
Operating Systems
Practical Coursework 2

Tom Spink
tspink@inf.ed.ac.uk

February 2018

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Coursework Task 1

Task 1 was to implement a round-robin scheduler

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Coursework Task 1

Answer!

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Coursework Task 1

Notes:

• UniqueIRQLock

• OS-X SSH X forwarding – Mac sends Mac scancodes

• Other

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Coursework Task 1

Notes:

• UniqueIRQLock

• OS-X SSH X forwarding – Mac sends Mac scancodes

• Other

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Coursework Task 1

Notes:

• UniqueIRQLock

• OS-X SSH X forwarding – Mac sends Mac scancodes

• Other

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2

Buddy Memory Allocator
Due: Thursday 8th March, 2018 @ 4PM GMT

Worth 50 marks

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Two types of memory allocators in InfOS:
• Page Allocator
• Object Allocator

• InfOS has an interface for physical memory allocation called the page allocation
algorithm

• Your job is to implement this interface, by creating a buddy memory allocator

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• (mm/mm.cpp)

• mm/page-allocator.cpp

• mm/simple-page-alloc.cpp

• Simple, and inefficient, linear scan.
• Does not use the next free pointer.

• include/infos/mm/page-allocator.h

• Contains PageDescriptor structure.
• You do not (and should not) modify the type field.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Provided skeleton is buddy.cpp

• You are given these useful methods:
• insert block
• remove block

• Implement these six methods:
• split block (helper)
• merge block (helper)
• alloc pages
• free pages
• reserve page
• init

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Provided skeleton is buddy.cpp

• You are given these useful methods:
• insert block
• remove block

• Implement these six methods:
• split block (helper)
• merge block (helper)
• alloc pages
• free pages
• reserve page
• init

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Provided skeleton is buddy.cpp

• You are given these useful methods:
• insert block
• remove block

• Implement these six methods:
• split block (helper)
• merge block (helper)
• alloc pages
• free pages
• reserve page
• init

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Page allocator returns page descriptors NOT pointers.

• One page descriptor for every physical page.

• Page descriptors held in a contiguous array.

• Page descriptors in the array have a one-to-one mapping to contiguous physical
pages.

• If you have a pointer to a page descriptor, then advancing the pointer moves to
the next page descriptor, and hence the next physical page.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



0
1
2
3

N

DESCRIPTOR FOR 0x00000000
DESCRIPTOR FOR 0x00001000
DESCRIPTOR FOR 0x00002000
DESCRIPTOR FOR 0x00003000

DESCRIPTOR FOR N * 0x1000

PAGE
0x0000

PAGE
0x1000

PAGE
0x2000

ARRAY
INDEX

PAGE DESCRIPTOR
ARRAY

PAGE
0x3000

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Page Descriptor structure contains a next free pointer.

• Use this to build linked-lists.

• You cannot use the List<> or Map<> containers, and you cannot allocate memory.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



alloc pages

• Allocates by order, not by size or count.

• Always returns contiguous pages, by returning first page descriptor in a sequence.

• Order 0 allocation means 20 = 1 pages.

• Order 4 allocation means 24 = 16 pages.

• Use split block here.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



free pages

• Counter-part to alloc pages

• Frees by order, not by size or count.

• Always frees contiguous pages, by accepting first page descriptor in a sequence.

• Use merge block here.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



reserve page

• Called by the kernel to mark a specific page as allocated.

• Your allocator sees the entire physical memory as one big blob.

• Therefore, your allocator must be told which pages contain the kernel, so you do
not allocate those pages!

• Accepts a single page descriptor, you must remove it from your free lists
(following the buddy algorithm)

• Use split block here.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



init

• Your opportunity to initialise the free lists.

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Test by using the build-and-run.sh script
• ./build-and-run.sh pgalloc.algorithm=buddy

• If your implementation is broken, it’s likely that the system will hang.
• Although you could get away with not implementing free pages, the self-test will fail

if this doesn’t work.

• Use the self-test mode to test the memory allocator.
• ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

• There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

• Modify the skeleton however you want, but you should only need to implement
the six functions (technically four if you don’t want to implement the helpers).

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Test by using the build-and-run.sh script
• ./build-and-run.sh pgalloc.algorithm=buddy

• If your implementation is broken, it’s likely that the system will hang.
• Although you could get away with not implementing free pages, the self-test will fail

if this doesn’t work.

• Use the self-test mode to test the memory allocator.
• ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

• There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

• Modify the skeleton however you want, but you should only need to implement
the six functions (technically four if you don’t want to implement the helpers).

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Test by using the build-and-run.sh script
• ./build-and-run.sh pgalloc.algorithm=buddy

• If your implementation is broken, it’s likely that the system will hang.
• Although you could get away with not implementing free pages, the self-test will fail

if this doesn’t work.

• Use the self-test mode to test the memory allocator.
• ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

• There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

• Modify the skeleton however you want, but you should only need to implement
the six functions (technically four if you don’t want to implement the helpers).

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Test by using the build-and-run.sh script
• ./build-and-run.sh pgalloc.algorithm=buddy

• If your implementation is broken, it’s likely that the system will hang.
• Although you could get away with not implementing free pages, the self-test will fail

if this doesn’t work.

• Use the self-test mode to test the memory allocator.
• ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

• There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

• Modify the skeleton however you want, but you should only need to implement
the six functions (technically four if you don’t want to implement the helpers).

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Task 2: Buddy Memory Allocator

• Test by using the build-and-run.sh script
• ./build-and-run.sh pgalloc.algorithm=buddy

• If your implementation is broken, it’s likely that the system will hang.
• Although you could get away with not implementing free pages, the self-test will fail

if this doesn’t work.

• Use the self-test mode to test the memory allocator.
• ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.self-test=1

• There are no shell test commands, but being able to run any command in the
shell is a good indication that your allocator is working.

• Modify the skeleton however you want, but you should only need to implement
the six functions (technically four if you don’t want to implement the helpers).

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Self-test Output

notice: mm: PAGE ALLOCATOR SELF TEST - BEGIN

notice: mm: ------------------------

info: mm: * INITIAL STATE

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000 c0000 d0000 e0000 f0000 100000 110000

120000 130000 140000

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Self-test Output

info: mm: ------------------------

info: mm: (1) ALLOCATING ONE PAGE

info: mm: ALLOCATED PFN: 0x0

debug: mm: BUDDY STATE:

debug: mm: [0] 1

debug: mm: [1] 2

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000 c0000 d0000 e0000 f0000 100000 110000

120000 130000 140000

Tom Spink tspink@inf.ed.ac.uk School of Informatics



Questions/Clarifications?

Tom Spink tspink@inf.ed.ac.uk School of Informatics


	Task 1
	Tasks
	Questions

