Operating Systems

Threads

Lecture 4
Michael O'Boyle

Overview

Process vs threads
— how related

Concurrency
— why threads

Design space of process/threads
— a simple taxonomy

Kernel threads

— more efficient

User-level threads
— even faster

No lecture on THURSDAY Feb 2 2017

What's “Iin” a process?

« A process consists of (at least):

— An address space, containing
 the code (instructions) for the running program
 the data for the running program

— Thread state, consisting of
* The program counter (PC), indicating the next instruction
» The stack pointer register (implying the stack it points to)
« Other general purpose register values

— A set of OS resources
» open files, network connections, sound channels, ...

« Decompose ...

— address space
— thread of control (stack, stack pointer, program counter, registers)
— OS resources

Thread: Concurrency vs. Parallelism

Threads are about concurrency and parallelism

Concurrent execution on single-core system:

single core | Ty To | T3 | T4 | Ty To | T3 | T4 | Ty

time

A\

Parallelism on a multi-core system:

core 1 T4 Ts T4 T3 T4

core 2 To Ty To Ty To

A 4

Motivation

Threads are about concurrency and parallelism

One way to get concurrency and parallelism is to use

multiple processes

— The programs (code) of distinct processes are isolated from each
other

Threads are another way to get concurrency and

parallelism

— Threads “share a process” — same address space, same OS
resources

— Threads have private stack, CPU state — are schedulable

What's needed?

In many cases
— Everybody wants to run the same code
— Everybody wants to access the same data
— Everybody has the same privileges
— Everybody uses the same resources (open files, network
connections, etc.)
But you'd like to have multiple hardware execution states:
— an execution stack and stack pointer (SP)
« traces state of procedure calls made
— the program counter (PC), indicating the next instruction
— a set of general-purpose processor registers and their values

How could we achieve this?

« Given the process abstraction as we know it:
— fork several processes
— cause each to map to the same physical memory to share data

» see the shmget () system call for one way to do this
* This is really inefficient

— space: PCB, page tables, etc.
— time: creating OS structures, fork/copy address space, etc.

Can we do better?

* Key idea:
— separate the concept of a process (address space, OS resources)

— ... from that of a minimal “thread of control” (execution state: stack,
stack pointer, program counter, registers)

« This execution state is usually called a thread, or
sometimes, a lightweight process

% <«—— thread

Threads and processes

 Most modern OS’s (Mach (Mac OS), Chorus, Windows,
UNIX) therefore support two entities:

— the process, which defines the address space and general process
attributes (such as open files, etc.)

— the thread, which defines a sequential execution stream within a
process

« Athread is bound to a single process / address space

— address spaces, however, can have multiple threads executing
within them

— sharing data between threads is cheap: all see the same address
space

— creating threads is cheap too!
* Threads become the unit of scheduling

— processes / address spaces are just containers in which threads
execute

Single and Multithreaded Processes

code data files
registers stack
thread —

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
<

— thread

multithreaded process

Communication

Threads are concurrent executions sharing an address
space (and some OS resources)

Address spaces provide isolation
— If you can’t name it, you can’t read or write it

Hence, communicating between processes is expensive

— Must go through the OS to move data from one address space to
another

Because threads are in the same address space,
communication is simple/cheap
— Just update a shared variable!

Key

address
space

s

thread

The design space

MS/DOS

one thread per process
one process

3

3

3

3

one thread per process

many processes

older
UNIXes

s 3
Java % %

many threads per process
one process

s
$3

s 3

s

Mach, NT,
Chorus,
Linux, ...

many threads per process
many processes

12

(old) Process address space

OXFFFFFFFF

A

address space

v

0x00000000

stack
(dynamic allocated mem)

’
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

«— SP

“— PC

13

(new) Address space with threads

OXFFFFFFFF

A

address space

v

0x00000000

thread 1 stack

;

thread 2 stack

;

thread 3 stack

’
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

© 2012 Gribble, Lazowska, Levy, Zahorjan

«— SP (T1)

+— SP (T2)

+<— SP (T3)

«— PC (T2)
«~—— PC (T1)
«— PC (T3)

14

14

Process/thread separation

Concurrency (multithreading) is useful for:

— handling concurrent events (e.g., web servers and clients)
— building parallel programs (e.g., matrix multiply, ray tracing)
— improving program structure (the Java argument)

Multithreading is useful even on a uniprocessor

— even though only one thread can run at a time

Supporting multithreading — that is, separating the concept
of a process (address space, files, etc.) from that of a
minimal thread of control (execution state), is a big win

— creating concurrency does not require creating new processes

— “faster/ better / cheaper”

Terminology

« Just a note that there's the potential for some confusion ...

— Old : “process” == “address space + OS resources + single thread

— New: “process” typically refers to an address space + system
resources + all of its threads ...

 When we mean the “address space” we need to be explicit

“thread” refers to a single thread of control within a process /
address space

”

* Abit like “kernel” and “operating system” ...
— Old: “kernel” == “operating system” and runs in “kernel mode”

— New: “kernel” typically refers to the microkernel; lots of the
operating system runs in user mode

Where do threads come from?

« Natural answer: the OS is responsible for
creating/managing threads
— For example, the kernel call to create a new thread would
 allocate an execution stack within the process address space
 create and initialize a Thread Control Block
— stack pointer, program counter, register values
« stick it on the ready queue

 We call these kernel threads
— There is a “thread name space”
* Thread id’'s (TID’s)
* TID’s are integers

address
space

s

thread

Kernel threads

?

