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Neoclassical Planning
concerned with restricted state-transition 
systems
representation is usually restricted to 
propositional STRIPS
neoclassical vs. classical planning
• classical planning: search space consists of nodes 

containing partial plans
• neoclassical planning: nodes can be seen as sets of 

partial plans
resulted in significant speed-up and revival of 
planning research
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Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
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Classical Representations

propositional representation
• world state is set of propositions
• action consists of precondition propositions, 

propositions to be added and removed
STRIPS representation
• like propositional representation, but first-order literals 

instead of propositions
state-variable representation
• state is tuple of state variables {x1,…,xn}
• action is partial function over states
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Propositional Planning Domains
Let L={p1,…,pn} be a finite set of proposition 
symbols. A propositional planning domain on L
is a restricted state-transition system Σ=(S,A,γ) 
such that:
• S ⊆ 2L, i.e. each state s is a subset of L
• A ⊆ 2L×2L×2L, i.e. each action a is a triple 

(precond(a), effects-(a), effects+(a)) where effects-(a)  
and effects+(a) must be disjoint

• γ:S×A→2L where 
• γ(s,a)=(s - effects-(a)) ∪ effects+(a) if precond(a) ⊆ s
• γ(s,a)=undefined otherwise

• S is closed under γ
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DWR Example: Propositional 
States

L={onpallet,onrobot,holding,at1,at2}
S={s0,…,s5}
• s0={onpallet,at2}
• s1={holding,at2}
• s2={onpallet,at1}
• s3={holding,at1}
• s4={onrobot,at1}
• s5={onrobot,at2}

s0

location1 location2

palletcont.

crane

robot
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DWR Example: Propositional 
Actions

{at2}{at1}{at1}move2

{at1}{at2}{at2}move1

{holding}{onrobot}{onrobot,at1}unload

{onrobot}{holding}{holding,at1}load

{onpallet}{holding}{holding}put

{holding}{onpallet}{onpallet}take

effects+(a)effects-(a)precond(a)a
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DWR Example: Propositional 
State Transitions

s5s3s2move2

s4s1s0move1

s3unload

s4load

s2s0put

s3s1take

s5s4s3s2s1s0
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Propositional Planning Problems

A propositional planning problem is a 
triple P=(Σ,si,g) where:
• Σ=(S,A,γ) is a propositional planning domain 

on L={p1,…,pn} 
• si∈S is the initial state
• g⊆L is a set of goal propositions that define 

the set of goal states Sg={s∈S | g⊆s}
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DWR Example: Propositional 
Planning Problem

Σ: propositional planning domain for 
DWR domain
si: any state
• example: initial state = s0∈S

g: any subset of L
• example: g={onrobot,at2}, i.e. Sg={s5}
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Classical Plans

A plan is any sequence of actions π=〈a1,…,ak〉, 
where k≥0.
• The length of plan π is |π|=k, the number of actions.
• If π1=〈a1,…,ak〉 and π2=〈a’1,…,a’j〉 are plans, then their 

concatenation is the plan π1∙π2= 〈a1,…,ak,a’1,…,a’j〉.
• The extended state transition function for plans is 

defined as follows:
• γ(s,π)=s if k=0 (π is empty)
• γ(s,π)=γ(γ(s,a1),〈a2,…,ak〉) if k>0 and a1 applicable in s
• γ(s,π)=undefined otherwise
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Classical Solutions

Let P=(Σ,si,g) be a propositional planning 
problem. A plan π is a solution for P if 
g⊆γ(si,π).
• A solution π is redundant if there is a proper 

subsequence of π is also a solution for P.
• π is minimal if no other solution for P contains 

fewer actions than π.
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DWR Example: Plans and 
Solutions

yesnoyess54〈move1,take,load,move2〉

yesnoyess54〈take,move1,load,move2〉

noyesyess58〈take,move1,put,move2, 
take,move1,load,move2〉

--nos32〈take,move1〉

--noundef.2〈move2,move2〉

--nos00〈〉

min.red.sol.γ(si,π)| π |plan π
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Reachable Successor States

The successor function Γm:2S→2S for a 
propositional domain Σ=(S,A,γ) is defined as:
• Γ(s)={γ(s,a) | a∈A and a applicable in s} for s∈S
• Γ({s1,…,sn})= ∪(k∈[1,n])Γ(sk) 
• Γ0({s1,…,sn})= {s1,…,sn} s1,…,sn∈S
• Γm({s1,…,sn})= Γ(Γm-1({s1,…,sn}))

The transitive closure of Γ defines the set of all 
reachable states:
• Γ>(s)= ∪(k∈[0,∞])Γk({s}) for s∈S
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Relevant Actions and 
Regression Sets

Let P=(Σ,si,g) be a propositional planning 
problem. An action a∈A is relevant for g if 
• g ⋂ effects+(a) ≠ {} and 
• g ⋂ effects-(a) = {}. 

