The Graphplan Planner

Searching the Planning
Graph

-

Literature

~

e Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning — Theory

and Practice, chapter 6. Elsevier/Morgan
Kaufmann, 2004.

The Graphplan Planner

Neoclassical Planning

e concerned with restricted state-transition
systems

e representation is usually restricted to
propositional STRIPS

e neoclassical vs. classical planning

¢ classical planning: search space consists of nodes
containing partial plans

® neoclassical planning: nodes can be seen as sets of
partial plans

e resulted in significant speed-up and revival of
planning research

The Graphplan Planner

Overview

» The Propositional Representation
e The Planning-Graph Structure
e The Graphplan Algorithm

The Graphplan Planner

Classical Representations

e propositional representation
® world state is set of propositions

® action consists of precondition propositions,
propositions to be added and removed

e STRIPS representation

¢ like propositional representation, but first-order literals
instead of propositions

e state-variable representation
¢ state is tuple of state variables {x;,...,x,}
® action is partial function over states

The Graphplan Planner

Propositional Planning Domains

o Let L={p,,...,p,} be a finite set of proposition
symbols. A propositional planning domain on L
is a restricted state-transition system 2=(S,A,y)
such that:

® Sc2i i.e. each state sis a subset of L

* AC 2ix2Lx2L je. each action ais a triple
(precond(a), effects(a), effects*(a)) where effects(a)
and effects*(a) must be disjoint

® y:SxA—2L where
® y(s,a)=(s - effects (a)) u effects*(a) if precond(a) € s
® y(s,a)=undefined otherwise

® Sis closed under y

The Graphplan Planner

-

DWR Example: State Space

crane Sp| movel crane s, crane Ss
E—
- . | | /
[robot [robot [robot |
locationl location2 move2 locationl location2 locationl location2
take put take put movel move2
crane crane crane
Sy | movel S3| toad S4
_ .
{ ronot,J { Fobot,J
move2 unload
locationl location2 locationl location2 locationl location2
The Graphplan Planner 7

-

States

DWR Example: Propositional

~

Ss}

s,={onpallet,at2}
s,={holding,at2}
s,={onpallet,at1}
s;={holding,at1}
s,={onrobot,at1}
ss={onrobot,at2}

e [={onpallet,onrobot,holding,at1,at2}
o S={s,,...,

The Graphplan Planner

-

DWR Example: Propositional

~

Actions
a precond(a) | effects(a) | effects*(a)

take {onpallet} {onpallet} {holding}

put {holding} {holding} {onpallet}

load {holding,at1} {holding} {onrobot}
unload |{onrobot,at1} {onrobot} {holding}
movel |{at2} {at2} {at1}

move2 |{at1} {at1} {at2}

/

The Graphplan Planner

-

DWR Example: Propositional
State Transitions

~

So S1 S, S3 S4 Ss
take Sy S3
put So S,
load Sy
unload S3
movel So Sy Sy
move2 S, S5 Sg

.

The Graphplan Planner

10

Propositional Planning Problems

e A propositional planning problem is a
triple 2=(,s;,9) where:
® 2=(S,A,y) is a propositional planning domain
on L={p,,....p,}
® sESis the initial state

® g<L is a set of goal propositions that define
the set of goal states S ={seS | g<s}

The Graphplan Planner 11

DWR Example: Propositional
Planning Problem

e 2: propositional planning domain for
DWR domain

e S;: any state
® example: initial state = s,€S

e g: any subset of L
® example: g={onrobot,at2}, i.e. S ={s;}

The Graphplan Planner 12

Classical Plans

e A plan is any sequence of actions m=(ay,...,a,),
where A20.
® The length of plan 17 is |7|=k, the number of actions.
® If m=(a,,...,a,) and 772=<a’1,...,a’j> are plans, then their
concatenation is the plan m,*m,= <a1,...,ak,a’1,...,a}).
® The extended state transition function for plans is
defined as follows:

® y(s,m=s if k=0 (17 is empty)
® v(s,m)=y(y(s.a,).(@...,ay) if &0 and a, applicable in s
® y(s,m=undefined otherwise
The Graphplan Planner 13

Classical Solutions

e Let 2=(%,s,,g) be a propositional planning
problem. A plan 17 is a solution for 2 if
gENS;).