71

s

Mach, NT,
Chorus,
Linux, ...

i

:
/
K

os kernel

!

CPU \

(thread create, destroy,
signal, wait, etc.)

18

Kernel threads

« OS now manages threads and processes / address spaces
— all thread operations are implemented in the kernel
— OS schedules all of the threads in a system

« if one thread in a process blocks (e.g., on I/O), the OS knows about
it, and can run other threads from that process

» possibleto overlap I/O and computation inside a process

« Kernel threads are cheaper than processes
— less state to allocate and initialize

« But, they're still pretty expensive for fine-grained use
— orders of magnitude more expensive than a procedure call
— thread operations are all system calls
» context switch
« argument checks
— must maintain kernel state for each thread

Cheaper alternative

 There is an alternative to kernel threads

* Threads can also be managed at the user level (within the
process)
— a library linked into the program manages the threads

» the thread manager doesn’t need to manipulate address spaces
(which only the kernel can do)

* threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

 the thread package multiplexes user-level threads on top of
kernel thread(s)

» each kernel thread is treated as a “virtual processor”
— we call these user-level threads

User-level threads

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

5%

address]

space

% l 0S kern;I l

thread CPU

Now thread id is unique within the context of a process, not unique system-wide

User-level threads: what the kernel sees

address
space

s

thread

l

®
os kernel

l

CPU

22

address
space

s

thread

User-level threads

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

Mach, NT,
Chorus,

5% r2

’ »
% % Linux, ...
J . kernel threads
‘/ os kernel

N
CPU \

(kernelthread create, destroy,
signal, wait, etc.)

One problem: If a user-level thread blocked due to I/O, all other blocked

User-level threads

 User-level threads are small and fast

— managed entirely by user-level library
* E.g., pthreads (libpthreads.a)

— each thread is represented simply by a PC, registers, a stack, and a
small thread control block (TCB)

— creating a thread, switching between threads, and synchronizing
threads are done via procedure calls

* no kernel involvement is necessary!

« User-level thread operations can be 10-100x faster than
kernel threads as a result

OLD Performance example

* On a 700MHz Pentium running Linux 2.2.16 (only the
relative numbers matter; ignore the ancient CPU!):

— Processes
« fork/exit: 251 us

— Kernel threads /Why?
 pthread create()/pthread join(): 94 us (2.5x faster)

— User-level threads

* pthread create()/pthread join: 4.5 us (another 20x
faster) N
Why?

25

User-level thread implementation

The OS schedules the kernel thread

The kernel thread executes user code, including the thread
support library and its associated thread scheduler

The thread scheduler determines when a user-level thread
runs
— it uses queues to keep track of what threads are doing: run, ready,
wait
* just like the OS and processes
* but, implemented at user-level as a library

Task Queue

(@@ — O l

Thread PN
S (0]|(e]|[e]|[%]|(e]|[e)

Completed Tasks |

~([(@@@@@@@@@O «— O +

Thread interface

This is taken from the POSIX pthreads API:

— rcode = pthread create(&t, attributes,
start procedure)

* creates a new thread of control

* new thread begins executing at start_procedure
— pthread cond wailt(condition variable, mutex)

« the calling thread blocks, sometimes called thread_block()
— pthread signal (condition variable)

« starts a thread waiting on the condition variable
— pthread exit()

« terminates the calling thread

— pthread join(t) S L/
« waits for the named thread to terminate Pthre

ORELLY"

27

Thread context switch

* Very simple for user-level threads:
— save context of currently running thread
* push CPU state onto thread stack Selmcls S
— restore context of the nextthread @ =
» pop CPU state from next thread’s stack
— return as the new thread
« execution resumes at PC of next thread

— Note: no changes to memory mapping required

« This is all done in assembly language
— it works at the level of the procedure calling convention

Context Switching

Multitasking

How to keep a user-level thread from
hogging the CPU?

« Strategy 1: force everyone to cooperate
— a thread willingly gives up the CPU by calling yield ()
— yield () calls into the scheduler, which context switches to another
ready thread
— what happens if a thread never calls yield () ?

« Strategy 2: use preemption
— scheduler requests that a timer interrupt be delivered by the OS
periodically
 usually delivered as a UNIX signal (man signal)
* signals are just like software interrupts, but delivered to user-
level by the OS instead of delivered to OS by hardware

— at each timer interrupt, scheduler gains control and context switches
as appropriate

What if a thread tries to do |/O?

* The kernel thread “powering” it is lost for the duration of the
(synchronous) /O operation!
— The kernel thread blocks in the OS, as always
— It maroons with it the state of the user-level thread

* Could have one kernel thread “powering” each user-level
thread

— “common case” operations (e.g., synchronization) would be quick
* Could have a limited-size “pool” of kernel threads
“powering” all the user-level threads in the address space

— the kernel will be scheduling these threads, obliviously to what’s
going on at user-level

Multiple kernel threads "powering”

each address space
user-level

% % %/ th t t
7% b
33| £ o

address - a
space %% %
. « o Kk | thread
% A os kerp\el ernel threads
thread CPU \

(kernelthread create, destroy,
signal, wait, etc.)

31

Summary

Multiple threads per address space

Kernel threads are much more efficient than processes, but
still expensive
— all operations require a kernel call and parameter validation

User-level threads are:

— much cheaper and faster

— great for common-case operations
 creation, synchronization, destruction

— can sufferin uncommon cases due to kernel obliviousness
« 1/O
« preemption of a lock-holder

No lecture on THURSDAY Feb 2 2017