The regression set of g for a relevant action 
a∈A is:
• γ -1(g,a)=(g - effects+(a)) ∪ precond(a)
• note: γ(s,a)∈Sg iff γ -1(g,a)⊆s
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Regression Function

The regression function Γ-m for a propositional 
domain Σ=(S,A,γ) on L is defined as:
• Γ-1(g)={γ -1(g,a) | a∈A is relevant for g} for g∈2L

• Γ0({g1,…,gn})= {g1,…,gn} 
• Γ-1({g1,…,gn})= ∪(k∈[1,n])Γ-1(gk) g1,…,gn∈2L

• Γ-m({g1,…,gn})= Γ-1(Γ-(m-1)({g1,…,gn}))
The transitive closure of Γ-1 defines the set of 
all regression sets:
• Γ<(g)= ∪(k∈[0,∞])Γ-k({g}) for g∈2L
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Statement of a Propositional 
Planning Problem

A statement of a propositional planning 
problem is a triple P=(A,si,g) where:
• A is a set of actions in an appropriate 

propositional planning domain Σ=(S,A,γ) on L
• si is the initial state in an appropriate 

propositional planning problem P=(Σ,si,g)
• g is a set of goal propositions in the same 

propositional planning problem P
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Example: Ambiguity in Statement of 
a Planning Problem

P1=(Σ1,si,g) where
Σ1=(
• {{p1},{p2}}, • {a1}, • {({p1},a1)→{p2}}) on

L1={p1,p2}

statement: P =({a1}, si, g) where 
a1=({p1},{p1},{p2}), si={p1}, and g={p2}

P2=(Σ2,si,g) where
Σ2=(
• {{p1},{p2},{p1,p3},{p2,p3}}, 
• {a1}, 
• {({p1},a1)→{p2}, 

({p1,p3},a1)→{p2,p3}}) on
L2={p1,p2,p3}
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Statement Ambiguity

Proposition: Let P1 and P2 be two 
propositional planning problems that 
have the same statement. Then both, P1
and P2, have 
• the same set of reachable states Γ>({si}) and 
• the same set of solutions.
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Properties of the Propositional 
Representation

Expressiveness: For every propositional 
planning domain there is a corresponding 
state-transition system, but what about vice 
versa?
Conciseness: propositional action 
representation is concise because it does not 
mention what does not change
Consistency: not every assignment of truth 
values to propositions must correspond to a 
state in the underlying state-transition system
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Grounding a STRIPS Planning 
Problem

Let P=(O,si,g) be the statement of a STRIPS 
planning problem and C the set of all the 
constant symbols that are mentioned in si. Let 
ground(O) be the set of all possible 
instantiations of operators in O with constant 
symbols from C consistently replacing 
variables in preconditions and effects.
Then P’=(ground(O),si,g) is a statement of a 
STRIPS planning problem and P’ has the 
same solutions as P.
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Translation: Propositional 
Representation to Ground STRIPS

Let P=(A,si,g) be a statement of a 
propositional planning problem. In the 
actions A:
• replace every action (precond(a), effects-(a), 

effects+(a)) with an operator o with
• some unique name(o),
• precond(o) = precond(a), and
• effects(o) = effects+(a) ∪ {¬p | p∈effects-(a)}.
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Translation: Ground STRIPS to 
Propositional Representation

Let P=(O,si,g) be a ground statement of a 
classical planning problem. 
• In the operators O, in the initial state si, and in the goal 

g replace every atom P(v1,…,vn) with a propositional 
atom Pv1,…,vn.• In every operator o:
• for all ¬p in precond(o), replace ¬p with p’,
• if p in effects(o), add ¬p’ to effects(o), 
• if ¬p in effects(o), add p’ to effects(o).

