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One BillionTransistors,
One Uniprocessor, 
One Chip

A
billion transistors on a single chip presents
opportunities for new levels of computing
capability. Depending on your design point,
several distinct implementations are possi-
ble. In our view, if the design point is per-

formance, the implementation of choice is a very
high-performance uniprocessor on each chip, with
chips interconnected to form a shared memory mul-
tiprocessor.

The basic design problem is partitioning: How
should the functionality be partitioned to deliver the
highest performance computing system? Because one
billion transistors falls far short of an infinite number,
the highest performance computing system will not fit
onto a single chip. We must decide what functionality
cannot tolerate the latency of interchip communica-
tion. To do otherwise precludes obtaining the highest
performance.

Intraprocessor communication, to be effective, must
keep latency to a minimum, locating on the same chip
as many as possible of the structures necessary to sup-
port a high-performance uniprocessor. These struc-
tures include those necessary both for aggressive
speculation, such as a very aggressive dynamic branch
predictor, and for very-wide-issue superscalar pro-
cessing, such as

• a large trace cache,
• a large number of reservation stations,
• a large number of pipelined functional units,
• sufficient on-chip data cache, and
• sufficient resolution and forwarding logic.

A reasonable on-chip specification would issue a
maximum of 16 or 32 instructions per cycle (issue
width), include reservation stations to accommodate
2,000 instructions, and include 24 to 48 highly opti-
mized, pipelined functional units. We believe that the

effectiveness of these structures continues to scale as
the number of transistors on a chip increases. In our
view, we will run out of transistors before we run out
of functionality in support of a single instruction
stream. Ergo, one billion transistors, one uniproces-
sor, one chip.

History argues that such an engine could never run
at peak performance—that diminishing returns are
inevitable. We disagree: Ingrained in the model is the
flexibility of dynamic scheduling, coupled with the
structures required to exploit it. True, this will require
better algorithms to solve the application problems,
better compiler optimizations, and better CAD tools to
manage the great increase in design complexity. But
one billion transistors on a chip is still a decade out,
and the industry has talented people working on all
these fronts.

Even if diminishing returns does prove to be the
case, we suggest that it is still better to combine higher
performance uniprocessor chips—where higher
latency interchip communication is tolerable—than to
put lower performance uniprocessors on the same
chip—where lower latency communication is not
essential.

Several alternatives have been suggested for obtain-
ing highest performance with billion-transistor chips.
One, a chip multiprocessor (CMP), does not correctly
address the partitioning problem. The multiprocessor
divides the available transistors among processors on
the same chip. It would be better to put higher per-
forming processors on separate chips and tolerate the
resulting increase in interprocessor communication
latency. Also, on-chip memory pin-bandwidth (that is,
the number of bits of instructions and data that must
cross the chip boundary via the available pins) to sup-
port a single instruction stream is a bottleneck; allo-
cating multiple processors to one chip exacerbates that
problem.

To achieve the highest performance possible, the billion transistors
available on each chip should be utilized to support the highest performance
uniprocessor, with the resulting chips interconnected to create a
multiprocessor system.
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Multithreading will be a viable alternative when the
multiprocessor pin-bandwidth problem is solved.
Multithreading suffers from the same memory band-
width requirements as a CMP, but it better utilizes the
available transistors. Unlike a CMP, where the tran-
sistors are divided among all the processors, multi-
threading (by effective pipelining) provides the
functionality of a multiple processor at the approxi-
mate transistor cost of (approximately) a single
processor.1

IN PURSUIT OF HIGHEST PERFORMANCE
Highest performance execution of a single instruc-

tion stream involves

• delivering to the execution core (issuing) the max-
imum possible instruction bandwidth each cycle
and

• consuming that delivered bandwidth.

Several things get in the way:

• Delivering optimal instruction bandwidth
requires a minimal number of empty fetch cycles,
a very wide (conservatively 16 instructions,
aggressively 32), full issue each cycle, and a min-
imal number of cycles in which the instructions
fetched are subsequently discarded.

• Consuming this instruction bandwidth requires
sufficient data supply so that instructions are not
unnecessarily inhibited from executing. It also
requires sufficient processing resources to handle
the instruction bandwidth.

