
Operating Systems

Scheduling

Lecture 8
Michael O’Boyle

1

Scheduling

• We have talked about context switching
– an interrupt occurs (device completion, timer interrupt)
– a thread causes a trap or exception
– may need to choose a different thread/process to run

• Glossed over which process or thread to run next
– “some thread from the ready queue”

• This decision is called scheduling
– scheduling is a policy
– context switching is a mechanism

2

Basic Concepts

• Maximum CPU utilization
obtained with
multiprogramming

• CPU–I/O Burst Cycle –
Process execution consists of
a cycle of CPU execution and
I/O wait

• CPU burst followed by I/O
burst

• CPU burst distribution is of
main concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

Histogram of CPU-burst Times

Exploit this : let another job use CPU

Classes of Schedulers

• Batch
– Throughput / utilization oriented
– Example: audit inter-bank funds transfers each night, Pixar

rendering, Hadoop/MapReduce jobs
• Interactive

– Response time oriented
• Real time

– Deadline driven
– Example: embedded systems (cars, airplanes, etc.)

• Parallel
– Speedup-driven
– Example: “space-shared” use of a 1000-processor machine for large

simulations

5

We’ll be talking primarily about interactive schedulers

Multiple levels of scheduling decisions

• Long term
– Should a new “job” be “initiated,” or should it be held?

• typical of batch systems
• Medium term

– Should a running program be temporarily marked as non-runnable
(e.g., swapped out)?

• Short term
– Which thread should be given the CPU next? For how long?
– Which I/O operation should be sent to the disk next?
– On a multiprocessor:

• should we attempt to coordinate the running of threads from the
same address space in some way?

• should we worry about cache state (processor affinity)?

6

Scheduling Goals I: Performance

• Many possible metrics / performance goals (which
sometimes conflict)
– maximize CPU utilization
– maximize throughput (requests completed / s)
– minimize average response time (average time from
submission of request to completion of response)

– minimize average waiting time (average time from
submission of request to start of execution)

– minimize energy (joules per instruction) subject to some
constraint (e.g., frames/second)

7

Scheduling Goals II: Fairness

• No single, compelling definition of “fair”
– How to measure fairness?

• Equal CPU consumption? (over what time scale?)
– Fair per-user? per-process? per-thread?
– What if one process is CPU bound and one is I/O bound?

• Sometimes the goal is to be unfair:
– Explicitly favor some particular class of requests (priority system),

but…
– avoid starvation (be sure everyone gets at least some service)

8

The basic situation

9

•••

•••

Schedulable units Resources

Scheduling:
- Who to assign each resource to
- When to re-evaluate your

decisions

When to assign?

• Pre-emptive vs. non-preemptive schedulers
– Non-preemptive

• once you give somebody the green light, they’ve got it until they relinquish it
– an I/O operation
– allocation of memory in a system without swapping

– Preemptive
• you can re-visit a decision

– setting the timer allows you to preempt the CPU from a thread even if it doesn’t
relinquish it voluntarily

• Re-assignment always involves some overhead
– Overhead doesn’t contribute to the goal of any scheduler

• We’ll assume “work conserving” policies
– Never leave a resource idle when someone wants it

• Why even mention this? When might it be useful to do something else?

10

Laws and Properties

• The Utilization Law: U = X * S
– U is utilization,
– X is throughput (requests per second)
– S is average service time
– This means that utilization is constant, independent of the schedule, so

long as the workload can be processed

• Little’s Law: N = X * R
– Where N is average number in system, X is throughput, and R is

average response time (average time in system)
• This means that better average response time implies fewer in

system, and vice versa

• Response Time R at a single server under FCFS scheduling:
– R = S / (1-U) and
– N = U / (1-U)

11

12

13

Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)
– schedule in the order that they arrive
– “real-world” scheduling of people in (single) lines

• supermarkets
– jobs treated equally, no starvation

• In what sense is this “fair”?

• Sounds perfect!
– in the real world, does FCFS/FIFO work well?