¢ A solution r7is redundant if there is a proper
subsequence of rris also a solution for 2.

® m7is minimal if no other solution for 2 contains
fewer actions than 1.

The Graphplan Planner 14

/DWR Example: Plans and

Solutions
plan 1T | T || y(s;,mT)| sol. | red. |min.

O 0 Sy no - -

(move2,move2) 2 undef. no - -

(take,move1) 2 S, no - -

(take,move1,put,move2, 8 55 yes | yes no

take,move1,load,move2)

(take,move1,load,move?2) 4 S yes no yes
\ (move1,take,load,move2) 4 S yes no yes

1/

The Graphplan Planner

15

-

Reachable Successor States

~

e The successor function ":25—25 for a
propositional domain 2=(S,A,y) is defined as:
® I'(s)={s,a) | acAand a applicable in s} for seS
® T({s128)= Upepr, mpl (S5
* I%{s,,....,s,)=1{sy,...,5,} 81,..,8,€S
* I({sy,....s,)= T(T"™'({sy,...,5,)

e The transitive closure of I defines the set of all
reachable states:

K ® I(8)= Ujyepo.p T A sh for seS

J

The Graphplan Planner

16

Relevant Actions and
Regression Sets

e Let 2=(Z,s,9) be a propositional planning
problem. An action a€A is relevant for g if
* gn effects*(a) # {} and
* gn effects(a) = {}.

e The regression set of g for a relevant action
acA is:
* vy (g a)=(g- effects*(a)) U precond(a)
® note: y(s,a)eS, iff y'(ga)cs

The Graphplan Planner 17

Regression Function

e The regression function - for a propositional
domain 2=(S,A,y) on L is defined as:
* M(g)={y'(g.a) | acAis relevant for g} for ge2t

* Mr°Gg1,--9M= {919,

* M'{gy,--90)= U(ke[1,n])r'1(gk) } G- g2t
* (g, g D= T ({ gy, ...)

e The transitive closure of ! defines the set of
all regression sets:

® T(9)= Yiepo,) g} for ge2t

The Graphplan Planner 18

Statement of a Propositional
Planning Problem

e A statement of a propositional planning
problem is a triple P=(A,s;,g) where:

¢ Ais a set of actions in an appropriate
propositional planning domain 2=(S,A,y) on L

¢ s;is the initial state in an appropriate
propositional planning problem 2=(Z,s;9)

® g is a set of goal propositions in the same
propositional planning problem 2

The Graphplan Planner

Example: Ambiguity in Statement of
a Planning Problem

statement: P =({a,}, s;, g) where
a;=({p+}{p+}:{p2}), s={p4}, and g={p,}

o 2,=(24,5;,9) where o 2,=(Z,,5,9) where
o > =(o ,=(
: {p1}.{p2}}, * {p3{P2hAp1.Ps} P2 P},
{ai}, * {a;},
" {(pihan—tpath) on * {(ph.a)—{py
L= ({p1,P3}:a1)—{p2.P3}}) ON
o Li={py.pa} o L,={p;,p..P3}

The Graphplan Planner

19

20

10

Statement Ambiguity

Proposition: Let 2, and 2, be two

propositional planning problems that
have the same statement. Then both, 2,

and 2,, have
¢ the same set of reachable states *({s}) and
¢ the same set of solutions.

The Graphplan Planner 21

Properties of the Propositional
Representation

Expressiveness: For every propositional
planning domain there is a corresponding
state-transition system, but what about vice
versa?

Conciseness: propositional action
representation is concise because it does not
mention what does not change

Consistency: not every assignment of truth
values to propositions must correspond to a
state in the underlying state-transition system

The Graphplan Planner 22

11

Grounding a STRIPS Planning
Problem

Let P=(O,s;,g) be the statement of a STRIPS
planning problem and C the set of all the
constant symbols that are mentioned in s;. Let
ground(O) be the set of all possible
instantiations of operators in O with constant
symbols from C consistently replacing
variables in preconditions and effects.

