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Scheduling

• We have talked about context switching
– an interrupt occurs (device completion, timer interrupt)
– a thread causes a trap or exception
– may need to choose a different thread/process to run

• Glossed over which process or thread to  run next
– “some thread from the ready queue”

• This decision is called scheduling
– scheduling is a policy
– context switching is a mechanism
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Basic Concepts

• Maximum CPU utilization 
obtained with 
multiprogramming

• CPU–I/O Burst Cycle –
Process execution consists of 
a cycle of CPU execution and 
I/O wait

• CPU burst followed by I/O 
burst

• CPU burst distribution is of 
main concern
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Histogram of CPU-burst Times

Exploit this : let another job use CPU



Classes of Schedulers

• Batch
– Throughput / utilization oriented
– Example: audit inter-bank funds transfers each night, Pixar 

rendering, Hadoop/MapReduce jobs
• Interactive

– Response time oriented
• Real time

– Deadline driven
– Example: embedded systems (cars, airplanes, etc.)

• Parallel
– Speedup-driven
– Example: “space-shared” use of a 1000-processor machine for large 

simulations
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We’ll be talking primarily about interactive schedulers



Multiple levels of scheduling decisions

• Long term
– Should a new “job” be “initiated,” or should it be held?

• typical of batch systems
• Medium term

– Should a running program be temporarily marked as non-runnable 
(e.g., swapped out)?

• Short term
– Which thread should be given the CPU next?  For how long?
– Which I/O operation should be sent to the disk next?
– On a multiprocessor:

• should we attempt to coordinate the running of threads from the 
same address space in some way?

• should we worry about cache state (processor affinity)?
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Scheduling Goals I: Performance

• Many possible metrics / performance goals (which 
sometimes conflict)
– maximize CPU utilization
– maximize throughput (requests completed / s)
– minimize average response time (average time from 
submission of request to completion of response)

– minimize average waiting time (average time from 
submission of request to start of execution)

– minimize energy (joules per instruction) subject to some 
constraint (e.g., frames/second)
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Scheduling Goals II: Fairness

• No single, compelling definition of “fair”
– How to measure fairness?

• Equal CPU consumption? (over what time scale?)
– Fair per-user? per-process? per-thread?
– What if one process is CPU bound and one is I/O bound?

• Sometimes the goal is to be unfair:
– Explicitly favor some particular class of requests (priority system), 

but…
– avoid starvation (be sure everyone gets at least some service)
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The basic situation
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Schedulable units Resources

Scheduling:
- Who to assign each resource to
- When to re-evaluate your 

decisions



When to assign?

• Pre-emptive vs. non-preemptive schedulers 
– Non-preemptive

• once you give somebody the green light, they’ve got it until they relinquish it
– an I/O operation
– allocation of memory in a system without swapping

– Preemptive
• you can re-visit a decision

– setting the timer allows you to preempt the CPU from a thread even if it doesn’t 
relinquish it voluntarily

• Re-assignment always involves some overhead
– Overhead doesn’t contribute to the goal of any scheduler

• We’ll assume “work conserving” policies
– Never leave a resource idle when someone wants it

• Why even mention this?  When might it be useful to do something else?
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Laws and Properties

• The Utilization Law:  U  =  X * S
– U is utilization,
– X is throughput (requests per second)
– S is average service time
– This means that utilization is constant, independent of the schedule, so 

long as the workload can be processed

• Little’s Law:  N  =  X * R
– Where N is average number in system, X is throughput, and R is 

average response time (average time in system)
• This means that better average response time implies fewer in 

system, and vice versa

• Response Time R at a single server under FCFS scheduling: 
– R  =  S / (1-U)  and
– N  =  U / (1-U)
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Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)
– schedule in the order that they arrive
– “real-world” scheduling of people in (single) lines

• supermarkets
– jobs treated equally, no starvation

• In what sense is this “fair”?