A one-billion transistor chip like that shown in
Figure 1 can help alleviate these problems. We sug-
gested in 1985 that a high-performance microproces-
sor should contain hardware-intensive micro-
architecture structures to support performance. We
called our model HPS (High-Performance Substrate).
The notion of aggressive hardware support for high
performance will be equally valid in the year 2005.2,3

We view instruction delivery as the single most
important problem—for example, 100 branch pre-
diction is not possible. In this article we suggest an
instruction cache system (the I cache) that provides
for out-of-order fetch (fetch, decode, and issue in the
presence of I cache misses). We also suggest a large
sophisticated trace cache for providing a logically
contiguous instruction stream, since the physical
instruction stream is not contiguous. And we suggest
an aggressive Multi-Hybrid branch predictor (mul-
tiple, separate branch predictors, each tuned to a dif-
ferent class of branches) with support for context
switching, indirect jumps, and interference handling.

Memory bandwidth and latency are the second most
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Figure 1. With one 
billion transistors, 60
million transistors will
be allocated to the
execution core, 240
million to the trace
cache, 48 million to
the branch predictor,
32 million to the data
caches, and 640 
million to the 
second-level 
caches.
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important problem, and we allocate more than half of
the billion transistors to its solution. We suggest a pro-
cessing core that contains enough functional units to
process the instructions, a mechanism to prevent arti-
ficial blocking, enough storage for instructions await-
ing dependencies to be resolved, and no unnecessary
delays between a functional unit producing a result
and another functional unit requiring it.

THE TRACE CACHE
Fetching past a taken branch poses a serious problem

for I cache designs—one that cannot be solved without
complexity, which would increase access latency. Our
design incorporates a trace cache, a new paradigm for
caching instructions. Trace caches address the loss of
instruction bandwidth due to incomplete fetches.5,6 First
suggested as an extension of the single block execution
atomic unit,4 the trace cache was developed into a viable
entity by Alex Peleg and Uri Weiser.7 Like the I cache, the
trace cache is accessed using the starting address of the
next block of instructions. Unlike the I cache, it stores
logically contiguous instructions in physically contigu-
ous storage. A trace cache line stores a segment of the
dynamic instruction trace—up to an issue-width’s worth
of instructions—across multiple, potentially taken
branches.

As a group of instructions is processed, it is latched
into the fill unit. The fill unit attempts to maximize
the size of the segment by coalescing newly arriving
instructions with instructions latched from previous
cycles. The fill unit finalizes a segment when the seg-
ment can be expanded no further—for example, when
an issue width of instructions has been collected.
Finalized segments are written into the trace cache.

Because the processing within the fill unit happens
off the critical execution path, the latency of the fill
unit does not directly impact overall performance.6 The
fill unit can spend several cycles analyzing and explic-
itly marking dependencies within a segment before
writing the segment into the trace cache. With this
framework, the amount of processing that must be per-
formed when the instructions are refetched can be min-
imized; instructions can be sent from the trace cache
into the reservation stations without having to undergo
a large amount of processing and rerouting. Figure 1
includes an overview of the trace cache data path.

Figure 2 compares the performance trends of a con-
ventional fetch mechanism with that of a trace cache
mechanism, as the size of the cache increases. We sim-
ulated the three largest applications from the
SPECint95 benchmarks—go, gcc, and vortex—on a
16-wide issue machine with perfect branch prediction.
The data shows that

• the trace cache is effective in delivering more than
one basic block per cycle, and

• the trace cache continues to add performance as
the size of the storage structure is increased.

Typically, the sizes of I caches are not determined by
specific benchmarks, but can be as large as imple-
mentation budgets allow. However, as the I cache size
grows beyond the working sets of a large class of typ-
ical applications, there is a diminishing growth in per-
formance of single applications. The trace cache
exploits this availability of storage by caching the pro-
gram in an execution-oriented manner, rather than
caching it for efficient storage. As a result, trace caches
continue to increase performance with more space.

Even though large cache structures may fit into area
budgets, they may not fit into timing budgets. Many of
the techniques used to deal with the latency of access-
ing the I cache can be applied to the trace cache. The
trace cache can be pipelined across several cycles, thus
requiring a smaller one-cycle structure to cache next
fetch addresses (similar to a branch target buffer in I
cache designs). The trace cache can also be partitioned
into two levels, with a smaller, frequently accessed, one-
cycle component and a larger multicycle component.
Set prediction and remapping schemes can deal with
the additional latency of set-associative access.