Then P’=(ground(0),s;,g) is a statement of a
STRIPS planning problem and P’ has the
same solutions as P.

The Graphplan Planner 23

Translation: Propositional
Representation to Ground STRIPS

e Let P=(A,s,,g) be a statement of a

propositional planning problem. In the
actions A:

® replace every action (precond(a), effects(a),
effects*(a)) with an operator o with
® some unique name(0),
® precond(o) = precond(a), and
¢ effects(o) = effects*(a) u {p | peeffects(a)}.

The Graphplan Planner 24

12

/Translation: Ground STRIPS to \
Propositional Representation

e Let P=(0O,s;g) be a ground statement of a
classical planning problem.
® In the operators O, in the initial state s;, and in the goal
g replace every atom P(v,,...,v,) with a propositional
atom Pv,,..., V.
® In every operator o:
¢ for all =p in precond(o), replace —p with p’,
¢ if p in effects(o), add —p’ to effects(o),
¢ if 7p in effects(o0), add p’ to effects(o).
® In the goal replace —p with p’.
® For every operator o create an action

(precond(o), effects(a), effects*(a)).

The Graphplan Planner 25

Overview

e The Propositional Representation
» The Planning-Graph Structure
e The Graphplan Algorithm

The Graphplan Planner 26

13

-

Example: Simplified DWR
Problem

~

robr robq

locl loc2

e robots can load and unload autonomously

e locations may contain unlimited number of
robots and containers

e problem: swap locations of containers

%

The Graphplan Planner

27

-

Simplified DWR Problem: STRIPS
Actions

~

e move(r,/l)

® precond: at(r,/), adjacent(/,/’)

¢ effects: at(r,/"), ~at(r,/)
e load(c,r,/)

® precond: at(r,/), in(c,/), unloaded(r)

¢ effects: loaded(r,c), 7in(c,/), “unloaded(r)
e unload(c,r,/)

® precond: at(r,/), loaded(r,c)

¢ effects: unloaded(r), in(c,/), ~loaded(r,c)

%

The Graphplan Planner

28

14

-

Simplified DWR Problem: State
Proposition Symbols

~

o

e robots:
® r1 and r2: at(robr,loc1) and at(robr,loc2)
® g1 and g2: at(robq,loc1) and at(robq,loc2)
® ur and uq: unloaded(robr) and unloaded(robq)
e containers:
® ai, a2, ar, and aq: in(conta,loc1), in(conta,loc2),
loaded(conta,robr), and loaded(conta,robq)
® b1, b2, br, and bq: in(contb,loc1), in(contb,loc2),
loaded(contb,robr), and loaded(contb,robq)

e initial state: {r1, q2, a1, b2, ur, uq}

%

The Graphplan Planner

29

-

.

Simplified DWR Problem: Action
Symbols

~

e move actions:
® Mr12: move(robr,loc1,loc2), Mr21:
move(robr,loc2,loc1), Mg12: move(robq,loc1,loc2),
Mqg21: move(robq,loc2,loc1)
e |oad actions:
® Lar1: load(conta,robr,loc1); Lar2, Lag1, Lag2, Lar1,
Lbr2, Lbg1, and Lbg2 correspondingly
e unload actions:

® Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uag2,
Uar1, Ubr2, Ubqg1, and Ubg2 correspondingly

%

The Graphplan Planner

30

15

Solution Existence

e Proposition: A propositional planning
problem 2=(Z,s;,g) has a solution iff

Sgn I=({si) * {}

e Proposition: A propositional planning
problem 2=(Z,s;,g) has a solution iff
Jsel=({g}) : s<s;

The Graphplan Planner 31

Reachability Tree

e tree structure, where:
® root is initial state s;
® children of node s are '({s})
® arcs are labelled with actions
e all nodes in reachability tree are '*({s})

