
0018-9162/97/$10.00 © 1997 IEEE September 1997 59

Superspeculative
Microarchitecture
for Beyond AD 2000

I
n its brief lifetime of 26 years, the microproces-
sor has achieved a total performance growth of
10,000 times thanks to technology improvements
and microarchitecture innovations. Transistor
count and clock frequency have increased by an

order of magnitude in each of the first two decades of
microprocessors; transistor count increased from
10,000 to 100,000 in the 1970s and up to 1 million
in the 1980s, while clock frequency increased from
200 KHz to 2 MHz in the 1970s and up to 20 MHz
in the 1980s. This incredible technology trend has
continued: Since 1990, both transistor count and
clock frequency have already achieved an increase of
20 to 30 times. During the 1980s, sustained instruc-
tions per cycle also increased by almost an order of
magnitude, from roughly 0.1 to 0.9. IPC is a measure
of the instruction-level parallelism or instruction
throughput achieved by the concurrent processing of
multiple machine instructions. In the 1990s, IPC im-
provement is struggling and may not triple by 1999.
New microarchitecture innovations are needed.

Current top-of-the-line microprocessors are four-
instruction-wide superscalar machines; that is, they
can fetch and complete up to four instructions in a
single machine cycle. Such machines use pipelined
functional units, aggressive branch prediction,
dynamic register renaming, and out-of-order execu-
tion of instructions to maximize parallelism and tol-
erate memory latency. State-of-the-art processors
include the Digital Equipment Alpha 21264, Silicon
Graphics MIPS/R10000, IBM/Motorola PowerPC
604, and Intel Pentium Pro. Even with such elaborate
microarchitectures, against a potential 4 IPC, these
machines typically achieve only about 0.5 to 1.5 sus-
tained IPC for real-world programs.

Worse yet, most studies indicate that machine effi-
ciency drops even lower as we extrapolate to wider
machines. One recent study indicated that although a
hypothetical 2-instruction-wide machine achieves IPC
in the range of 0.65 to 1.40, a similar, hypothetical,

6-instruction-wide machine will achieve only 1.2 to
2.3 IPC.1 Such data imply that the current superscalar
paradigm is running into rapidly diminishing returns
on performance.

POTENTIAL NEW PARADIGMS
Future billion-transistor chips will inevitably imple-

ment machines that are much wider (issue more than
four instructions at once) and deeper (have longer
pipelines). The question is, how do we harvest addi-
tional parallelism proportional to increased machine
resources? Several approaches have vocal advocates,
each with valid reasons; they are

• reconfigurable parallel computing engines;
• specialized, very long instruction word (VLIW)

machines;
• wide, simultaneous multithreaded (SMT) uni-

processors;
• single-chip multiprocessors (CMP);
• memory-centric computing engines (such as IRAM);
• very wide conventional superscalars; and
• wide superspeculative processors.

Two overriding concerns will determine which pos-
sibility might have the most commercial impact: per-
formance scalability and software migration complexity.
The approach that succeeds will have to deliver enough
performance improvement to justify the hardware
resources expended. It must also effectively deal with
the tremendous effort and expense required to create
or migrate a critical mass of useful applications.
Computing history’s two most economically successful
instruction set architectures—the IBM S/360 and the
Intel x86—have reaped rewards for paying meticulous
attention to software cost and code compatibility.

Reconfigurable computers
Researchers have proposed reconfigurable computers

that employ large arrays of highly programmable build-

Employing a broad spectrum of superspeculative techniques can achieve
significant performance increases over today’s top-of-the-line
microprocessors. The experimental, superspeculative microarchitecture
Superflow has a potential performance of 9.0 instructions per cycle and
realizable performance of 7.3 IPC for the SPEC95 integer suite, without
requiring recompilation or changes to the instruction set architecture.

Mikko H.
Lipasti
John Paul
Shen
Carnegie
Mellon
University

Th
em

e
Fe

at
ur

e

.