14

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2 , P3 , P1

■ The Gantt chart for the schedule is:

■ Waiting time for P1 = 6; P2 = 0; P3 = 3
■ Average waiting time: (6 + 0 + 3)/3 = 3
■ Much better than previous case
■ Convoy effect - short process behind long process

● Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3

FCFS/FIFO drawbacks

• Average response time can be poor: small requests wait
behind big ones

• May lead to poor utilization of other resources
– if you send me on my way, I can go keep another resource busy
– FCFS may result in poor overlap of CPU and I/O activity

• E.g., a CPU-intensive job prevents an I/O-intensive job from a
small bit of computation, preventing it from going back and
keeping the I/O subsystem busy

• The more copies of the resource there are to be scheduled
– the less dramatic the impact of occasional very large jobs (so long

as there is a single waiting line)
– E.g., many cores vs. one core

17

Algorithm #2: Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU
burst
– Use these lengths to schedule the process with the shortest time

• SJF is optimal – gives minimum average waiting time for a
given set of processes
– The difficulty is knowing the length of the next CPU request
– Could ask the user

Example of SJF

ProcessArriva l TiBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

Algorithm #2:

Determining Length of Next CPU Burst

■ Can only estimate the length – should be similar to the
previous one
● Then pick process with shortest predicted next CPU burst

■ Can be done by using the length of previous CPU bursts,
using exponential averaging

■ Commonly, α set to ½
■ Preemptive version called shortest-remaining-time-first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤

=

=

+

αα

τ 1n

th
n nt

() .1 1 nnn t ταατ −+==

Prediction of the Length of the Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

Example of Shortest-remaining-time-first

■ Now we add the concepts of varying arrival times and
preemption to the analysis

ProcessAarri Arrival TimeTBurst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

■ Preemptive SJF Gantt Chart

■ Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 =
26/4 = 6.5 msec

P4
0 1 26

P1 P2
10

P3P1
5 17

Algorithm #3: Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds.
– After this time has elapsed, the process is preempted and added to the end

of the ready queue.

• If there are n processes in the ready queue and the time quantum is
q,
– then each process gets 1/n of the CPU time in chunks of at most q time

units at once.
– No process waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context switch, otherwise

overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF,
• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10

usec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

RR drawbacks

• What if all jobs are exactly the same length?
– What would the pessimal schedule be (with average response time

as the measure)?

• What do you set the quantum to be?
– no value is “correct”

• if small, then context switch often, incurring high overhead
• if large, then response time degrades

• Treats all jobs equally
– What about CPU vs I/O bound?

27

Algorithm #4: Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

• Problem ≡ Starvation – low priority processes may never execute

• Solution ≡ Aging – as time progresses increase the priority of the
process

Example of Priority Scheduling

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec
• Error in Gantt: P2, P5, P1, P3, P4

1

0 1 19

P1 P2
16

P4P3
6 18

P

Program behavior and scheduling

• An analogy:
– Say you're at the airport waiting for a flight
– There are two identical ATMs:

• ATM 1 has 3 people in line
• ATM 2 has 6 people in line

– You get into the line for ATM 1
– ATM 2's line shrinks to 4 people
– Why might you now switch lines, preferring 5th in line for ATM 2 over

4th in line for ATM 1?

30

Residual Life

• Given that a job has already executed for X seconds, how
much longer will it execute, on average, before completing?

31

Residual Life

• Given that a job has already executed for X seconds,
how much longer will it execute, on average, before
completing?

Residual
Life

Time Already Executed

Give priority to new jobs

Round robin

Give priority to old jobs

Multi-level Feedback Queues (MLFQ)

• It’s been observed that workloads tend to have increasing
residual life – “if you don’t finish quickly, you’re probably a
lifer”

• This is exploited in practice by using a policy that
discriminates against the old

• MLFQ:
– there is a hierarchy of queues
– there is a priority ordering among the queues
– new requests enter the highest priority queue
– each queue is scheduled RR
– requests move between queues based on execution history

32

UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities
• system: middle 40 priorities
• real-time: highest 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU

33

Summary

• Scheduling takes place at many levels
• It can make a huge difference in performance

– this difference increases with the variability in service requirements
• Multiple goals, sometimes conflicting
• There are many “pure” algorithms, most with some

drawbacks in practice – FCFS, SPT, RR, Priority
• Real systems use hybrids that exploit observed program

behavior
• Scheduling is important

– Look at muticore/GPU systems in later research lecture

34

