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Overview

• Process vs threads
– how related

• Concurrency
– why threads

• Design space of process/threads
– a simple taxonomy

• Kernel threads 
– more efficient

• User-level threads 
– even faster

• No lecture on THURSDAY Feb 2 2017
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What’s “in” a process?

• A process consists of (at least):
– An address space, containing

• the code (instructions) for the running program
• the data for the running program

– Thread state, consisting of
• The program counter (PC), indicating the next instruction
• The stack pointer register (implying the stack it points to)
• Other general purpose register values

– A set of OS resources
• open files, network connections, sound channels, …

• Decompose …
– address space
– thread of control (stack, stack pointer, program counter, registers)
– OS resources
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Thread: Concurrency vs. Parallelism

■ Threads are about concurrency and parallelism

■ Concurrent execution on single-core system:

■ Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…



Motivation

• Threads are about concurrency and parallelism
• One way to get concurrency and parallelism is to use 

multiple processes
– The programs (code) of distinct processes are isolated from each 

other
• Threads are another way to get concurrency and 

parallelism
– Threads “share a process” – same address space, same OS 

resources
– Threads have private stack, CPU state – are schedulable
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What’s needed?

• In many cases
– Everybody wants to run the same code
– Everybody wants to access the same data
– Everybody has the same privileges
– Everybody uses the same resources (open files, network 

connections, etc.)
• But you’d like to have multiple hardware execution states:

– an execution stack and stack pointer (SP)
• traces state of procedure calls made

– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their values
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How could we achieve this?

• Given the process abstraction as we know it:
– fork several processes
– cause each to map to the same physical memory to share data

• see the shmget() system call for one way to do this 

• This is really inefficient
– space:  PCB, page tables, etc.
– time: creating OS structures, fork/copy address space, etc.

7



Can we do better?

• Key idea:
– separate the concept of a process (address space, OS resources)
– … from that of a minimal “thread of control” (execution state:  stack, 

stack pointer, program counter, registers)
• This execution state is usually called a thread, or 

sometimes, a lightweight process
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Threads and processes

• Most modern OS’s (Mach (Mac OS), Chorus, Windows, 
UNIX) therefore support two entities:
– the process, which defines the address space and general process 

attributes (such as open files, etc.)
– the thread, which defines a sequential execution stream within a 

process
• A thread is bound to a single process / address space

– address spaces, however, can have multiple threads executing 
within them

– sharing data between threads is cheap: all see the same address 
space

– creating threads is cheap too!
• Threads become the unit of scheduling

– processes / address spaces are just containers in which threads 
execute
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Single and Multithreaded Processes
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Communication

• Threads are concurrent executions sharing an address 
space (and some OS resources)

• Address spaces provide isolation
– If you can’t name it, you can’t read or write it

• Hence, communicating between processes is expensive
– Must go through the OS to move data from one address space to 

another
• Because threads are in the same address space, 

communication is simple/cheap
– Just update a shared variable!
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The design space
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(old) Process address space
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(new) Address space with threads
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Process/thread separation

• Concurrency (multithreading) is useful for:
– handling concurrent events (e.g., web servers and clients)
– building parallel programs (e.g., matrix multiply, ray tracing)
– improving program structure (the Java argument)

• Multithreading is useful even on a uniprocessor
– even though only one thread can run at a time

• Supporting multithreading – that is, separating the concept 
of a process (address space, files, etc.) from that of a 
minimal thread of control (execution state), is a big win
– creating concurrency does not require creating new processes
– “faster / better / cheaper”
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Terminology

• Just a note that there’s the potential for some confusion …
– Old :  “process”  ==  “address space + OS resources + single thread”
– New:  “process” typically refers to an address space + system 

resources + all of its threads …
• When we mean the “address space” we need to be explicit

“thread” refers to a single thread of control within a process / 
address space

• A bit like “kernel” and “operating system” …
– Old:  “kernel”  ==  “operating system” and runs in “kernel mode”
– New:  “kernel” typically refers to the microkernel; lots of the 

operating system runs in user mode
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Where do threads come from?

• Natural answer:  the OS is responsible for 
creating/managing threads
– For example, the kernel call to create a new thread would

• allocate an execution stack within the process address space
• create and initialize a Thread Control Block

– stack pointer, program counter, register values
• stick it on the ready queue

• We call these kernel threads
– There is a “thread name space”

• Thread id’s (TID’s)
• TID’s are integers
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Kernel threads

18

address 
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(thread create, destroy, 
signal, wait, etc.)