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

60 Computer

ing blocks. Typical examples are complex program-
mable logic devices and field-programmable gate
arrays. These devices rely on powerful software tools to
map applications to the reconfigurable hardware. The
intent is to construct powerful, specialized computing
engines at a relatively low cost with very short turn-
around time. This approach’s performance scalability
has yet to be demonstrated beyond a few specialized
applications. Moreover, the huge investment required
to leverage the latest and best fabrication technology
may not be economically justified by the niche-market
volume for reconfigurable systems. Finally, software
tools for automating application-to-hardware mapping
must incorporate the latest code compilation and opti-
mization techniques as well as yet-to-be-developed
hardware synthesis technologies. This is a very tall
order for the software.

VLIW machines
Specialized VLIW machines already exist for multi-

media applications. These statically controlled, wide
machines contain numerous functional units with
highly deterministic behavior, which permits tremen-
dous computing throughput on specialized applica-
tions. They provide performance scalability by packing
more into a single instruction. VLIW machines rely on
powerful compilers to detect and resolve inter-instruc-
tion dependences in software. This keeps the hardware
design clean and fast. Such machines usually require
application recompilation, so retargetable compilers
are essential. Such compilers have been long in coming
and are still not widely available. Furthermore, the sta-
tic nature of VLIWs makes them inherently incom-
patible with dynamic variations in parallelism or
latency, both of which are caused by aggressive mem-
ory subsystems and speculative-execution techniques.

SMT uniprocessors
Simultaneous multithreaded processors are super-

scalar uniprocessors that support multiple machine
contexts and execute multiple instruction streams
simultaneously. They do so to increase a multipro-
grammed workload’s throughput or reduce a multi-
threaded program’s latency. Performance scalability
depends on finding enough thread parallelism, a task
left to software. Developing multithreaded applica-
tions is challenging due to the extreme difficulty of
debugging multithreaded programs and the lack of
automatic thread-partitioning compilers. Therefore,
we view SMT primarily as a technique for improving
throughput in multiprogrammed workloads.

Single-chip multiprocessors
Our view of the single-chip multiprocessor approach

is similar. CMPs will inevitably be used for improving
throughput under multiprogrammed workloads.

However, their utility in improving single-program per-
formance has thus far been restricted to numerical
applications that contain easily parallelized loops.
Limited processor interconnect and synchronization
overhead will throttle performance scalability, particu-
larly for more generalized applications with interthread
dependences. Significant development is required before
parallelizing compilers will provide performance gains
for generalized applications on CMPs. Unless such soft-
ware technology becomes widely available, CMP, like
SMT, is destined to remain a technique for improving
throughput but not latency. Furthermore, without a sig-
nificant multithreaded-application base there may not
be a mainstream demand for single-chip SMT proces-
sor and CMP implementations. Without mainstream
market demand, these implementations are not eco-
nomically justifiable.

Memory-centric engines
Proposing a memory-centric view (as opposed to

the traditional CPU-centric view) to computer system
design has become quite popular. The potential inte-
gration of dense DRAM technology with fast logic
technology on the same chip (intelligent RAM) is cer-
tainly of technological interest. However, it is unclear
that this integration inspires any truly new architecture
paradigms. We see it as more of a technology/imple-
mentation issue that enables shorter latency and more
density and bandwidth at the upper levels of the mem-
ory hierarchy. There is also the issue of software.
Compilation tools for array-structured, message-
passing multicomputers have been in development for
over a decade and are still not widely available.

Wide conventional superscalars
On the other hand, scaling up current superscalars

to process more instructions at a time, though attrac-
tive from a software cost perspective, doesn’t seem
promising either. Performance scalability is limited
because current microarchitectural techniques for
extracting instruction-level parallelism are returning
significantly less performance improvement on wider
machines. Incremental improvements will result in
only marginal performance gains. Limit studies have
shown that even when all control and structural haz-
ards are removed, single-thread performance is still
severely limited by true data dependences between
instructions that produce results and instructions that
use these results as their source operands. Due to such
data dependences, the producer and consumer instruc-
tions must necessarily be serialized. Enforcing these
serializations leads to the classical dataflow limit for
program performance: Given unlimited machine
resources, a program cannot execute any faster than
the execution of the longest dependence chain induced
by the program’s true data dependences.

