a2, and mutex(a1,a2,μPk-1) }
Pk {p | ∃a∈Ak : p∈effects+(a) }
μPk {(p1,p2) | p1,p2∈Pk, p1≠p2, and mutex(p1,p2,μAk) }
for all a∈Ak

prek prek ∪ ({p | p∈Pk-1 and p∈precond(a)} × a)
ek

+ ek
+ ∪ (a × {p | p∈Pk and p∈effects+(a)})

ek
– ek

– ∪ (a × {p | p∈Pk and p∈effects–(a)})

The Graphplan Planner 60

Planning Graph Complexity

Proposition: The size of a planning
graph up to level k and the time required
to expand it to that level are polynomial
in the size of the planning problem.
Proof:
• problem size: n propositions and m actions
• |Pj|≤n and |Aj|≤n+m (incl. no-op actions)
• algorithms for generating each layer and all

link types are polynomial in size of layer

31

The Graphplan Planner 61

Fixed-Point Levels
A fixed-point level in a planning graph G is a
level κ such that for all i, i>κ, level i of G is
identical to level κ, i.e. Pi=Pκ, μPi=μPκ, Ai=Aκ,
and μAi=μAκ.

Proposition: Every planning graph G has a
fixed-point level κ, which is the smallest k such
that |Pk|=|Pk+1| and |μPk|=|μPk+1|.
Proof:
• Pi grows monotonically and μPi shrinks monotonically
• Ai and Pi only depend on Pi-1 and μPi-1

The Graphplan Planner 62

Searching the Planning Graph

general idea:
• search backwards from the last proposition layer Pk in

the current graph
• let g be the set of goal propositions that need to be

achieved at a given proposition layer Pj (initially the
last layer)

• find a set of actions πj⊆Aj such that these actions are
not mutex and together achieve g

• take the union of the preconditions of πj as the new
goal set to be achieved in proposition layer Pj-1

32

The Graphplan Planner 63

a2

b1Uar1

Planning Graph Search Example

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

r1
r2
q1
q2
a1

ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbq2

Lar1

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Ubq2

Uar2

Ubq1

Uaq1
Ubr2

P0 A1 P3P2P1 A3A2

The Graphplan Planner 64

Planning Graph as AND/OR-
Graph

OR-nodes:
• nodes in proposition layers
• links to actions that support the propositions

AND-nodes:
• nodes in action layers
• k-connectors all preconditions of the action

search:
• AO* not best algorithm because it does not exploit

layered structure

33

The Graphplan Planner 65

Repeated Sub-Goals

P0 Pi Pj Pk

The Graphplan Planner 66

The nogood Table
nogood table (denoted ∇) for planning graph
up to layer k:
• array of k sets of sets of goal propositions

• inner set: one combination of propositions that cannot
be achieved

• outer set: all combinations that cannot be achieved (at
that layer)

before searching for set g in Pj:• check whether g∈∇(j)
when search for set g in Pj has failed:
• add g to ∇(j)

34

The Graphplan Planner 67

Pseudo Code: extract

function extract(G,g,i)
if i=0 then return 〈〉
if g∈∇(i) then return failure
∏ gpSearch(G,g,{},i)
if ∏≠failure then return ∏
∇(i) ∇(i) + g
return failure

The Graphplan Planner 68

Pseudo Code: gpSearch
function gpSearch(G,g,π,i)

if g={} then
∏ extract(G,∪a∈πprecond(a),i-1)
if ∏=failure then return failure
return ∏∙〈π〉

p g.selectOne()
resolvers {a∈Ai | p∈effects+(a) and ¬∃a’∈π: (a,a’)∈μAi}
if resolvers={} then return failure
a resolvers.chooseOne()
return gpSearch(G,g-effects+(a),π+a,i)

35

The Graphplan Planner 69

Pseudo Code: graphplan
function graphplan(A,si,g)

i 0; ∇ []; P0 si; G (P0,{})
while (g⊈Pi or g2∩μPi≠{}) and ¬fixedPoint(G) do

i i+1; expand(G)
if g⊈Pi or g2∩μPi≠{} then return failure
η fixedPoint(G) ? |∇(κ)| : 0
∏ extract(G,g,i)
while ∏=failure do

i i+1; expand(G)
∏ extract(G,g,i)
if ∏=failure and fixedPoint(G) then

if η=|∇(κ)| then return failure
η |∇(κ)|

return ∏

The Graphplan Planner 70

Graphplan Properties

Proposition: The Graphplan algorithm is
sound, complete, and always terminates.
• It returns failure iff the given planning problem

has no solution;
• otherwise, it returns a layered plan ∏ that is a

solution to the given planning problem.

Graphplan is orders of magnitude faster
than previous techniques!

36

The Graphplan Planner 71

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
Planning-Graph Heuristics

The Graphplan Planner 72

Forward State-Space Search

idea: apply standard search algorithms
(breadth-first, depth-first, A*, etc.) to
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan

37

The Graphplan Planner 73

l1 l2

DWR Example State

k1

ca

k2

q2p2

cb

cc

cd

ce

cf

r1

goal: (and
(in ca p2) (in cb q2) (in cc p2) (in cd q2) (in ce q2) (in cf q2))

The Graphplan Planner 74

Heuristics

estimate distance to nearest goal state
• number of unachieved goals (not admissible)
• number of unachieved goals / max. number of

positive effects per operator (admissible)

example state (prev. slide):
• actual goal distance: 35 actions
• h(s) = 6
• h(s) = 6 / 4

38

The Graphplan Planner 75

Finding Better Heuristics
solve “relaxed” problem and use solution as
heuristic
planning heuristic:
• planning problem: P=(O,si,g)
• for p ∈ g: min-layer(p) = index of first proposition

layer in planning graph that contains p
• admissible heuristic: max(p ∈ g): min-layer(p)
• not admissible: sum(p ∈ g): min-layer(p)

no need to compute mutex relations
no need to re-compute planning graph for
ground backward search

The Graphplan Planner 76

The FF Planner (Basics)

heuristic
• based on planning graph without negative

effects
• backward search possible in polynomial time

search strategy
• enforced hill-climbing: commit to first state

with better f-value

39

The Graphplan Planner 77

Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
Planning-Graph Heuristics