• Sounds perfect!
– in the real world, does FCFS/FIFO work well?
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time:  (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027



FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2 , P3 , P1

■ The Gantt chart for the schedule is:

■ Waiting time for P1 = 6; P2 = 0; P3 = 3
■ Average waiting time:   (6 + 0 + 3)/3 = 3
■ Much better than previous case
■ Convoy effect - short process behind long process

● Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3



FCFS/FIFO drawbacks

• Average response time can be poor: small requests wait 
behind big ones

• May lead to poor utilization of other resources
– if you send me on my way, I can go keep another resource busy
– FCFS may result in poor overlap of CPU and I/O activity

• E.g., a CPU-intensive job prevents an I/O-intensive job from a 
small bit of computation, preventing it from going back and 
keeping the I/O subsystem busy

• The more copies of the resource there are to be scheduled
– the less dramatic the impact of occasional very large jobs (so long 

as there is a single waiting line)
– E.g., many cores vs. one core
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Algorithm #2: Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU 
burst
– Use these lengths to schedule the process with the shortest time

• SJF is optimal – gives minimum average waiting time for a 
given set of processes
– The difficulty is knowing the length of the next CPU request
– Could ask the user



Example of SJF

ProcessArriva l TiBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

Algorithm #2:



Determining Length of Next CPU Burst

■ Can only estimate the length – should be similar to the 
previous one
● Then pick process with shortest predicted next CPU burst

■ Can be done by using the length of previous CPU bursts, 
using exponential averaging

■ Commonly, α set to ½
■ Preemptive version called shortest-remaining-time-first
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Prediction of the Length of the Next CPU Burst
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Example of Shortest-remaining-time-first

■ Now we add the concepts of varying arrival times and 
preemption to the analysis

ProcessAarri Arrival TimeTBurst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

■ Preemptive SJF Gantt Chart

■ Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 
26/4 = 6.5 msec

P4
0 1 26

P1 P2
10

P3P1
5 17



Algorithm #3: Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum q), 
usually 10-100 milliseconds.  
– After this time has elapsed, the process is preempted and added to the end 

of the ready queue.

• If there are n processes in the ready queue and the time quantum is 
q, 
– then each process gets 1/n of the CPU time in chunks of at most q time 

units at once.  
– No process waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context switch, otherwise 

overhead is too high



Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

• The Gantt chart is: 

• Typically, higher average turnaround than SJF,
• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 

usec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1



Time Quantum and Context Switch Time



Turnaround Time Varies With The Time Quantum

80% of CPU bursts 
should be shorter than q



RR drawbacks

• What if all jobs are exactly the same length?
– What would the pessimal schedule be (with average response time 

as the measure)?

• What do you set the quantum to be?
– no value is “correct”

• if small, then context switch often, incurring high overhead
• if large, then response time degrades

• Treats all jobs equally
– What about CPU vs I/O bound?
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Algorithm #4: Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority 
(smallest integer ≡ highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted 
next CPU burst time

• Problem ≡ Starvation – low priority processes may never execute

• Solution ≡ Aging – as time progresses increase the priority of the 
process



Example of Priority Scheduling

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec
• Error in Gantt: P2, P5, P1, P3, P4

1

0 1 19

P1 P2
16

P4P3
6 18

P



Program behavior and scheduling

• An analogy:
– Say you're at the airport waiting for a flight
– There are two identical ATMs:

• ATM 1 has 3 people in line
• ATM 2 has 6 people in line

– You get into the line for ATM 1
– ATM 2's line shrinks to 4 people
– Why might you now switch lines, preferring 5th in line for ATM 2 over 

4th in line for ATM 1?
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Residual Life

• Given that a job has already executed for X seconds, how 
much longer will it execute, on average, before completing?
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Residual Life

• Given that a job has already executed for X seconds, 
how much longer will it execute, on average, before 
completing?

Residual
Life

Time Already Executed

Give priority to new jobs

Round robin

Give priority to old jobs



Multi-level Feedback Queues (MLFQ)

• It’s been observed that workloads tend to have increasing 
residual life – “if you don’t finish quickly, you’re probably a 
lifer”

• This is exploited in practice by using a policy that 
discriminates against the old 

• MLFQ:
– there is a hierarchy of queues
– there is a priority ordering among the queues
– new requests enter the highest priority queue
– each queue is scheduled RR
– requests move between queues based on execution history
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UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities
• system: middle 40 priorities
• real-time: highest 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU
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Summary

• Scheduling takes place at many levels
• It can make a huge difference in performance

– this difference increases with the variability in service requirements
• Multiple goals, sometimes conflicting
• There are many “pure” algorithms, most with some 

drawbacks in practice – FCFS, SPT, RR, Priority
• Real systems use hybrids that exploit observed program 

behavior
• Scheduling is important

– Look at muticore/GPU systems in later research lecture 
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