Super-
speculative
architectures
have the
potential of
sustaining IO
IPC for
nonnumeric
applications.

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

Superspeculative processors
We believe it is due to the seeming inability to get

beyond the dataflow limit to harvest more instruction-
level parallelism that many researchers are advocating
one of the approaches just discussed, but all these
approaches require a dramatic, expensive paradigm
shift from sequential programming to an explicitly par-
allel model. Superspeculative processors, on the other
hand, overcome the dataflow limit without sacrificing
code compatibility. They do so by aggressively specu-
lating past true data dependences and harvesting addi-
tional parallelism in places where none was believed to
exist. The basis for the superspeculative approach is
that producer instructions generate many highly pre-
dictable values in real programs. Consumer instruc-
tions can thus frequently and successfully speculate on
their source operand values and begin execution with-
out results from the producer instructions. Con-
sequently, a superspeculative processor can remove the
serialization constraints between producer and con-
sumer instructions, enabling program performance to
potentially exceed the classical dataflow limit.

Figure 1 summarizes the performance obtainable by
scaling a conventional superscalar design—one that
employs all the latest techniques in branch prediction
and out-of-order execution—from today’s issue width
of four instructions per cycle up to eight, 16, and 32
instructions per cycle. The sustained IPC attainable for
the SPEC95 integer benchmarks shown levels off
quickly around width eight or sixteen.

In contrast, the stacked bars show the additional per-
formance attainable by a processor that employs super-
speculative techniques. These techniques frequently
more than double the attainable performance and pro-
vide ample justification for continuing to devote proces-
sor implementation resources to microarchitectures that
are compatible with current ISAs and do not require a
massive software investment.

Superspeculative microarchitectures have the poten-
tial of sustaining close to 10 IPC for nonnumerical pro-

grams without requiring advanced compilation sup-
port. Superspeculation aggressively continues the sta-
tistical approach that emerged during the 1980s:
designers optimizing machine performance for statis-
tically common cases instead of the less likely worst
case. We generalize the current control speculation (in
the form of branch prediction) to include various forms
of data speculation.2 With this generalization, the
processor can circumvent both the control flow and
dataflow constraints of a program via aggressive spec-
ulation. Such speculation often pays off because of the
predictable behavior of real programs. The theoretical
basis for superspeculative microarchitectures rests on
the weak dependence model,3 which defers the detec-
tion of and relaxes the enforcement of control flow and
dataflow dependences between machine instructions.

Strong-dependence model. The implied total instruc-
tion ordering of a sequential program is an overspeci-
fication and need not be rigorously enforced to meet
the requirements of semantically correct execution. The
actual program semantics and inter-instruction depen-
dences are specified by the control flow graph, which
specifies the possible paths for traversing the basic
blocks of instructions in the program, and the dataflow
graph, which specifies the true data dependences
between producer and consumer instructions. As long
as the processor does not violate the serialization con-
straints imposed by these graphs, it can overlap and
reorder the execution of instructions. This achieves bet-
ter performance by avoiding the enforcement of implied
but unnecessary precedences. However, the processor
must still enforce true inter-instruction dependences.
To date, most machines enforce such dependences in a
rigorous fashion that adheres to two requirements:

• Dependences are determined in an absolute and
exact way; that is, two instructions are identified
as either dependent or independent, and when in
doubt, dependences are pessimistically assumed
to exist.

September 1997 61

Figure 1. Superspecu-
lation’s performance
potential. As we scale
issue width from four
to eight to 16 to 32,
the conventional
superscalar reaps
diminishing
performance returns,
topping out at slightly
over 4 IPC (the
harmonic mean). In
contrast, a superspec-
ulative processor’s
IPC continues to
increase with issue
width, topping out at
19.0 IPC (for the vor-
tex benchmark); the
harmonic mean is
9.0 IPC.

Su
st

ai
n

ed
 IP

C
20.0

18.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0
go m88ksim gcc compress li ijpeg perl vortex Harmonic

mean

Conventional superscalar (baseline performance)
Additional performance provided by
 superspeculation techniques

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

We propose
a weak
dependence
model for
super-
speculative
processors.