* all nodes to depth d are ({s})
® solves problems with up to ¢ actions in solution

e problem: O(k% nodes;
k = applicable actions per state

The Graphplan Planner 32

16

/DWR Example: Reachability \
Tree

r1,q2, a1, b2, ur, uq

Lbg2
Mr2_—goo

Lar1
, at, b2, ur, ug r1, q2, a1, bq, ur
r2, q2, a1, b2, ur, uq A\ r1, 92, ar, b2, ur 1‘\
S OO0 1‘\ OO00
Lbg2

|

~\

Mq21

Mr21 Lbr2

r2, q1, at, b2, ur, r2, q2, a1, bq, ur

qu atl, b2, ur, uq r2, q2, at, br, uq J

The Graphplan Planner 33

4 N

Planning Graph: Nodes

e layered directed graph G=(N,E):
* N=PyuAjUuP,UA,UP,U ...
¢ state proposition layers: Py, P;, ...
® action layers: Ay, A,, ...
o first proposition layer P
¢ propositions in initial state s;: Py=s;
e action layer A;:
¢ all actions a where: precond(a)<P;

e proposition layer P;:

K ¢ all propositions p where: peP, ; or JacA;: peeffects*(a) /

The Graphplan Planner 34

17

4 N

Planning Graph: Arcs

e from proposition peP,;, to action acA;.
¢ if: p € precond(a)

e from action a<A; to layer peP;:
® positive arc if: p € effects*(a)
® negative arc if: p € effects(a)

e no arcs between other layers

- J

The Graphplan Planner 35

Planning Graph Example

The Graphplan Planner 36

18

Reachability in the Planning
Graph

e reachability analysis:
¢ if a goal g is reachable from initial state s;

¢ then there will be a proposition layer P in the planning
graph such that gcP,

e necessary condition, but not sufficient

e low complexity:
® planning graph is of polynomial size and
® can be computed in polynomial time

The Graphplan Planner 37

Independent Actions: Examples

e Mr12 and Lar1:

® cannot occur together

® Mr12 deletes precondition r1
of Lar1

e Mr12 and Mr21:

® cannot occur together
® Mr12 deletes positive effect
r1 of Mr21
e Mr12 and Mg21:

® may occur in same action
layer

The Graphplan Planner 38

19

Independent Actions

e Two actions a, and a, are independent
iff:
¢ effects (a,) n (precond(a,) U effects*(a,)) = {}
and
¢ effects’(a,) n (precond(a,) U effects*(a,)) = {}.
e A set of actions T is independent iff
every pair of actions a,,a,em is
independent.

The Graphplan Planner 39

Pseudo Code: independent

function independent(a,,a,)
for all peeffects(a,)
if peprecond(a,) or peeffects*(a,) then
return false
for all peeffects(a,)
if peprecond(a,) or peeffects*(a,) then
return false
return true

The Graphplan Planner 40

20

Applying Independent Actions

e A set 1 of independent actions is applicable to
a state s iff
U,_.precond(a) < s.

e The result of applying the set 7 in s is defined
as:
v(s,mm) = (s - effects (1)) U effects*(r7), where:
® precond(mr) = U___precond(a),

ae<ir

* effects*(m) = U,_,effects*(a), and

* effects () = U,_,effects(a).

The Graphplan Planner 41

Execution Order of Independent
Actions

e Proposition: If a set i of independent
actions is applicable in state s then, for
any permutation (a,,...,a,) of the
elements of r:

¢ the sequence (a,,...,a,) is applicable to s, and

® the state resulting from the application of to
s is the same as from the application of
(@q,...,ay), i.e..
y(S,1m) = y(S,(ay,...,ay)-

The Graphplan Planner 42

21

Layered Plans

e Let P =(A,s;9) be a statement of a
propositional planning problem and G = (N,E),
N=P,uA,uP,UA,UP,uU ..., the
corresponding planning graph.

e A layered plan over G is a sequence of sets of
actions: [] = (my4,...,m) where:

*mEcEAECA,
® m;is applicable in state P,,, and
¢ the actions in m; are independent.

