Operating Systems

Secondary Storage

Lecture 14
Michael O’'Boyle

Disk trends
Memory Hierarchy
Performance

Scheduling

SSDs

— Read

— Write

— Performance
— Cost

Overview

Secondary storage

Secondary storage:
— anything outside “primary memory”
— direct execution of instructions/ data retrieval via machine load/store
* not permitted
Characteristics:
— it's large: 250-2000GB and more
— it's cheap: $0.05/GB for hard drives
Persistent. data survives power loss
— it's slow: milliseconds to access

It does fall, if rarely

Big failures

— drive dies; Mean Time Between Failure ~3 years
— 100K drives and MTBF is 3 years,
« that's 1 “big failure” every 15 minutes!

Little failures (read/write errors, one byte in 10'3)

The First Commercial Disk Drive

1956

IBM RAMDAC computer

included the IBM Model

350 disk storage system

5M (7 bit) characters
50 x 24" platters
Access time = < 1 second

In the past

IBM 2314
About the size of
6 refrigerators

8 x 29MB

Required similar-
sized air cond.

.01% the capacity of this $100
100x150x25mm item

Disk trends

Disk capacity, 1975-1989

— doubled every 3+ years

— 25% improvement each year

— factor of 10 every decade

— Still exponential, but far less rapid than processor performance

Disk capacity, 1990-recently

— doubling every 12 months

— 100% improvement each year

— factor of 1000 every decade

— Capacity growth 10x as fast as processor performance!

Disk cost

* Only a few years ago, disks purchased by the megabyte

« Today, 1 GB (a billion bytes) costs from Dell
— (except you have to buy in increments of 1000 GB)
— =>1TB costs , 1 PB costs

— Flying an aircraft at 600 mph 6” above the ground
— Reading/writing a strip of postage stamps

Memory hierarchy

100 bytes | CPU registers [1 ns

32KB

L1 cache

1ns

256KB

L2 cache

4 ns

1GB

Primary Memory

60 ns

1TB

Secondary Storage

10 ms

1PB

Tertiary Storage

1s-1hr

« Each level acts as a cache of lower levels

Disks and the OS

 Disks are difficult devices
— errors, bad blocks, missed seeks, etc.

« OS abstracts this for higher-level software
— low-level device drivers (initiate a disk read, etc.)
— higher-level abstractions (files, databases, etc.)
— disk hardware increasingly helps with this)

« OS provide different levels of disk access to different clients
— physical disk block (surface, cylinder, sector)
— disk logical block (disk block #)
— file logical (filename, block or record or byte #)

Physical disk structure

* Disk components

platters
surfaces
tracks
sectors
cylinders
arm
heads

sector

surface

cylinder

platter — arm

head

10

Disk Structure

Disk drives are addressed as

— large 1-dimensional arrays of logical blocks,

— the logical block is the smallest unit of transfer

— Low-level formatting creates logical blocks on physical media

The 1-dimensional array of logical blocks
— is mapped onto the sectors of the disk sequentially

Sector 0 is the first sector of the first track on the outermost
cylinder

— Mapping proceeds in order through that track,

— Then the rest of the tracks in that cylinder,

— Then through the rest of the cylinders from outermost to innermost

Logical to physical address should be easy

» Except for bad sectors
« Non-constant # of sectors per track via constant angular velocity

Disk performance

Performance depends on a number of steps

Seek: moving the disk arm to the correct cylinder
— depends on how fast disk arm can move
* not diminishing quickly due to physics
Rotation (latency): waiting for the sector to rotate under head
— depends on rotation rate of disk
* rates are slowly increasing,
Transfer: transferring data from surface to disk controller,
— then sendingit back to host
— depends on density of bytes on disk
* increasing, relatively quickly
When the OS uses the disk, it tries to minimize the cost of all of
these steps
— particularly seeks and rotation

Performance

OS may increase file block size

— in order to reduce seeking

OS may seek to co-locate “related” items
— in order to reduce seeking

* blocks of the same file
« data and metadata for a file

Keep data or metadata in memory to reduce physical disk
access

— Waste valuable physical memory?

If file access is sequential,
— fetch blocks into memory before requested

Performance via disk scheduling

Seeks are very expensive, so the OS attempts to schedule
disk requests that are queued waiting for the disk
— FCFS (do nothing)
* reasonable when load is low
 long waiting time for long request queues
— SSTF (shortest seek time first)
* minimize arm movement (seek time), maximize request rate
« unfairly favors middle blocks
— SCAN (elevator algorithm)
 service requests in one direction until done, then reverse
« skews wait times non-uniformly
— C-SCAN
* like scan, but only go in one direction (typewriter)
* uniform wait times
— C-LOOK
« Similar to C-SCAN
* The arm goes only as far as the final request in each direction

FCFS

lllustration shows total head movement of 640 cylinders

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

14 37 536567 98 122124 183199
| | |1l | 1 |

0
|

15

SSTF

lllustration shows total head movement of 236 cylinders

-may cause starvation

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37/ 536567 98 122124 183199
| | [| [|
g !
-
\\)o\\w
‘\‘N
R‘K&

SCAN

* The disk arm starts at one end of the disk,
— and moves toward the other end,
— servicing requests until it gets to the other end of the disk,
— where the head movement is reversed and servicing continues.