62 Computer

• Dependences are enforced throughout instruc-
tion execution; that is, the dependences are never
allowed to be violated and are enforced during
instruction processing.

Such a traditional and conservative approach is
called the strong-dependence model for program exe-
cution. This traditional model is overly rigorous and
unnecessarily restricts available parallelism.

Weak-dependence model. Instead, we propose the
weak-dependence model for superspeculative proces-
sors. This model specifies that

• Dependences need not be determined exactly or
assumed pessimistically, but can instead be opti-
mistically approximated or even temporarily
ignored.

• Dependences can be temporarily violated during
instruction execution as long as recovery can be
performed prior to affecting the permanent
machine state.

The weak-dependence model’s advantage is that the
machine can process instructions without having the
program semantics completely determined, as specified
by control flow and dataflow graphs. Furthermore, the
machine can now speculate aggressively and temporar-
ily violate the dependences as long as corrective mea-
sures are in place to recover from misspeculation. If a
significant percentage of speculations are correct, the
machine can effectively exceed the performance limit
imposed by the traditional, strong-dependence model.

Similar in concept to branch prediction’s imple-
mentation in current processors, superspeculation uses
two interacting engines. The front-end engine assumes
the weak-dependence model and is highly speculative,
predicting instructions to aggressively speculate past
them. When predictions are correct, these speculative
instructions will effectively have skipped over certain
stages of instruction execution. The back-end engine
still uses the strong-dependence model to validate the
speculations, recover from misspeculation, and pro-
vide history and guidance information to the specu-
lative engine. By taking this approach, processors can
harvest an unprecedented level of instruction-level par-
allelism. The edges of the dataflow graph that repre-
sent inter-instruction dependences are now enforced
and become part of the critical dataflow path only
when misspeculations occur.

A superspeculative machine. As Figure 2 shows,
instruction execution can be divided into four logical
stages, each taking one or more machine cycles.

• Fetch. The processor retrieves instructions from
cache or main memory.

• Decode. The processor decodes instructions,

renames their operands, and detects inter-instruc-
tion dependences.

• Execute. Instructions wait until their operands
are available, then allocate functional units, exe-
cute according to their prescribed semantics, and
forward their results to subsequent dependent
instructions.

• Commit. Instructions are allowed to write back
their results into the architected registers in pro-
gram order.

Figure 2 also identifies the three key parameters that
a superspeculative microarchitecture must maximize:

• instruction flow, the rate at which useful instruc-
tions are fetched, decoded, and dispatched to the
execution core;

• register dataflow, the rate at which results are
produced and register values become available;
and

• memory dataflow, the rate at which data values
are stored and retrieved from data memory.

These three flows roughly correspond to the pro-
cessing of branch, ALU, and load/store instructions. In
a superspeculative microarchitecture, aggressive spec-
ulative techniques are employed to accelerate the pro-
cessing of all these instruction types.

SUPERFLOW TECHNIQUES
Our proposed approach to superspeculative microar-

chitecture is called Superflow. We’ve implemented a
prototype to collect the data reported here, which indi-
cates its potential, but the detailed design effort is ongo-
ing. Superflow employs a wide range of speculative
techniques to improve the throughput of instruction
flow, register dataflow, and memory dataflow beyond
traditional limits. Hence the name Superflow.

Instruction flow techniques
With these techniques, the processor attempts to

supply as many useful instructions as it can to the exe-
cution core. Instruction flow is a threefold prob-
lem: conditional-branch throughput, taken-branch
throughput, and misprediction latency.

Conditional branches. To provide adequate condi-
tional-branch throughput, the processor must accu-
rately predict the outcomes and targets of multiple
conditional branches in every cycle. We combined
earlier work on predicting multiple branches in every
cycle4,5 and predicting branches accurately6 in a two-
phase branch predictor. This predictor employs a
local (per static branch) and a global branch history
to predict multiple branches in each cycle. During the
first stage (fetch), global knowledge is used to predict
multiple branches and generate a fetch address for

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

the next cycle.5 During the second stage (decode), the
earlier predictions are checked via an advanced gshare
predictor,6 which combines local and global knowl-
edge to generate an accurate prediction. Hence, many
mispredictions made in the first phase are corrected
with a latency of only one cycle.

