
Operating Systems Coursework

Task 3
TAR File System Driver

DUE: Thursday 30th March @ 4PM GMT

File Systems

● Used for the organised storage of data.
● Typically hierarchical/tree-based, consisting of directories (nodes) and

files (leaves).
● Directories contains files and other directories.

/

A B C D

YX Z

InfOS Virtual File-system Switch

The virtual file-system switch (VFS) presents a single, uniform file-system
hierarchy, that comprises multiple individual file-systems mounted within,
giving the appearance of one big file-system.

These “sub-file-systems” can be “real” or “virtual”.

PFSNodes and VFSNodes

PFSNode is a Physical Filesystem Node

These nodes represent individual files or
directories in a real filesystem.

Individual file-systems subclass PFSNodes
with their own implementation, e.g.
TarFSNode subclasses PFSNode.

VFSNode is a Virtual Filesystem Node

These nodes represent PFSNodes, but in the
uniform VFS tree. A VFSNode may reference
a “root” PFSNode, and so is said to be a mount
point.

/

A B C D

YX Z L M

D

L M

W

/

A B C D

Files and Directories

● A PFSNode represents the metadata of a file or directory in the physical
file-system.

● To access data, or list a directory, the PFSNode must be opened.
● Opening a PFSNode returns a File or Directory object.

○ The File object can be used to read data from the file.
○ The Directory object can be used to list the contents of the directory.

● When you have finished with the File or Directory, you close it.

PFSNode
open()

opendir()

File Object
read()

Directory Object
list()

close()

TAR File Format

● “Tape Archive”
○ Back when cassette tapes were used for archival and storage.
○ Modern systems use it as a convenient format for archiving files,
○ Typically, TAR files are then compressed with e.g. gzip, bzip.

● Optimised for sequential and streaming access.
● Divided into 512-byte blocks.
● Each file starts with a header block

○ Contains details such as filename (including path)
○ File size
○ File attributes

● File data follows, padded out to 512-byte block size
● Archive ends with two zero blocks

https://www.gnu.org/software/tar/manual/html_node/Standard.html

TAR File Format

● Files are stored sequentially, not necessarily in any order.

● The directory hierarchy is not described in the archive..

● The header contains the filename, which contains directory information.

○ Path components are separated by slashes (/)

○ This implies the hierarchy, and you must build a hierarchy of TarFSNodes to represent
this.

● Headers may not necessarily refer to files -- you must check what type
they are!

Block Device

● InfOS provides an abstract way to access storage devices on a per-block
granularity.

● Fits in really well with the TAR file format, as the block device is
configured to have the same block size as a TAR file

● Really simple operations:
○ block_size() - returns the size (in bytes) of a block.
○ read_blocks(buffer, offset, count) - reads count blocks into buffer, starting

from block offset.
○ Important: buffer must be big enough to hold the data you are reading, e.g. it must be at

least block_size() * count bytes in size.

● InfOS will automatically give your filesystem a block device corresponding
to the TAR file containing the userspace filesystem.

Coursework Skeleton

● tarfs.cpp
○ Contains the source-code for your implementation.

● tarfs.h
○ Contains the class prototypes and definitions for your implementation.

● As before, you can make any changes you want to these skeletons.
● You are encouraged to implement “helper” methods to make coding

easier.
○ This is why you need to submit your header file. If you add methods to the C++ class, then

you will also need to modify the header, where the class prototype lives.

Implementation

Three functions across two classes:

● TarFSNode *TarFS::build_tree()
○ Called at file-system mount time to build the in-memory representation of the file-system

tree.
○ Need to iterate over the TAR file, and build a tree of TarFSNodes.

● int TarFSFile::pread(void* buffer, size_t size, off_t off)
○ Called by the VFS core to read out a portion of a file.

● unsigned int TarFSFile::size() const
○ Called by the VFS core to determine the size (in bytes) of a file

Testing

● Does the system boot?
● Can you list directories? Do the file-sizes match?

○ /usr/ls /
○ /usr/ls /dev
○ /usr/ls /usr (this is the important one!)

● Can you read files?
○ /usr/cat /usr/README
○ /usr/cat /usr/README.TASK-3

● Anything under the /usr directory comes from the TAR filesystem driver.
○ / and /dev are “virtual filesystems”

● Writing files is not supported, as you’d need to re-generate the entire TAR
file to handle this.

○ TAR files are not amenable to “in place” editing.

tarfs physical file-systemdevfs virtual file-system

InfOS File-system Hierarchy

/

dev/ usr/

tmpfs virtual file-system

ioapic0

vc0

pci4

sched-test1

shell

README.TASK-2

● tmpfs
○ A temporary “in-memory” file-system. Changes are not saved, and live only in memory.

● devfs
○ A virtual file-system that presents “devices” as files in the directory listing.

● rootfs
○ A blank file-system that serves as a placeholder for mounting the root filesystem onto.

A rootfs is mounted in the root first. Then, a tmpfs is overlayed on top, and the
directories “dev” and “usr” are created. Next, a devfs filesystem is mounted
onto “dev”, and finally the userspace file-system is mounted into “usr”.

Built-in File-system Types