Since its latency does not directly affect perfor-
mance, the fill unit offers an intriguing framework for
runtime manipulation of the program executable.
First, it can boost fetch bandwidth by using runtime
or compile-time information to more effectively cre-
ate segments, which can contain instructions from
multiple execution paths. Second, the fill unit can ana-
lyze the instructions in these segments and perform
runtime code optimizations. Third, it can retarget the
instruction set architecture of incoming blocks to one
more efficiently supported by the hardware.

THE BRANCH PREDICTOR
To maximize the issue bandwidth, the penalties asso-

ciated with branches must be avoided. Predictions must
be made in a single cycle and must be very accurate.

Figure 2.
Performances of vari-
ous fetch mechanisms
as the size of the
cache structure
increases. At 512
Kbytes, the trace
cache continues to
gain performance.
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Although the
proposed
predictor 
can give 
very
accurate 
predictions,
accessing a
predictor of
this size in 
a single
cycle is not
reasonable.
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Thus the branch predictor is an essential component in
today’s wide-issue processors, and its importance will
be further emphasized in future processors.

Aggressive hybrid branch prediction
Many branches display different characteristics;

some branches follow recurring execution patterns,
while others depend on the outcomes of the preceding
branches. A single-scheme predictor usually predicts a
subset of the branches well. Our solution enlarges the
subset of easily predictable branches. To do this, we use
a hybrid predictor that comprises several predictors,
each targeting different classes of branches. Scott
McFarling first proposed combining two predictors.8

As predictors increase in size, they often take more
time to react to changes in a program. This warm-up
time can be detrimental when running a multipro-
grammed workload, or even when running large pro-
grams that frequently move to different sections of the
code. However, a hybrid predictor with several com-
ponents can solve this problem by using component
predictors with shorter warm-up times while the larger
predictors are warming up. The most accurate con-
ventional hybrid predictors consist of two large com-
ponents with longer warm-up times—thus they lack
this flexibility. Examples of predictors with shorter
warm-up times are two-level predictors with shorter
histories as well as smaller dynamic predictors.

The downside to using a hybrid predictor with many
components is that some predictors only work well if
they are large enough. This is generally due to the inter-
ference between different branches competing for the
resources of that predictor. By increasing the number
of predictor components, less hardware will be avail-
able for each of them. However, with the number of
transistors likely available in the processor of the
future, this detrimental effect will be overshadowed by
the advantages of having several components. The
interference effects on the small predictor components
is further minimized by not updating the pattern his-
tory tables for mostly unidirectional branches.

One example of a multicomponent hybrid predic-
tor is the Multi-Hybrid.9 The Multi-Hybrid uses a set
of selection counters for each entry in the branch tar-
get buffer, in the trace cache, or in a similar structure,
keeping track of the predictor currently most accurate
for each branch and then using the prediction from
that predictor for that branch. Figure 3 shows that the
Multi-Hybrid is able to take advantage of extra hard-
ware even at fairly high implementation costs. The
likely implementation cost for the processor we are
proposing would be between 256 and 1,024 Kbytes. At
256 Kbytes, the average misprediction rate is still a lit-
tle too high to take full advantage of a one-billion-tran-
sistor processor. However, the average misprediction
rate is deceptively high due to the benchmark go, which

is mispredicting almost 10 percent of the branches.
Other techniques, such as predicated execution and
program-based prediction, will be required for this
benchmark to take advantage of the processor.

We suggest that the predictor used in a one-billion-
transistor processor will be closely related to the
Multi-Hybrid, but at this point very little research has
been done on how to best combine multiple compo-
nents in a single branch predictor. The Multi-Hybrid
already performs better than regular hybrid predic-
tors. With more research on how to best extend the
Multi-Hybrid to predict several branches per cycle and
more research on the interaction between component
predictors, the Multi-Hybrid could evolve into an even
better predictor, capable of fully meeting the demands
of this aggressive processor design. 

Implementation issues and indirect jumps
The need for a large predictor brings up several

implementation issues. Although the proposed pre-
dictor can give very accurate predictions, accessing a
predictor of this size in a single cycle is not reasonable.
However, a single-cycle prediction is needed to allow
the front end to work at peak capabilities.

Some of the component predictors in the Multi-
Hybrid, such as the per-address two-level predictor,
are capable of making their prediction ahead of time.
This produces a temporary prediction that will be used
to redirect the front end, being compared to the full
prediction of the Multi-Hybrid a few cycles later. Such
predictions have a slightly lower accuracy but can be
accessed quickly. If the predictions disagree, the front
end will be flushed, resulting in only a minor penalty
that will be hidden as long as the reservation stations
hold instructions waiting to be executed.