Taken branches. The fetch unit must be able to cor-
rectly process more than one taken branch per cycle,
which involves predicting each branch’s direction and
target, and also fetching, merging, and aligning
instructions from each branch target.

To reduce complexity, the Superflow fetch engine
uses an interesting, recently proposed approach called
a trace cache.5 A trace cache is a history-based fetch
mechanism that stores dynamic-instruction traces in
a cache indexed by fetch address and branch outcome.
Whenever it finds a suitable trace, it dispatches instruc-
tions from the trace cache rather than sequential
instructions from the instruction cache. Since a
dynamic sequence of instructions in the trace cache
can contain multiple taken branches but is stored
sequentially, there is no need to fetch from multiple

targets. This eliminates the need for a multiported
instruction cache or complex merge/align logic in the
critical path.

Misprediction latency. Finally, the processor must
minimize the latency of correctly resolving mispre-
dicted branches. To do so, we employ a set of aggres-
sive data-speculative techniques in the execution core;
the register and memory dataflow sections describe
them. These techniques enable branches to execute
earlier than they would otherwise and produced sig-
nificant performance gains by significantly reducing
misprediction penalties.

Register dataflow techniques
These techniques facilitate fast and efficient pro-

cessing of ALU instructions. The execution core strives
for two fundamental goals to increase instruction
throughput. It must

• efficiently detect and resolve inter-instruction
dependences and

• eliminate or bypass as many dependences as pos-

September 1997 63

Figure 2. Superspecu-
lative machine
overview. A Superflow
microarchitecture
employs a broad
spectrum of specula-
tive techniques to
maximize overall
instruction throughput
beyond traditional
limits by maximizing
the throughputs of
instruction flow, reg-
ister dataflow, and
memory dataflow.

Trace
cache

Instruction
cache

Fetch
Branch

predictor

Decode

Commit

Data cache

Instruction
buffer

Instruction
flow

Memory
dataflow

Register
dataflow

Store
queue

Reorder
buffer
(ROB)

Execute

Integer Floating-point Media Memory

RS RS RS RS

RS = Reservation station

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

64 Computer

sible to expose more parallelism between instruc-
tions.

Detecting control and data dependences among
multiple active instructions is an inherently sequential
task that becomes expensive combinatorially as the
number of concurrently active instructions increases.
Furthermore, multiple-instruction dispatch is difficult
to implement and has an adverse impact on cycle time
because all instructions in a dispatch group must be
simultaneously cross-checked. To avoid impacting
cycle time, dependence checking and dispatch can be
pipelined into multiple stages. Unfortunately, a deeper
pipeline, especially in the decode portion, results in a
greater performance penalty. However, this penalty
can be overcome with dependence prediction, a spec-
ulative technique that can frequently short-circuit
pipelined multicycle decode. It does so by predicting
the dependence relationships between instructions and
speculatively allowing instructions that are predicted
to be data ready to execute in parallel with exact
dependence checking.7 We discovered that such depen-
dence relationships between instructions are highly
predictable in real programs. The Superflow execu-
tion core adopts this technique to help overcome the
latency cost of pipelined decode/dispatch and facili-
tate the implementation of wide-dispatch processors.

Superflow employs conventional, well-understood
techniques, such as register and memory renaming, to
eliminate false dependences between instructions.
However, it advances well beyond the limits imposed
by true dependences by employing source operand value
prediction7 to eliminate true data dependences between
instructions. This technique uses dynamic-value history
information, stored per static program instruction, to
predict future values of that instruction’s source
operands. Superflow improves the accuracy of source
operand value prediction beyond previously reported
levels by extending it to include value stride prediction.
In value stride prediction, a dynamic hardware mecha-
nism detects constant, incremental increases in operand
values (strides) and uses them to predict future values.

