informatics

Operating Systems

Practical Coursework 2

Tom Spink
tspink@inf.ed.ac.uk

February 2018

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

Coursework Task 1

Task 1 was to implement a round-robin scheduler

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

Coursework Task 1

Answer!

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

Coursework Task 1

Notes:
e UniqueIRQLock

Tom Spink tspink@inf.ed.ac.uk

School of Informatics

informatics

Coursework Task 1

Notes:
e UniqueIRQLock
e OS-X SSH X forwarding — Mac sends Mac scancodes

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

Coursework Task 1

Notes:
e UniqueIRQLock
e OS-X SSH X forwarding — Mac sends Mac scancodes
e Other

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2

Buddy Memory Allocator
Due: Thursday 8th March, 2018 @ 4PM GMT
Worth 50 marks

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Two types of memory allocators in InfOS:

e Page Allocator
e Object Allocator

e InfOS has an interface for physical memory allocation called the page allocation
algorithm

e Your job is to implement this interface, by creating a buddy memory allocator

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

(mm/mm. cpp)

e mm/page-allocator.cpp

mm/simple-page-alloc.cpp
e Simple, and inefficient, linear scan.
e Does not use the next_free pointer.

include/infos/mm/page-allocator.h

e Contains PageDescriptor structure.
e You do not (and should not) modify the type field.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Provided skeleton is buddy . cpp

e You are given these useful methods:

e insert_block
e remove_block

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Provided skeleton is buddy . cpp

e You are given these useful methods:
e insert_block
e remove_block

e Implement these six methods:

e split_block (helper)
e merge_block (helper)

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Provided skeleton is buddy . cpp

e You are given these useful methods:

insert_block
remove_block

e Implement these six methods:

split_block (helper)
merge_block (helper)
alloc_pages
free_pages
reserve_page

init

Tom Spink tspink@inf.ed.ac.uk

School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Page allocator returns page descriptors NOT pointers.

e One page descriptor for every physical page.

e Page descriptors held in a contiguous array.

e Page descriptors in the array have a one-to-one mapping to contiguous physical
pages.

e If you have a pointer to a page descriptor, then advancing the pointer moves to
the next page descriptor, and hence the next physical page.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

ARRAY PAGE DESCRIPTOR

INDEX ARRAY

(DESCRIPTOR
DESCRIPTOR
DESCRIPTOR
DESCRIPTOR

‘(AJI\J'-‘G]

N \DESCRIPTOR

FOR
FOR
FOR
FOR

FOR

0x00000000 |
0X00001000
0X00002000
0X00003000

N * 0x1000

Tom Spink tspink@inf.ed.ac.uk

hYd

PAGE PAGE
OX0000 0x2000
PAGE PAGE
0x1000 0x3000

AN

School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Page Descriptor structure contains a next_free pointer.
e Use this to build linked-lists.

e You cannot use the List<> or Map<> containers, and you cannot allocate memory.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

alloc_pages

Allocates by order, not by size or count.

Always returns contiguous pages, by returning first page descriptor in a sequence.

Order 0 allocation means 2° = 1 pages.

Order 4 allocation means 2* = 16 pages.
Use split_block here.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

free_pages

Counter-part to alloc_pages

Frees by order, not by size or count.

Always frees contiguous pages, by accepting first page descriptor in a sequence.

Use merge_block here.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

reserve_page

Called by the kernel to mark a specific page as allocated.

Your allocator sees the entire physical memory as one big blob.

Therefore, your allocator must be told which pages contain the kernel, so you do
not allocate those pages!

Accepts a single page descriptor, you must remove it from your free lists
(following the buddy algorithm)

Use split_block here.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

init

e Your opportunity to initialise the free lists.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Test by using the build-and-run.sh script
e ./build-and-run.sh pgalloc.algorithm=buddy

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Test by using the build-and-run.sh script
e ./build-and-run.sh pgalloc.algorithm=buddy
e |f your implementation is broken, it's likely that the system will hang.

e Although you could get away with not implementing free_pages, the self-test will fail
if this doesn't work.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

e Test by using the build-and-run.sh script
e ./build-and-run.sh pgalloc.algorithm=buddy
e |f your implementation is broken, it's likely that the system will hang.

e Although you could get away with not implementing free_pages, the self-test will fail
if this doesn't work.

e Use the self-test mode to test the memory allocator.
e ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

Test by using the build-and-run.sh script
e ./build-and-run.sh pgalloc.algorithm=buddy
If your implementation is broken, it's likely that the system will hang.

e Although you could get away with not implementing free_pages, the self-test will fail
if this doesn't work.

Use the self-test mode to test the memory allocator.
e ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Task 2: Buddy Memory Allocator

Test by using the build-and-run.sh script
e ./build-and-run.sh pgalloc.algorithm=buddy

If your implementation is broken, it's likely that the system will hang.

e Although you could get away with not implementing free_pages, the self-test will fail
if this doesn't work.

Use the self-test mode to test the memory allocator.
e ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

Modify the skeleton however you want, but you should only need to implement
the six functions (technically four if you don't want to implement the helpers).

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Self-test Output

notice: mm: PAGE ALLOCATOR SELF TEST - BEGIN
notice: mm:
info: mm: * INITIAL STATE

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 bO0OOO c0000 dO000 e0000 £0000 100000 110000

120000 130000 140000

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics
Self-test Output

info: mm:
info: mm: (1) ALLOCATING ONE PAGE

info: mm: ALLOCATED PFN: 0x0

debug: mm: BUDDY STATE:

debug: mm: [0] 1

debug: mm: [1] 2

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [56] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 bO0O0OO cO000 dO000 0000 £0000 100000 110000
120000 130000 140000

Tom Spink tspink@inf.ed.ac.uk School of Informatics

informatics

Questions/Clarifications?

Tom Spink tspink@inf.ed.ac.uk School of Informatics

	Task 1
	Tasks
	Questions