The Graphplan Planner 43

Layered Solution Plan

e Alayered plan [] = (m,,...,m) is a
solution to a to a planning problem
P=(A,s;9) iff:

® m, is applicable in s,

¢ for je{2... 4}, m;is applicable in state
y(...¥(y(s,my),), ... T4), and

® 9 S V(.. V(V(SsTTy), Tp), ...y TT).

The Graphplan Planner 44

22

/Execution Order in Layered
Solution Plans

~

e Proposition: If [= (m,,...,m,) is a solution to a
to a planning problem P=(A,s;g), then:
® a sequence of actions corresponding to any
permutation of the elements of m,,
¢ followed by a sequence of actions corresponding to

any permutation of the elements of m,,
o

¢ followed by a sequence of actions corresponding to
any permutation of the elements of ,

\ is a path from s; to a goal state.

J

The Graphplan Planner

45

KProbIem: Dependent
Propositions: Example

e rZ2andar:
® r2: positive effect of Mr12
® ar: positive effect of Lar1

® but: Mr12 and Lar1 not
independent

® hence: r2 and ar incompatible
in P,
e riandr2:

® positive and negative effects
of same action: Mr12

® hence: r1 and r2 incompatible
in P,

N

The Graphplan Planner

23

No-Operation Actions

e No-Op for proposition p:
® name: Ap
® precondition: p
¢ effect: p
e r1andr2:
® r1: positive effect of Ar1
® r2: positive effect of Mr12

® but: Ar1 and Mr12 not
independent

® hence: r1 and r2 incompatible
in P,
e only one incompatibility test

The Graphplan Planner 47

Mutex Propositions

e Two propositions p and g in proposition
layer P; are mutex (mutually exclusive) if:

¢ every action in the preceding action layer A;
that has p as a positive effect (incl. no-op
actions) is mutex with every action in A, that
has g as a positive effect, and

¢ there is no single action in A; that has both, p
and q, as positive effects.

e notation: uP; = { (p,q) | p,qeP; are mutex}

The Graphplan Planner 48

24

/Pseudo Code: mutex for \
Propositions

function mutex(py,p,.uA)
for all a;ep,.producers()
for all a,ep,.producers()
if (a,a,)¢UA; then
return false
return true

- J

The Graphplan Planner 49

4 N

Mutex Actions: Example

e r1 and r2 are mutex in
P1

e r1is precondition for
Lar1in A,

e r2is precondition for
Mr21in A,

e hence: Lar1 and Mr21
are mutex in A,

-

The Graphplan Planner 50

25

Mutex Actions

e Two actions a, and a, in action layer A;
are mutex if:
¢ a, and a, are dependent, or

¢ a precondition of a, is mutex with a
precondition of a,.

e notation:
pA; = { (a4,a,) | a;,a, €A; are mutex}

The Graphplan Planner

Pseudo Code: mutex for Actions

function mutex(a4,a,,uP)
if mindependent(a,,a,) then
return true
for all p,eprecond(a,)
for all p,eprecond(a,)
if (p4,0,)euP then return true
return false

The Graphplan Planner

51

52

26

-

Decreasing Mutex Relations

.

e Proposition: If p,qeP,; and (p,q)¢uP,, then (p,q)¢uP;.
® Proof:
¢ if p,geP;, then Ap,AgeA;
* if (p,q)¢uP, then (Ap,AQ)¢uA;
® since Ap,AqeA; and (Ap,Aq)¢pA;, (p,q)¢uP; must hold
e Proposition: If a;,a,€A;; and (ay,a,)¢uA; 4 then
(ay,ap)ElA,.
¢ Proof:
¢ if a;,a,€A;, and (ay,a,)¢uA;, then
® a, and a, are independent and
® their preconditions in P, are not mutex

® both properties remain true for PJ
® hence: a,,a,€A; and (a;,a,)¢uA;

The Graphplan Planner

53

-

Removing Impossible Actions

-

e actions with mutex
preconditions p and
q are impossible

® example:
preconditions r2 and
arof Uar2 in A, are
mutex

e can be removed
from the graph

® example: remove
Uar2 from A,

The Graphplan Planner

27

-

Reachability in Planning Graphs

~

e Proposition: Let P= (A,s;,g) be a
propositional planning problem and G =
(NJE), N=PyuA,UP,UA,UP,U ..,
the corresponding planning graph. If

® g is reachable from s;

then

¢ there is a proposition layer P, such that
*g<c P and

\ ® 73 91.9,€9: (91.92)€1P,.