Memory dataflow techniques
These techniques minimize average memory latency

and provide adequate memory bandwidth for support-
ing a high-performance superspeculative processor core.
To reduce average memory latency, we incorporate the
prediction of load values,8,9 addresses, and aliases into
the execution core. For adequate load instruction
throughput, we introduce load stream partitioning, a
divide-and-conquer strategy for reducing the cost and
complexity of a high-bandwidth memory system.

Memory latency is a severe bottleneck to processor
performance, and three factors cause it:

• address generation interlocks, which delay the
initiation of a fetch from memory because the
address is unknown;

• the latency of accessing the storage device; and
• queuing delays caused by contention for shared

resources in the memory subsystem.

Speculative prediction of load addresses can elimi-
nate many address generation interlocks. Previous
research on address prediction is largely subsumed by
source operand value prediction, which incorporates
stride prediction for detecting and predicting constant-
stride memory addresses. Address generation inter-
locks also cause a secondary problem. When load
addresses are unknown, it is impossible to detect the
existence of an alias with an earlier outstanding store.
To alleviate this problem, we propose alias prediction,
a logical extension to the register dependence predic-
tion technique described earlier.7

Rather than predict the dependence distance to a
preceding register write, we predict the dependence
distance to a preceding store. (Andreas Moshovos and
his colleagues described a similar technique.10) The
predicted distance is then used to obtain the load value
from that offset in the processor’s store queue, which
holds outstanding stores. For this speculative for-
warding to occur, neither the load nor the store need
to have their addresses available yet, allowing the
bypassing of address generation entirely.

Table 1. Estimated transistor cost of Superflow.

Transistor count
Resource Description (millions)

CPU core logic (32 instructions issued per cycle / 4 instructions issued per
cycle)2 × 2 million transistors in a PowerPC 604, which issues
four instructions per cycle 128.0

Value prediction table 32 Kbytes × 8 bits/byte × 6 transistors/SRAM bit 1.6
Classification table 8K entries × 2 bits/entry × 6 transistors/SRAM bit 0.1
Dependence prediction table 8K entries × 7 bits/entry × 64 ports × 6 transistors/SRAM bit 22.0
Alias prediction table 8K entries × 7 bits/entry × 32 ports × 6 transistors/SRAM bit 11.0
Pattern history tables 64K entries × 2 bits/entry × 2 tables × 6 transistors/SRAM bit 1.6
Trace cache 64 Kbytes (estimated size) × 8 bits/byte × 6 transistors/SRAM bit 3.1
Level 1 instruction cache 64 Kbytes × 8 bits/byte x 6 transistors/SRAM bit 3.1
Level 1 data cache 64 Kbytes × 4 ports × 8 bits/byte × 6 transistors/SRAM bit 12.6
Processor core total 183.1
Level 2 unified cache 16 Mbytes × 8 bits/byte × 6 transistors/SRAM bit (approximately) 805.3
Grand total 988.4

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

The storage device’s latency can be folded away
(effectively eliminated) by performing load value pre-
diction, which uses a per-static-load-value history to
predict future values. This technique can frequently pre-
dict the value to be loaded when the load instruction is
dispatched, in effect implementing a zero-cycle load.8

At first glance, providing adequate memory band-
width to support Superflow’s performance goals
appears daunting. Since roughly 40 percent of the 10-
instruction-per-cycle throughput consists of loads and
stores, the memory subsystem must provide an average
bandwidth of four references per cycle. Furthermore,
the peak bandwidth required to prevent excessive
queuing delays is even higher. However, several factors
and techniques relieve this difficult problem.

First, recent discoveries indicate that the reuse dis-
tances of many stored values (measured in execution
cycles) are very short.11 In fact, our simulations show
that many stores do not even make it out of the store
queue before their values are needed again. Hence, the
loads retrieving these values do not require a cache port.
Second, a technique called constant promotion8 can be
used to eliminate the actual memory accesses normally
performed by load instructions. Constant promotion
provides a hardware mechanism that guarantees that the
value generated via load value prediction is correct and
need not be checked against an actual memory reference.
It does so by keeping the load value prediction table
coherent with main memory. This technique monitors
all intervening stores between an update and a lookup of
the load value prediction table, invalidating entries mod-
ified by such stores.