• In the goal replace ¬p with p’.
• For every operator o create an action 

(precond(o), effects-(a), effects+(a)). 
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Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
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Example: Simplified DWR 
Problem

robots can load and unload autonomously
locations may contain unlimited number of 
robots and containers
problem: swap locations of containers

loc1 loc2

conta

robr

contb

robq
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Simplified DWR Problem: STRIPS 
Actions

move(r,l,l’)
• precond: at(r,l), adjacent(l,l’)
• effects: at(r,l’), ¬at(r,l)

load(c,r,l)
• precond: at(r,l), in(c,l), unloaded(r)
• effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)

unload(c,r,l)
• precond: at(r,l), loaded(r,c)
• effects: unloaded(r), in(c,l), ¬loaded(r,c)



15

The Graphplan Planner 29

Simplified DWR Problem: State 
Proposition Symbols

robots:
• r1 and r2: at(robr,loc1) and at(robr,loc2)
• q1 and q2: at(robq,loc1) and at(robq,loc2)
• ur and uq: unloaded(robr) and unloaded(robq)

containers:
• a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2), 

loaded(conta,robr), and loaded(conta,robq)
• b1, b2, br, and bq: in(contb,loc1), in(contb,loc2), 

loaded(contb,robr), and loaded(contb,robq)

initial state: {r1, q2, a1, b2, ur, uq}
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Simplified DWR Problem: Action 
Symbols

move actions:
• Mr12: move(robr,loc1,loc2), Mr21: 

move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), 
Mq21: move(robq,loc2,loc1)

load actions:
• Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lar1, 

Lbr2, Lbq1, and Lbq2 correspondingly

unload actions:
• Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, 

Uar1, Ubr2, Ubq1, and Ubq2 correspondingly



16

The Graphplan Planner 31

Solution Existence

Proposition: A propositional planning 
problem P=(Σ,si,g) has a solution iff
Sg ⋂ Γ>({si}) ≠ {}.

Proposition: A propositional planning 
problem P=(Σ,si,g) has a solution iff
∃s∈Γ<({g}) : s⊆si.
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Reachability Tree
tree structure, where:
• root is initial state si• children of node s are Γ({s})
• arcs are labelled with actions

all nodes in reachability tree are Γ>({si}) 
• all nodes to depth d are Γd({si}) • solves problems with up to d actions in solution

problem: O(kd) nodes; 
k = applicable actions per state
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DWR Example: Reachability 
Tree

r1, q2, a1, b2, ur, uq

r1, q2, a1, bq, ur

r1, q2, ar, b2, ur

r1, q1, a1, b2, ur, uq

r2, q2, a1, b2, ur, uq

r2, q2, a1, bq, ur

r2, q2, a1, br, uq

r2, q1, a1, b2, ur, uq

r1, q2, a1, b2, ur, uq

Mq21Mr12
Lar1

Lbq2

Mr21 Mq21
Lbq2

Lbr2
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Planning Graph: Nodes

layered directed graph G=(N,E): 
• N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …

• state proposition layers: P0, P1, …
• action layers: A1, A2, …

first proposition layer P0:
• propositions in initial state si: P0=si

action layer Aj:
• all actions a where: precond(a)⊆Pj-1

proposition layer Pj:
• all propositions p where: p∈Pj-1 or ∃a∈Aj: p∈effects+(a)
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Planning Graph: Arcs

from proposition p∈Pj-1 to action a∈Aj:
• if: p ∈ precond(a)

from action a∈Aj to layer p∈Pj:
• positive arc if: p ∈ effects+(a)
• negative arc if: p ∈ effects-(a)

no arcs between other layers
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Planning Graph Example

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

r1
r2
q1
q2
a1

ar

b2

bq
ur
uq

aq

br

a2

b1

Mr12

Mq21

Lbq2

Lar1

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1

Ubq2

Uar2

Ubq1

Uaq1
Ubr2

P0 A1 P3P2P1 A3A2
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Reachability in the Planning 
Graph

reachability analysis:
• if a goal g is reachable from initial state si

• then there will be a proposition layer Pg in the planning 
graph such that g⊆Pg

necessary condition, but not sufficient
low complexity: 
• planning graph is of polynomial size and 
• can be computed in polynomial time
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Independent Actions: Examples
Mr12 and Lar1:
• cannot occur together
• Mr12 deletes precondition r1

of Lar1
Mr12 and Mr21:
• cannot occur together
• Mr12 deletes positive effect 

r1 of Mr21
Mr12 and Mq21:
• may occur in same action 

layer

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

P2P1 A2



20

The Graphplan Planner 39

Independent Actions

Two actions a1 and a2 are independent
iff:
• effects-(a1) ∩ (precond(a2) ∪ effects+(a2)) = {} 

and
• effects-(a2) ∩ (precond(a1) ∪ effects+(a1)) = {}.