CPU



Kernel threads

• OS now manages threads and processes / address spaces
– all thread operations are implemented in the kernel
– OS schedules all of the threads in a system

• if one thread in a process blocks (e.g., on I/O), the OS knows about 
it, and can run other threads from that process

• possible to overlap I/O and computation inside a process
• Kernel threads are cheaper than processes

– less state to allocate and initialize
• But, they’re still pretty expensive for fine-grained use

– orders of magnitude more expensive than a procedure call
– thread operations are all system calls

• context switch
• argument checks

– must maintain kernel state for each thread
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Cheaper alternative

• There is an alternative to kernel threads
• Threads can also be managed at the user level (within the 

process)
– a library linked into the program manages the threads

• the thread manager doesn’t need to manipulate address spaces 
(which only the kernel can do)

• threads differ (roughly) only in hardware contexts (PC, SP, 
registers), which can be manipulated by user-level code

• the thread package multiplexes user-level threads on top of 
kernel thread(s)

• each kernel thread is treated as a “virtual processor”
– we call these user-level threads
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User-level threads
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User-level threads: what the kernel sees
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User-level threads
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User-level threads

• User-level threads are small and fast
– managed entirely by user-level library

• E.g., pthreads (libpthreads.a)
– each thread is represented simply by a PC, registers, a stack, and a 

small thread control block (TCB)
– creating a thread, switching between threads, and synchronizing 

threads are done via procedure calls
• no kernel involvement is necessary!

• User-level thread operations can be 10-100x faster than 
kernel threads as a result
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OLD Performance example

• On a 700MHz Pentium running Linux 2.2.16 (only the 
relative numbers matter; ignore the ancient CPU!):

– Processes
• fork/exit: 251 µs

– Kernel threads
• pthread_create()/pthread_join(): 94 µs (2.5x faster)

– User-level threads
• pthread_create()/pthread_join: 4.5 µs (another 20x 

faster)
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User-level thread implementation

• The OS schedules the kernel thread
• The kernel thread executes user code, including the thread 

support library and its associated thread scheduler
• The thread scheduler determines when a user-level thread 

runs
– it uses queues to keep track of what threads are doing:  run, ready, 

wait
• just like the OS and processes
• but, implemented at user-level as a library

26



Thread interface

• This is taken from the POSIX pthreads API:
– rcode = pthread_create(&t, attributes, 
start_procedure)

• creates a new thread of control
• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable, mutex)
• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)
• starts a thread waiting on the condition variable

– pthread_exit()
• terminates the calling thread

– pthread_join(t)
• waits for the named thread to terminate
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Thread context switch

• Very simple for user-level threads:
– save context of currently running thread

• push CPU state onto thread stack
– restore context of the next thread

• pop CPU state from next thread’s stack
– return as the new thread

• execution resumes at PC of next thread
– Note:  no changes to memory mapping required

• This is all done in assembly language
– it works at the level of the procedure calling convention
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How to keep a user-level thread from
hogging the CPU?

• Strategy 1: force everyone to cooperate
– a thread willingly gives up the CPU by calling yield()
– yield() calls into the scheduler, which context switches to another 

ready thread
– what happens if a thread never calls yield()?

• Strategy 2: use preemption
– scheduler requests that a timer interrupt be delivered by the OS 

periodically
• usually delivered as a UNIX signal (man signal)
• signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware
– at each timer interrupt, scheduler gains control and context switches 

as appropriate
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What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration of the 
(synchronous) I/O operation!
– The kernel thread blocks in the OS, as always
– It maroons with it the state of the user-level thread

• Could have one kernel thread “powering” each user-level 
thread
– “common case” operations (e.g., synchronization) would be quick

• Could have a limited-size “pool” of kernel threads 
“powering” all the user-level threads in the address space
– the kernel will be scheduling these threads, obliviously to what’s 

going on at user-level
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Multiple kernel threads “powering”
each address space
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Summary

• Multiple threads per address space
• Kernel threads are much more efficient than processes, but 

still expensive
– all operations require a kernel call and parameter validation

• User-level threads are:
– much cheaper and faster
– great for common-case operations

• creation, synchronization, destruction
– can suffer in uncommon cases due to kernel obliviousness

• I/O
• preemption of a lock-holder

• No lecture on THURSDAY Feb 2 2017
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