These two observations lead us to introduce the
notion of load stream partitioning, which simply par-
titions loads into multiple streams based on their
behavior and sends them to disjoint, specialized func-
tional units for processing. This approach facilitates

the implementation of high-bandwidth memory sys-
tems by eliminating the need for large, centrally
located, and extremely multiported data caches.
Experimental evidence suggests that a significant por-
tion of the load stream can be diverted to these spe-
cialized units for processing.3,8

PERFORMANCE POTENTIAL
To evaluate superspeculation’s performance poten-

tial, we simulated the performance of a Superflow
processor with a

• fetch width of 32;
• a 128-entry reorder buffer;
• 64-Kbyte, 4-way, set-associative data and instruc-

tion caches with 10-cycle miss delay to a perfect,
pipelined second-level cache; and

• a 128-entry, fully associative store queue.

Table 1 shows a crude estimate of the transistors
needed for a naive implementation of such a processor.
We estimate that CPU core logic will increase as the
square of the issue width, consuming 128 million tran-
sistors relative to the two million core logic transistors
in the PowerPC 604, which issues four instructions per
cycle. To reduce design complexity, we expect that the
functional units in the execution core will be clustered
in some manner similar to earlier proposals.12 Relative
to the CPU core, the superspeculative prediction struc-
tures, including those for branch prediction, consume
roughly 36 million transistors, while level-1 caches con-
sume about 19 million transistors. A superspeculative
processor core (including the level-1 caches) requires
less than 200 million transistors. Assuming a total bud-
get of one billion transistors, the chip still has room for
a fast, 16-Mbyte, level-2 cache, which should be more
than adequate to capture the working sets of most

September 1997 65

Figure 3. Superflow
performance;
sustained IPC for a
fetch width of 32, a
reorder buffer size of
128, and a 128-entry
store queue for vari-
ous memory configu-
rations. The leftmost
bar shows IPC for a
perfect cache with
unlimited ports. The
second bar shows IPC
for a 64-Kbyte data
cache with unlimited
ports. The third,
fourth, and fifth bars
show the previous
configuration, but
with eight, four, and
two cache ports. Each
stacked bar shows
cumulative IPC attain-
able beyond the con-
ventional superscalar
with instruction flow,
memory dataflow, and
register dataflow
superspeculative
techniques.

Su
st

ai
n

ed
 IP

C
18.0

16.0

14.0

12.0

8.0

6.0

4.0

2.0

0

10.0

go m88ksim gcc compress li ijpeg perl vortex Harmonic
mean

Additional performance provided by optimizations for
 Register dataflow
 Memory dataflow
 Instruction flow
 Superscalar (baseline performance)

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

.

66 Computer

anticipated applications. If necessary, designers can
reduce the size of the level-2 cache to make room for
various I/O coprocessors and network interfaces. These
estimates are approximate.

Figure 3 on page 65 shows performance results for
an unlimited number of cache ports, and eight, four, and
two cache ports. Results for a model with a perfect cache
(one that incurs no cache misses) are also included for
reference. Each stacked bar reflects the additional IPC
harvested by adding superspeculative instruction flow
techniques, memory dataflow techniques, and register
dataflow techniques to the machine model. We have
published additional detailed performance results.3

These results conclusively demonstrate not only that
superspeculative techniques provide impressive perfor-
mance, but also that without them, very wide super-
scalars (such as the baseline case shown) do not scale to
significantly improved levels of performance.

Our results demonstrate Superflow’s dramatic per-
formance potential, placing superspeculative
microarchitecture in the forefront of competing

approaches for billion-transistor computing. We are
currently exploring these techniques in greater depth
with more extensive and accurate simulations. The next
phase of our effort will be to move these ideas toward
implementation and produce a Superflow prototype
after extensive implementation trade-off studies. We
plan to develop simulation models of the prototype that
can provide performance accuracy down to the
machine cycle level. Trial circuit designs for the timing-
critical pieces of the prototype will help us estimate chip
complexity and machine cycle time. ❖

Acknowledgements
ONR grants N00014-96-1-0928 and N00014-96-

1-0347 and Intel Corp. supported this research. This
research also benefited from discussions with other
MIG members: Bryan Black, Yuan Chou, Andrew
Huang, Chris Newburn, and Derek Noonburg. Chris
Wilkerson coined the name Superflow.