A set of actions π is independent iff
every pair of actions a1,a2∈π is 
independent.
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Pseudo Code: independent

function independent(a1,a2)
for all p∈effects-(a1) 

if p∈precond(a2) or p∈effects+(a2) then
return false

for all p∈effects-(a2) 
if p∈precond(a1) or p∈effects+(a1) then

return false
return true
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Applying Independent Actions

A set π of independent actions is applicable to 
a state s iff
∪a∈πprecond(a) ⊆ s.
The result of applying the set π in s is defined 
as:
γ(s,π) = (s - effects-(π)) ∪ effects+(π), where:
• precond(π) = ∪a∈πprecond(a), 

• effects+(π) = ∪a∈πeffects+(a), and

• effects-(π) = ∪a∈πeffects-(a).
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Execution Order of Independent 
Actions

Proposition: If a set π of independent 
actions is applicable in state s then, for 
any permutation 〈a1,…,ak〉 of the 
elements of π: 
• the sequence 〈a1,…,ak〉 is applicable to s, and
• the state resulting from the application of π to 

s is the same as from the application of 
〈a1,…,ak〉, i.e.:
γ(s,π) = γ(s,〈a1,…,ak〉).
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Layered Plans

Let P = (A,si,g) be a statement of a 
propositional planning problem and G = (N,E), 
N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …, the 
corresponding planning graph.
A layered plan over G is a sequence of sets of 
actions: ∏ = 〈π1,…,πk〉 where: 
• πi ⊆ Ai ⊆ A,
• πi is applicable in state Pi-1, and
• the actions in πi are independent.
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Layered Solution Plan

A layered plan ∏ = 〈π1,…,πk〉 is a 
solution to a to a planning problem 
P=(A,si,g) iff:
• π1 is applicable in si,
• for j∈{2…k}, πj is applicable in state 
γ(…γ(γ(si,π1), π2), … πj-1), and

• g ⊆ γ(…γ(γ(si,π1), π2), …, πk).
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Execution Order in Layered 
Solution Plans

Proposition: If ∏ = 〈π1,…,πk〉 is a solution to a 
to a planning problem P=(A,si,g), then:
• a sequence of actions corresponding to any 

permutation of the elements of π1, 
• followed by a sequence of actions corresponding to 

any permutation of the elements of π2,
• …
• followed by a sequence of actions corresponding to 

any permutation of the elements of πk

is a path from si to a goal state.
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Problem: Dependent 
Propositions: Example

r2 and ar: 
• r2: positive effect of Mr12
• ar: positive effect of Lar1
• but: Mr12 and Lar1 not 

independent
• hence: r2 and ar incompatible 

in P1

r1 and r2:
• positive and negative effects 

of same action: Mr12
• hence: r1 and r2 incompatible 

in P1

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

P0 A1 P1

Mr12

Mq21

Lbq2

Lar1
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Mr12

Mq21

Lbq2

Lar1

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

No-Operation Actions
No-Op for proposition p:
• name: Ap
• precondition: p
• effect: p

r1 and r2:
• r1: positive effect of Ar1
• r2: positive effect of Mr12
• but: Ar1 and Mr12 not 

independent
• hence: r1 and r2 incompatible 

in P1

only one incompatibility test

r1
q2
a1
b2
ur
uq

P0 A1 P1

Ar1
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Mutex Propositions

Two propositions p and q in proposition 
layer Pj are mutex (mutually exclusive) if:
• every action in the preceding action layer Aj

that has p as a positive effect (incl. no-op 
actions) is mutex with every action in Aj that 
has q as a positive effect, and

• there is no single action in Aj that has both, p
and q, as positive effects.

notation: μPj = { (p,q) | p,q∈Pj are mutex}
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Pseudo Code: mutex for 
Propositions

function mutex(p1,p2,μAj)
for all a1∈p1.producers()

for all a2∈p2.producers()
if (a1,a2)∉μAj then

return false
return true

The Graphplan Planner 50

Mutex Actions: Example

r1 and r2 are mutex in 
P1

r1 is precondition for 
Lar1 in A2

r2 is precondition for 
Mr21 in A2

hence: Lar1 and Mr21 
are mutex in A2

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

Mr12

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1
Ubq2

P2P1 A2
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Mutex Actions

Two actions a1 and a2 in action layer Aj
are mutex if:
• a1 and a2 are dependent, or
• a precondition of a1 is mutex with a 

precondition of a2.

