
Operating Systems

Deadlock

Lecture 7
Michael O’Boyle

1

2

Definition

• A thread is deadlocked when it’s waiting for an event that
can never occur
– I’m waiting for you to clear the intersection, so I can proceed

• but you can’t move until he moves, and he can’t move until she
moves, and she can’t move until I move

• Thread A is in critical section 1,
– waiting for access to critical section 2;

• Thread B is in critical section 2,
– waiting for access to critical section 1

3

Deadlock Example
/* thread one runs in this function */

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */
pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */
pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

Deadlock Example with Lock Ordering
void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Transactions 1 and 2 execute concurrently.

Transaction 1 transfers $25 from account A to account B, and
Transaction 2 transfers $50 from account B to account A

Four conditions must exist
for deadlock to be possible

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

We’ll see that deadlocks can be addressed by attacking
any of these four conditions.

6

Resource Graphs

7

• Resource graphs are a way to visualize the
(deadlock-related) state of the threads, and to
reason about deadlock

T1 T2 T3

Resources

Threads

• 1 or more identical units of a resource are available
• A thread may hold resources (arrows to threads)
• A thread may request resources (arrows from threads)

T4

Deadlock

• A deadlock exists if there is an irreducible cycle in the
resource graph (such as the one above)

8

Graph reduction

• A graph can be reduced by a thread if all of that thread’s
requests can be granted
– in this case, the thread eventually will terminate – all resources are

freed – all arcs (allocations) to/from it in the graph are deleted
• Miscellaneous theorems (Holt, Havender):

– There are no deadlocked threads iff the graph is completely
reducible

– The order of reductions is irrelevant

9

Resource allocation graph with no cycle

10

What would cause a
deadlock?

Resource allocation graph with a deadlock

11

Resource allocation graph with a cycle
but no deadlock

12

Handling Deadlock

• Eliminate one of the four required conditions
– Mutual Exclusion
– Hold and Wait
– No Preemption
– Circular Wait

• Broadly classified as:
– Prevention, or
– Avoidance, or
– Detection (and recovery)

13

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources
(e.g., read-only files); must hold for non-sharable resources

• Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources

– Low resource utilization; starvation possible

Restrain the ways request can be made

Deadlock Prevention (Cont.)

• No (resource) Preemption –
– If a process holding some resources requests another unavailable

resource all resources currently held are released
– Process will be restarted only when it can regain its old resources, as

well as the new ones that it is requesting

• Circular Wait
– impose a total ordering of all resource types, and require that each
process requests resources in an increasing order of enumeration

Avoidance

Less severe restrictions on program behavior

• Eliminating circular wait
– each thread states its maximum claim for every resource type
– system runs the Banker’s Algorithm at each allocation request

• Banker ⇒ highly conservative
• More on this shortly

16

Detect and recover

• Every once in a while, check to see if there’s a deadlock
– how?

• If so, eliminate it
– how?

17

Avoidance: Banker’s Algorithm example

• Background
– The set of controlled resources is known to the system
– The number of units of each resource is known to the system
– Each application must declare its maximum possible requirement of

each resource type
• Then, the system can do the following:

– When a request is made
• pretend you granted it
• pretend all other legal requests were made
• can the graph be reduced?

– if so, allocate the requested resource
– if not, block the thread until some thread releases resources,

and then try pretending again

18

19

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

1. I request a pot

20

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? It’s OK; there is
a way for me to complete,
and then you can complete

pretend

21

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

2. You request a pot

22

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? It’s OK; there is
a way for me to complete,
and then you can complete

pretend

23

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

3a. You request a pan

24

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? NO! Both of
us might be unable to
complete!

pretend

25

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

3b. I request a pan

26

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? It’s OK; there is
a way for me to complete,
and then you can complete

pretend

Safe State

• When requesting an available resource decide if allocation
leaves the system in a safe state

• In safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems
– such that for each Pi, the resources that Pi can still request can be

satisfied by currently available resources + resources held by all the Pj,
with j < i

• That is:
– If Pi resource needs are not immediately available, then Pi can wait until

all Pj have finished
– When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed resources, and so on

Safe, Unsafe, Deadlock State

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If Available [j] = k, there are
k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as
follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

● If safe ⇒ the resources are allocated to Pi

● If unsafe ⇒ Pi must wait, and the old resource-allocation state is
restored

Example of Banker’s Algorithm

• 5 processes P0 through P4;
3 resource types:

A (10 instances), B (5instances), and C (7 instances)
• Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max –

Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1, P3,
P4, P2, P0> satisfies safety criteria

Example: P1 Request (1,0,2)

• Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒
true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3,
P4, P0, P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes
– Pi → Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a
cycle in the graph.
– If there is a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph
– requires an order of n2 operations,
– where n is the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Detection-Algorithm Usage

• When, and how often, to invoke depends on:
– How often a deadlock is likely to occur?
– How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
– there may be many cycles in the resource graph
– we would not be able to tell which deadlocked

processes “caused” the deadlock.

Recovery from Deadlock:

• Process Termination
– Abort all deadlocked processes

– Abort one process at a time until the deadlock cycle is eliminated

– In which order should we choose to abort?
• Resource Preemption

– Selecting a victim – minimize cost

– Rollback – return to some safe state, restart process for that
state

– Starvation – same process may always be picked as victim,
include number of rollback in cost factor

Summary

• Deadlock is bad!

• We can deal with it either statically (prevention) or
dynamically (avoidance and/or detection)

• In practice, you’ll encounter lock ordering, periodic deadlock
detection/correction, and minefields

40