Indirect branches are another area where the addi-
tional hardware budget can help overcome a major
problem. The indirect branch predictor uses the same
concept applied in the two-level branch predictor.
However, instead of a table of two-bit counters, the
indirect branch predictor uses the branch history to
index to a table of branch targets.10 These targets are
then used to predict the indirect jump, in much the
same way as a two-level predictor predicts the direc-
tion of a branch. Even at fairly low implementation
costs, this mechanism reduces by about half the num-
ber of mispredictions due to indirect jumps.

Finally, even though a dynamic predictor can do
quite well on its own, a processor like this needs some
help from the compiler and the application program-
mer. Certain branches will always remain inherently
hard to predict, regardless of the amount of logic
thrown at the problem. When possible, these branches
should be predicated; or dynamic predictor hint
instructions may be needed to improve the chance of
correct predictions.

.
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THE MEMORY SYSTEM
Processor cycle time is decreasing faster than cache

and memory access times. If this trend continues and
a billion transistors are fabricated on a die, misses ser-
viced by main memory will cause stalls of hundreds
of cycles. Out-of-order execution tolerates data cache
and memory latencies better than in-order execution,
but out-of-order execution is not enough.

Instruction supply and out-of-order fetch
To deal with trace cache misses, high-performance

processors will employ out-of-order fetch. An in-order
fetch processor, upon encountering a trace cache miss,
waits until the miss is serviced before fetching any new
segments. But an out-of-order fetch processor tem-
porarily ignores the segment associated with the miss,
attempting to fetch, decode, and issue the segments
that follow it. After the miss has been serviced, the
processor decodes and issues the ignored segment.

Higher performance can be achieved by fetching
instructions that—in terms of a dynamic instruction
trace—appear after a mispredicted branch, but are not
control-dependent upon that branch. In the event of
a mispredict, only instructions control-dependent on
the mispredicted branch are discarded.

Out-of-order fetch provides a way to fetch control-
independent instructions. When a processor fetches a
branch, it must predict which direction the branch
takes in order to determine which instructions to fetch
next. Because the branch condition is usually not
known at the time of the branch’s fetch, the proces-
sor must guess its direction and then speculatively
fetch the instructions that follow. If the prediction is
correct, no branch penalty incurs. However, if the pre-
diction is incorrect, the processor pays the same
penalty as if it had waited for the branch to be
resolved. Current branch prediction technology is
capable of prediction accuracies of 97 percent for con-
ditional branches, but the remaining mispredictions
still incur a large performance penalty.

An out-of-order fetch mechanism can reduce this
penalty by not fetching the blocks that immediately
follow a hard-to-predict branch until either an accu-
rate prediction can be made for the branch or the
branch is resolved. During this period, the processor
fetches, decodes, and issues the instructions that begin
at the merge point in the control-flow graph of the
paths that follow the branch. Because these instruc-
tions are control-independent of the branch, they are
guaranteed to be on the program’s correct path regard-
less of which direction the branch takes. The proces-
sor will continue to fetch, decode, and issue along this
path until either an accurate prediction can be made
or the branch is resolved. At this point, it will return
to the branch and begin fetching there. Upon reaching
the merge point, the processor will jump past the

instructions that it has already fetched, decoded, and
issued and continue fetching, decoding, and issuing
from the point at which it left off. 

Data supply
A 16-wide-issue processor will need to execute

about eight loads/stores per cycle. The primary design
goal of the data-cache hierarchy is to provide the nec-
essary bandwidth to support eight loads/stores per
cycle. Cache latency does not become an issue unless
this bandwidth requirement can be met. A small, mul-
tiported, first-level data cache will provide most of the
bandwidth required to execute these loads and stores.
The few loads and stores that miss in the first-level
data cache will be routed to a bigger, second-level data
cache. (Because few loads and stores are routed to the
second-level data cache, the number of ports it
requires is much less than that required for the first-
level data cache.) The size of a single, monolithic, mul-
tiported, first-level data cache would likely be so large
that it would jeopardize the cycle time. Because of this,
we expect the first-level data cache to be replicated to
provide the required ports. (The proposed Digital
21264 uses this technique for its register file: It repli-
cates the register file to provide a large number of
ports without jeopardizing the cycle time.11)

“If you don’t know, then predict” is quickly becom-
ing a basic tenet of computer architecture. It is behind
instruction and data prefetching, which are used in
cache design to build set-associative caches with the
access times of direct-mapped caches.11 We expect
prefetching and set prediction to become the norm in
processor design. We also expect the other forms of
prediction to become prevalent. To enhance perfor-
mance, processors will predict the addresses of loads,
allowing loads to be executed before the computation
of operands needed for their address calculation. Also,
processors will predict dependencies between loads
and stores, allowing them to predict that a load is
always, or almost always, dependent on some older
store.12 The store will forward its data directly to the
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load and the instructions that are dependent on the
result of the load, even if the addresses of both the
store and the load are unknown.