The Graphplan Planner

55

Overview

e The Propositional Representation
e The Planning-Graph Structure
» The Graphplan Algorithm

The Graphplan Planner

56

28

The Graphplan Algorithm: Basic
Idea

e expand the planning graph, one action
layer and one proposition layer at a time

e from the first graph for which P is the
last proposition layer such that
*gsP;,and
® 73 94,9,€9: (941.9,)€LP,

e search backwards from the last
(proposition) layer for a solution

The Graphplan Planner 57

Planning Graph Data Structure

e k-th planning graph G;:
® nodes N:
¢ array of proposition layers P, ... P,
® proposition layer j: set of proposition symbols
¢ array of action layers A, ... A,
® proposition layer j: set of action symbols
® edges E:
® precondition links: pre; < P, XA, je{1...k}
® positive effect links: e;" € AxP,, je{1...k}
® negative effect links: 7 S AXP,, je{1...k}
® proposition mutex links: uA; € AXA;, je{1...k}
¢ action mutex links: pP; < PXP;, je{1...k}

The Graphplan Planner 58

29

Pseudo Code: expand

function expand(G,_,)
A, € {a<A | precond(a)<P, , and
{(p1,P2) | py.pocprecond(a)} n uPy 4 = {} }
A, € {(a.a,) | a,,a,€A,, a,#a,, and mutex(a,,a,,uP,¢) }
P, € {p| JacA, : peeffects*(a) }

UP, € {(p1,05) | P1,02€P,, P17#P,, and mutex(p,,p,,uA,) }
for all acA,

pre, < pre, U ({p | peP,_, and peprecond(a)} * a)
e.f € e U (ax{p|peP,and peeffects*(a)})
e, € e, U (ax{p]|peP, and peceffects(a)})

The Graphplan Planner 59

Planning Graph Complexity

e Proposition: The size of a planning
graph up to level k and the time required
to expand it to that level are polynomial
in the size of the planning problem.

e Proof:
¢ problem size: n propositions and m actions
® |[P|=n and |A|=n+m (incl. no-op actions)
¢ algorithms for generating each layer and all

link types are polynomial in size of layer

The Graphplan Planner 60

30

Fixed-Point Levels

e A fixed-point level in a planning graph G is a
level k such that for all i, >k, level i of G is
identical to level «, i.e. P=P,, yP=uP, A=A,
and yA~LA..

e Proposition: Every planning graph G has a
fixed-point level «, which is the smallest k such
that |P|=|Py.| and [uPJ=[uPq |-

e Proof:

¢ P, grows monotonically and uP; shrinks monotonically
¢ A;and P;only depend on P, and uP, ,

The Graphplan Planner 61

Searching the Planning Graph

e general idea:

® search backwards from the last proposition layer P, in
the current graph

® let g be the set of goal propositions that need to be
achieved at a given proposition layer P (initially the
last layer)

¢ find a set of actions mEA; such that these actions are
not mutex and together achieve g

¢ take the union of the preconditions of 17; as the new
goal set to be achieved in proposition layer P,

The Graphplan Planner 62

31

4 N

Planning Graph Search Example

Mr12
A Mr21 — 1

Mq12 ’21
O S 4
3 s
@ N Lart 2 \\\l; b2 \
Y w\'%(“' Lbq 2
/ Uar1 ‘\§\<
\@,\l'(\\ \\\ br
g \ Ubr2 \\‘ d
ug
Ubq2
P, Az y
The Graphplan Planner 63
/Planning Graph as AND/OR- \
Graph
e OR-nodes:

® nodes in proposition layers

¢ links to actions that support the propositions
e AND-nodes:

® nodes in action layers

® k-connectors all preconditions of the action

e search:
® AO* not best algorithm because it does not exploit

layered structure

.