notation: 
μAj = { (a1,a2) | a1,a2 ∈Aj are mutex}

The Graphplan Planner 52

Pseudo Code: mutex for Actions

function mutex(a1,a2,μP)
if ¬independent(a1,a2) then

return true
for all p1∈precond(a1) 

for all p2∈precond(a2) 
if (p1,p2)∈μP then return true

return false
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Decreasing Mutex Relations
Proposition: If p,q∈Pj-1 and (p,q)∉μPj-1 then (p,q)∉μPj.• Proof: 

• if p,q∈Pj-1 then Ap,Aq∈Aj• if (p,q)∉μPj-1 then (Ap,Aq)∉μAj• since Ap,Aq∈Aj and (Ap,Aq)∉μAj, (p,q)∉μPj must hold
Proposition: If a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then 
(a1,a2)∉μAj.
• Proof:

• if a1,a2∈Aj-1 and (a1,a2)∉μAj-1 then 
• a1 and a2 are independent and 
• their preconditions in Pj-1 are not mutex

• both properties remain true for Pj
• hence: a1,a2∈Aj and (a1,a2)∉μAj

The Graphplan Planner 54

Removing Impossible Actions

actions with mutex
preconditions p and 
q are impossible
• example: 

preconditions r2 and 
ar of Uar2 in A2 are 
mutex

can be removed 
from the graph
• example: remove 

Uar2 from A2

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a2
ar

b2

bq
ur
uq

aq

br

Uar2

P2P1 A2
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Reachability in Planning Graphs

Proposition: Let P = (A,si,g) be a 
propositional planning problem and G = 
(N,E), N = P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …, 
the corresponding planning graph. If 
• g is reachable from si

then 
• there is a proposition layer Pg such that

• g ⊆ Pg and
• ¬∃ g1,g2∈g: (g1,g2)∈μPg.
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Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
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The Graphplan Algorithm: Basic 
Idea

expand the planning graph, one action 
layer and one proposition layer at a time
from the first graph for which Pg is the 
last proposition layer such that 
• g ⊆ Pg and
• ¬∃ g1,g2∈g: (g1,g2)∈μPg

search backwards from the last 
(proposition) layer for a solution
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Planning Graph Data Structure
k-th planning graph Gk:• nodes N:

• array of proposition layers P0 … Pk• proposition layer j: set of proposition symbols
• array of action layers A1 … Ak• proposition layer j: set of action symbols

• edges E:
• precondition links: prej ⊆ Pj-1×Aj, j∈{1…k}
• positive effect links: ej

+ ⊆ Aj×Pj, j∈{1…k}
• negative effect links: ej

– ⊆ Aj×Pj, j∈{1…k}
• proposition mutex links: μAj ⊆ Aj×Aj, j∈{1…k}
• action mutex links: μPj ⊆ Pj×Pj, j∈{1…k}
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Pseudo Code: expand
function expand(Gk-1)

Ak {a∈A | precond(a)⊆Pk-1 and 
{(p1,p2) | p1,p2∈precond(a)} ∩ μPk-1 = {} }

μAk {(a1,a2) | a1,a2∈Ak, a1≠a2, and mutex(a1,a2,μPk-1) }
Pk {p | ∃a∈Ak : p∈effects+(a) }
μPk {(p1,p2) | p1,p2∈Pk, p1≠p2, and mutex(p1,p2,μAk) }
for all a∈Ak

prek prek ∪ ({p | p∈Pk-1 and p∈precond(a)} × a)
ek

+ ek
+ ∪ (a × {p | p∈Pk and p∈effects+(a)})

ek
– ek

– ∪ (a × {p | p∈Pk and p∈effects–(a)})
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Planning Graph Complexity

Proposition: The size of a planning 
graph up to level k and the time required 
to expand it to that level are polynomial 
in the size of the planning problem.
Proof: 
• problem size: n propositions and m actions
• |Pj|≤n and |Aj|≤n+m (incl. no-op actions) 
• algorithms for generating each layer and all 

link types are polynomial in size of layer
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Fixed-Point Levels
A fixed-point level in a planning graph G is a 
level κ such that for all i, i>κ, level i of G is 
identical to level κ, i.e. Pi=Pκ, μPi=μPκ, Ai=Aκ, 
and μAi=μAκ.