THE EXECUTION CORE
To achieve high performance, the execution core

must accomplish a large amount of work every cycle.
If the fetch engine is providing 16 to 32 instructions
per cycle, then the execution core must consume
instructions just as rapidly. To avoid unnecessary
delays due to false dependencies, logical registers must
be renamed. To compensate for the delays imposed by
the true data dependencies, instructions must be exe-
cuted out of order, allowing useful work to continue
while earlier instructions are waiting for their source
operands.

We envision an execution core comprising 24 to 48
functional units supplied with instructions from large
reservation stations and having a total storage capac-
ity of 2,000 or more instructions. This large execu-
tion window will ensure that there will be a steady
supply of instructions ready for execution. Such a
design does not come without difficulties, most of
them involving communication. The communication
traffic in the execution core falls into three categories:
communicating instructions to the proper functional
unit (routing), communicating the availability of func-
tional units and operands to instructions (scheduling),
and communicating the operand values to the func-
tional units (data forwarding).

As the width of the execution core increases, so does
the distance from the output of one functional unit to
the input of another. To avoid long propagation
delays, the functional units will be partitioned into
clusters of three to five units. Each cluster will main-
tain an individual register file. Data forwarding within
these clusters will require a single cycle, but commu-
nication between clusters will require multiple cycles.
To ensure that the latency associated with cross-clus-
ter communication is rarely incurred, the majority of
values produced must be consumed by instructions
executed within the same cluster. 

The routing of instructions to the proper functional
unit is done as the instructions enter the instruction win-
dow. Each functional unit has its own reservation sta-
tion. Although other reservation station designs are
possible, this technique offers an advantage: The fill
unit has the time and opportunity to analyze the instruc-
tions and preroute them to the appropriate functional
units. Instructions issued from the trace cache will be
ordered to reduce the cross-cluster communication
penalty.

The difficulties of scheduling instructions from a
large instruction window arise from the need to exam-
ine each instruction in the pool to determine if it is
ready for execution. To mitigate this, scheduling will
be done in stages. The reservation stations will be par-
titioned so that the final stage of scheduling is done
from only a subsection of the entire window. This
technique effectively creates an on-deck portion of the
reservation stations. If an instruction is nearly ready
to execute, it will be placed on deck. The final stage of
the scheduling logic will consider only instructions
from this portion of the reservation stations.

Since it will be possible to design such an aggressive
execution core, the question remains whether the appli-
cations have enough instruction-level parallelism (ILP)
to warrant such a design. Figure 4 shows the average
performance of the SPECint95 benchmarks achieved
with a fixed window size of 2K instructions while vary-
ing the issue and execution widths. Because we are
interested in the ILP available within the program, per-
fect caches and perfect branch prediction have been
simulated, although all memory dependencies are hon-
ored. The figure shows that wider issue and execution
widths allow the parallelism within the program to be
exploited. However, the curve flattens out toward the
high end of the spectrum. Aggressive speculation tech-
niques, such as address prediction, should push the knee
of the curve higher. Furthermore, both programming
and compiler techniques will improve, exposing more
parallelism to the hardware.

W e have argued that the highest performance
computing system (when one billion transis-
tor chips are available) will contain on each

processor chip a single processor. We have identified
structures that will be necessary to make that
uniprocessor perform, and showed the performance
obtainable from those structures. All this makes sense,
however, only if CAD tools can be improved to design
such chips and only if algorithms and compilers can
be redesigned to take advantage of such powerful
dynamically scheduled engines.

The highest performance computing system will be
a multiprocessor made up of very powerful single-chip
uniprocessors. They will issue and execute 16 (or 32)
instructions practically every cycle, with nearly 100

Figure 4. Available
parallelism with a
fixed instruction 
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percent branch prediction accuracy and a very fine
cycle time made possible by very deep pipelines. ❖
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