The Graphplan Planner 64

32

-

Repeated Sub-Goals

The Graphplan Planner

The nogood Table

e nogood table (denoted V) for planning graph
up to layer k:
® array of k sets of sets of goal propositions

® inner set: one combination of propositions that cannot
be achieved

® outer set: all combinations that cannot be achieved (at
that layer)

e before searching for set g in P;:
® check whether geV(j)

e when search for set g in P, has failed:

\ ® add g to V(j)

J

The Graphplan Planner

66

33

Pseudo Code: extract

function extract(G,g,/)
if ;=0 then return ¢
if geV(i) then return failure
[T € gpSearch(G,g,{},/)
if [[#failure then return []
V(i) €< V(i) +g
return failure

The Graphplan Planner

Pseudo Code: gpSearch

function gpSearch(G,g,m,i)
if g={} then

[1 € extract(GU,_,precond(a),i-1)
if [[=failure then return failure
return [[(rr)
p € g.selectOne()
resolvers & {a€A, | peeffects*(a) and ~3a’em: (a,a’)euA}
if resolvers={} then return failure
a < resolvers.chooseOne()
return gpSearch(G,g-effects*(a),m+a,i)

The Graphplan Planner

67

68

34

Pseudo Code: graphplan

function graphplan(A,s;9)
i€ 0, VE Py €s; G € (P)
while (g¢P; or g?nuP#{}) and —fixedPoint(G) do
i € i+1; expand(G)
if g&P; or g?nuP#{} then return failure
n < fixedPoint(G) ? |V(x)| : O
[1 € extract(G,g,i)
while [[=failure do
i € i+1; expand(G)
[1 €« extract(G,g,i)
if [[=failure and fixedPoint(G) then
if 7=|V(x)| then return failure
n < |V(x)|
return I1

The Graphplan Planner 69

Graphplan Properties

e Proposition: The Graphplan algorithm is
sound, complete, and always terminates.

® It returns failure iff the given planning problem
has no solution;

® otherwise, it returns a layered plan] that is a
solution to the given planning problem.

e Graphplan is orders of magnitude faster
than previous techniques!

The Graphplan Planner 70

35

Overview

e The Propositional Representation
e The Planning-Graph Structure

e The Graphplan Algorithm

e Planning-Graph Heuristics

The Graphplan Planner 71

Forward State-Space Search

e idea: apply standard search algorithms
(breadth-first, depth-first, A*, etc.) to
planning problem:
¢ search space is subset of state space
® nodes correspond to world states
® arcs correspond to state transitions
® path in the search space corresponds to plan

The Graphplan Planner 72

36

-

DWR Example State

—i

cc cf
cb ce
;‘a ii cd “? q I ﬁ T
11 12
goal: (and

(in ca p2) (incb g2) (in cc p2) (in cd g2) (in ce q2) (in cf qu

The Graphplan Planner

73

-

Heuristics

~

-

e estimate distance to nearest goal state
® number of unachieved goals (not admissible)
® number of unachieved goals / max. number of
positive effects per operator (admissible)
e example state (prev. slide):
¢ actual goal distance: 35 actions
®h(s)=6
®*h(s)=6/4

J

The Graphplan Planner

74

37

Finding Better Heuristics

e solve “relaxed” problem and use solution as
heuristic
e planning heuristic:
¢ planning problem: P=(O,s;,g)
*® for p € g: min-layer(p) = index of first proposition
layer in planning graph that contains p
¢ admissible heuristic: max(p € g): min-layer(p)
® not admissible: sum(p € g): min-layer(p)
e no need to compute mutex relations

e no need to re-compute planning graph for
ground backward search

The Graphplan Planner

The FF Planner (Basics)

e heuristic

® based on planning graph without negative
effects

® backward search possible in polynomial time

e search strategy

¢ enforced hill-climbing: commit to first state
with better f-value

The Graphplan Planner

75

76

Overview

e The Propositional Representation
e The Planning-Graph Structure

e The Graphplan Algorithm

e Planning-Graph Heuristics

The Graphplan Planner 77

39