- SCAN algorithm Sometimes called the elevator algorithm

* But note
— that if requests are uniformly dense,
— largest density at other end of disk
— and those wait the longest

SCAN

lllustration shows total head movement

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 08 122124 183199

18

C-SCAN

 Provides a more uniform wait time than SCAN

« The head moves from one end of the disk to the
other, servicing requests as it goes
— When it reaches the other end, however,
* it immediately returns to the beginning of the disk
« without servicing any requests on the return trip

« Treats the cylinders as a circular list
— that wraps around from the last cylinder to the first one

C-SCAN

lllustration shows total head movement of 382 cylinders

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0O 14 37 536567 98 122124 183199
I
[

.

20

C-LOOK

« LOOK a version of SCAN, C-LOOK a version of C-SCAN

« Arm only goes as far
— as the last request in each direction,
— thenreverses direction immediately,
— without first going all the way to the end of the disk

C-LOOK

lllustration shows total head movement of 322 cylinders

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
I
|

22

Selecting a Disk-Scheduling Algorithm

SSTF is common and has a natural appeal

SCAN and C-SCAN perform better for systems that place a heavy load on
the disk

— Less starvation

Performance depends on the number and types of requests

Requests for disk service can be influenced by the file-allocation method
— And metadata layout

The disk-scheduling algorithm should be

— written as a separate module of the operating system,
— allowing it to be replaced with a different algorithm if necessary

Either SSTF or LOOK is a reasonable choice for the default algorithm
What about rotational latency?
— Difficult for OS to calculate

Interacting with disks

Previously
— OS would specify cylinder #, sector #, surface #, transfer size
* i.e., OS needs to know all of the disk parameters

Modern disks more complex
— not all sectors are the same size, sectors are remapped, ...

Disk provides a higher-level interface, e.g., SCSI
« exports data as a logical array of blocks [0 ... N]
» maps logical blocks to cylinder/surface/sector

OS only names logical block #,

— disk maps this to cylinder/surface/sector

— on-board cache
— as aresult, physical parameters are hidden from OS

Seagate Barracuda 9cm disk drive

1Terabyte of storage (1000 GB)
$100

4 platters, 8 disk heads

63 sectors (512 bytes) per track
16,383 cylinders (tracks)

164 Gbits / inch-squared (!)
7200 RPM

300 MB/second transfer

9 ms avg. seek, 4.5 ms avg. rotational latency

1 ms track-to-track seek
32 MB cache

25

Solid state drives: ongoing disruption

* Hard drives are based on spinning magnetic platters
— mechanics of drives determine performance characteristics
« sector addressable, not byte addressable
 capacity improving exponentially
» sequential bandwidth improving reasonably
* random access latency improving very slowly

« Cost dictated by

— massive economies of scale,
— and many decades of commercial development and optimization

SSD

Solid state drives are based on NAND flash memory

— no moving parts; performance characteristics driven by electronics
and physics — more like RAM than spinning disk

— relative technological newcomer, so costs are still quite high in
comparison to hard drives, but dropping fast

| RON oo
!

AT

! [UTRON
T
[

tron SSD 25" EAIEES
it ATA 128GB [

27

SSD performance: reads

Reads
— unit of read is a page, typically 4KB large

Today’s SSD can typically handle
— 10,000 — 100,000 reads/s

0.01 — 0.1 ms read latency
— 50-1000x better than disk seeks

40-400 MB/s read throughput
— 1-3x better than disk seq. throughput

SSD performance: writes

 Writes

— flash media must be erased before it can be written to
— unit of erase is a block, typically 64-256 pages long
« usually takes 1-2ms to erase a block

* blocks can only be erased a certain number of times before they
become unusable — typically 10,000 — 1,000,000 times

— unit of write is a page
« writing a page can be 2-10x slower than reading a page
* Writing to an SSD is complicated

— random write to existing block: read block, erase block, write back
modified block

* leads to hard-drive like performance (300 random writes / s)

— sequential writes to erased blocks: fast!
« SSD-read like performance (100-200 MB/s)

SSDs: dealing with erases, writes

Lots of higher-level strategies can help hide the warts of an
SSD

Many of these work by

— exposing logical pages, not physical pages
Wear-levelling:

— when writing,

— try to spread erases out evenly across physical blocks of of the SSD

* Intel promises 100GB/day x 5 years for its SSD drives

Log-structured filesystems:

— convert random writes within a filesystem

— to log appends on the SSD

SSD cost

« Capacity
— today, flash SSD costs ~$2.50/GB
« 1TB drive costs around $2500
— 1TB hard drive costs around $50
— Data on cost trends is volatile/preliminary

* Energy
— SSD is typically more energy efficient than a hard drive
« 1-2 watts to power an SSD
« ~10 watts to power a high performance hard drive
— (can also buy a 1 watt lower-performance drive)

Summary

Disk trends
Memory Hierarchy
Performance

Scheduling

SSDs

— Read

— Write

— Performance
— Cost

Next lecture: Revision tutorial