References
1. K. Olukotun et al., “The Case For a Single-Chip Multi-

processor,” Proc. Seventh Int’l Conf. Architectural Sup-
port for Programming Languages and Operating Systems,
ACM Press, New York, 1996, pp. 2-11.

2. M.H. Lipasti and J.P. Shen, “Exceeding the Data-Flow
Limit Via Value Prediction,” Proc. 29th Ann. ACM/IEEE
Int’l Symp. on Microarchitecture, IEEE CS Press, Los
Alamitos, Calif., 1996, pp. 226-237.

3. M.H. Lipasti, Value Locality and Speculative Execution,
doctoral dissertation, Carnegie Mellon Univ., Dept. Elec-
trical and Computer Eng., May 1997.

4. T.M. Conte et al., “Optimization of Instruction Fetch
Mechanisms for High Issue Rates,” Proc. 22nd Int’l
Symp. on Computer Architecture, IEEE CS Press, Los
Alamitos, Calif., 1995, pp. 333-344.

5. E. Rotenberg, S. Bennett, and J. Smith, “Trace Cache: A
Low Latency Approach to High Bandwidth Instruction
Fetching,” Proc. 29th Ann. ACM/IEEE Int’l Symp. on
Microarchitecture, IEEE CS Press, Los Alamitos, Calif.,
1996, pp. 24-34.

6. S. McFarling, Combining Branch Predictors, Tech. Report
TN-36, Digital Equipment Corp., Maynard, Mass., 1993,
http://www.research.digital.com/wrl/home.html.

7. M.H. Lipasti and J.P. Shen, “The Performance Potential
of Value and Dependence Prediction,” Proc. EURO-PAR
’97, Springer-Verlag, Passau, Germany, 1997.

8. M.H. Lipasti, C.B. Wilkerson, and J.P. Shen, “Value
Locality and Load Value Prediction,” Proc. Seventh Int’l
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, ACM Press, New York,
1996, pp. 138-147.

9. L. Widigen, E. Sowadsky, and K. McGrath, “Eliminating
Operand Read Latency,” Computer Architecture News,
Dec. 1996, pp. 18-22.

10. A. Moshovos et al., “Dynamic Speculation and Synchro-
nization of Data Dependences,” Proc. 24th Int’l Symp.
on Computer Architecture, IEEE CS Press, Los Alamitos,
Calif., 1997, pp.181-193.

11. A.S. Huang and J.P. Shen, “The Intrinsic Bandwidth
Requirements of Ordinary Programs,” Proc. Seventh Int’l
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, ACM Press, New York,
1996, pp. 105-114.

12. S. Vajapeyam and T. Mitra, “Improving Superscalar
Instruction Dispatch and Issue by Exploiting Dynamic
Code Sequences, Proc. 24th Int’l Symp. Computer Archi-
tecture, ACM Press, New York, 1997, pp. 1-12.

Mikko H. Lipasti is an advisory engineer with IBM. His
research interests include superspeculative computer
architecture. Lipasti has a BS in computer engineering
from Valparaiso University and an MS and PhD in elec-
trical and computer engineering from Carnegie Mellon.
He is a member of the IEEE, ACM, and Tau Beta Pi.

John Paul Shen is a professor in CMU’s Electrical and
Computer Engineering Department and heads up the
Microarchitecture Innovation Group. Shen received a
BS from the University of Michigan and an MS and
PhD from the University of Southern California, all in
electrical engineering. He is an IEEE fellow.

Contact Shen at the Microarchitecture Innovation
Group, Dept. of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA
15213; shen@ece.cmu.edu.

Authorized licensed use limited to: Edinburgh University. Downloaded on January 26, 2010 at 10:30 from IEEE Xplore. Restrictions apply.