Proposition: Every planning graph G has a 
fixed-point level κ, which is the smallest k such 
that |Pk|=|Pk+1| and |μPk|=|μPk+1|.
Proof:
• Pi grows monotonically and μPi shrinks monotonically
• Ai and Pi only depend on Pi-1 and μPi-1
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Searching the Planning Graph

general idea:
• search backwards from the last proposition layer Pk in 

the current graph
• let g be the set of goal propositions that need to be 

achieved at a given proposition layer Pj (initially the 
last layer)

• find a set of actions πj⊆Aj such that these actions are 
not mutex and together achieve g

• take the union of the preconditions of πj as the new 
goal set to be achieved in proposition layer Pj-1
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Planning Graph as AND/OR-
Graph

OR-nodes:
• nodes in proposition layers
• links to actions that support the propositions

AND-nodes:
• nodes in action layers
• k-connectors all preconditions of the action

search:
• AO* not best algorithm because it does not exploit 

layered structure
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Repeated Sub-Goals

P0 Pi Pj Pk
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The nogood Table
nogood table (denoted ∇) for planning graph 
up to layer k:
• array of k sets of sets of goal propositions

• inner set: one combination of propositions that cannot 
be achieved

• outer set: all combinations that cannot be achieved (at 
that layer)

before searching for set g in Pj:• check whether g∈∇(j)
when search for set g in Pj has failed:
• add g to ∇(j)
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Pseudo Code: extract

function extract(G,g,i)
if i=0 then return 〈〉
if g∈∇(i) then return failure
∏ gpSearch(G,g,{},i)
if ∏≠failure then return ∏
∇(i) ∇(i) + g
return failure
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Pseudo Code: gpSearch
function gpSearch(G,g,π,i)

if g={} then
∏ extract(G,∪a∈πprecond(a),i-1)
if ∏=failure then return failure
return ∏∙〈π〉

p g.selectOne()
resolvers {a∈Ai | p∈effects+(a) and ¬∃a’∈π: (a,a’)∈μAi}
if resolvers={} then return failure
a resolvers.chooseOne()
return gpSearch(G,g-effects+(a),π+a,i)
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Pseudo Code: graphplan
function graphplan(A,si,g)

i 0; ∇ []; P0 si; G (P0,{})
while (g⊈Pi or g2∩μPi≠{}) and ¬fixedPoint(G) do

i i+1; expand(G)
if g⊈Pi or g2∩μPi≠{} then return failure
η fixedPoint(G) ? |∇(κ)| : 0
∏ extract(G,g,i)
while ∏=failure do

i i+1; expand(G)
∏ extract(G,g,i)
if ∏=failure and fixedPoint(G) then

if η=|∇(κ)| then return failure
η |∇(κ)| 

return ∏
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Graphplan Properties

Proposition: The Graphplan algorithm is 
sound, complete, and always terminates. 
• It returns failure iff the given planning problem 

has no solution; 
• otherwise, it returns a layered plan ∏ that is a 

solution to the given planning problem.

Graphplan is orders of magnitude faster 
than previous techniques!
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Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
Planning-Graph Heuristics
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Forward State-Space Search

idea: apply standard search algorithms 
(breadth-first, depth-first, A*, etc.) to 
planning problem:
• search space is subset of state space
• nodes correspond to world states
• arcs correspond to state transitions
• path in the search space corresponds to plan
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l1 l2

DWR Example State

k1

ca

k2

q2p2

cb

cc

cd

ce

cf

r1

goal: (and 
(in ca p2)  (in cb q2) (in cc p2) (in cd q2) (in ce q2) (in cf q2))
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Heuristics

estimate distance to nearest goal state
• number of unachieved goals (not admissible)
• number of unachieved goals / max. number of 

positive effects per operator (admissible)

example state (prev. slide):
• actual goal distance: 35 actions
• h(s) = 6
• h(s) = 6 / 4
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Finding Better Heuristics
solve “relaxed” problem and use solution as 
heuristic
planning heuristic:
• planning problem: P=(O,si,g) 
• for p ∈ g: min-layer(p) = index of first proposition 

layer in planning graph that contains p
• admissible heuristic: max(p ∈ g): min-layer(p) 
• not admissible: sum(p ∈ g): min-layer(p) 

no need to compute mutex relations
no need to re-compute planning graph for 
ground backward search
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The FF Planner (Basics)

heuristic
• based on planning graph without negative 

effects
• backward search possible in polynomial time

search strategy
• enforced hill-climbing: commit to first state 

with better f-value
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Overview

The Propositional Representation
The Planning-Graph Structure
The Graphplan Algorithm
Planning-Graph Heuristics


