
Operating Systems  
 
 

Synchronization 

Lecture 5
Michael O’Boyle

1

Temporal relations

User view of parallel threads

• Instructions executed by a single thread are totally ordered
– A < B < C < …

• In absence of synchronization,
– instructions executed by distinct threads must be considered

unordered / simultaneous
– Not X < X’, and not X’ < X

Hardware largely supports this

2

3

Example: In the beginning...
main()

A

B
pthread_create()

A'
foo()

C

B'
• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could
be multiple CPUs (cores).

Example

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect results if
executed simultaneously are called critical sections

• Race condition results depend on timing
• Mutual exclusion means “not simultaneous”

– A < B or B < A
– We don’t care which

• Forcing mutual exclusion between two critical section
executions
– is sufficient to ensure correct execution
– guarantees ordering

4

5

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections

When do critical sections arise?

• One common pattern:
– read-modify-write of
– a shared value (variable)
– in code that can be executed by concurrent threads

• Shared variable:
– Globals and heap-allocated variables
– NOT local variables (which are on the stack)

6

Race conditions

• A program has a race condition (data race) if the result of an
executing depends on timing
– i.e., is non-deterministic

• Typical symptoms
– I run it on the same data, and sometimes it prints 0 and sometimes it

prints 4
– I run it on the same data, and sometimes it prints 0 and sometimes it

crashes

7

Example: shared bank account

• Suppose we have to implement a function to withdraw
money from a bank account:

 int withdraw(account, amount) {
 int balance = get_balance(account); // read
 balance -= amount; // modify
 put_balance(account, balance); // write
 spit out cash;
}

• Now suppose that you and your partner share a bank
account with a balance of £100.00
– what happens if you both go to separate CashPoint machines, and

simultaneously withdraw £10.00 from the account?

8

• Assume the bank’s application is multi-threaded
• A random thread is assigned a transaction when that

transaction is submitted

9

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 spit out cash;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 spit out cash;

}

Interleaved schedules

• The problem is that the execution of the two threads can be
interleaved:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?

• How often is this sequence likely to occur?

10

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

Other Execution Orders

• Which interleavings are ok? Which are not?

11

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 spit out cash;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 spit out cash;

}

How About Now?

• Moral:
– Interleavings are hard to reason about

• We make lots of mistakes
• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually exclusive access
can make things easier

12

int xfer(from, to, machine) {

 withdraw(from, machine);

 deposit(to, machine);

}

int xfer(from, to, machine) {

 withdraw(from, machine);

 deposit(to, machine);

}

Another example

13

 i++; i++;

Correct critical section requirements

• Correct critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section
– progress

• if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will eventually

enter the critical section
– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small

with respect to the work being done within it

14

Mechanisms for building critical sections

• Spinlocks
– primitive, minimal semantics; used to build others

• Semaphores (and non-spinning locks)
– basic, easy to get the hang of, somewhat hard to program with

• Monitors
– higher level, requires language support, implicit operations
– easier to program with; Java “synchronized()” as an example

• Messages
– simple model of communication and synchronization based on

(atomic) transfer of data across a channel
– direct application to distributed systems

15

Locks

• A lock is a memory object with two operations:
– acquire(): obtain the right to enter the critical section
– release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until the lock
can be acquired

• Note: terminology varies: acquire/release, lock/unlock

16

17

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks: Example

Acquire/Release

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the lock
– acquire() does not return until the caller “owns” (holds) the lock

• at most one thread can hold a lock at a time
• What happens if the calls aren’t paired

– I acquire, but neglect to release?
• What happens if the two threads acquire different locks

– I think that access to a particular shared data structure is mediated
by lock A, and you think it’s mediated by lock B?

• What is the right granularity of locking?

18

Using locks

• What happens when green tries to acquire the lock?

19

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

Spinlocks

• How do we implement spinlocks? Here’s one attempt:

• Race condition in acquire

20

struct lock_t {

 int held = 0;

}

void acquire(lock) {

 while (lock->held);

 lock->held = 1;

}

void release(lock) {

 lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released ⇒ hence spinlock

Implementing spinlocks

• Problem is that implementation of spinlocks has critical
sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted
• code that executes “all or nothing”

– Compiler can hoist code that is invariant
• Need help from the hardware

– atomic instructions
• test-and-set, compare-and-swap, …

21

Spinlocks: Hardware Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single atomic instruction …

22

bool test_and_set(bool *flag) {

 bool old = *flag;

 *flag = True;

 return old;

}

Implementing spinlocks using Test-and-Set

• So, to fix our broken spinlocks: 
 
 
 
 
 
 

– mutual exclusion? (at most one thread in the critical section)
– progress? (T outside cannot prevent S from entering)
– bounded waiting? (waiting T will eventually enter)
– performance? (low overhead (modulo the spinning part …))

23

struct lock {

 int held = 0;

}

void acquire(lock) {

 while(test_and_set(&lock->held));

}

void release(lock) {

 lock->held = 0;

}

Reminder of use …

• How does a thread blocked on an “acquire” (that is, stuck in
a test-and-set loop) yield the CPU?
– calls yield() (spin-then-block)
– there’s an involuntary context switch (e.g., timer interrupt)

24

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

Problems with spinlocks

• Spinlocks work, but are wasteful!
– if a thread is spinning on a lock, the thread holding the lock cannot

make progress
• You’ll spin for a scheduling quantum

– (pthread_spin_t)

• Only want spinlocks as primitives to build higher-level
synchronization constructs
– Ok as ensure acquiring only happens for a short time

• We’ll see later how to build blocking locks
– But there is overhead – can be cheaper to spin

25

Summary

• Synchronization introduces temporal ordering
• Synchronization can eliminate races
• Synchronization can be provided by locks, semaphores,

monitors, messages …
• Spinlocks are the lowest-level mechanism

– primitive in terms of semantics – error-prone
– implemented by spin-waiting (crude) or by disabling interrupts (also

crude, and can only be done in the kernel)

26

