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Lower-level architecture affects (is affected by)  
the OS

• The operating system supports sharing and protection
– multiple applications can run concurrently, sharing resources
– a buggy or malicious application cannot  disrupt other applications or 

the system
• There are many approaches to achieving this
• The architecture determines which approaches are viable 

(reasonably efficient, or even possible)
– includes instruction set  (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers
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Architecture support for the OS

• Architectural support can simplify OS tasks
– e.g.: early PC operating systems (DOS, MacOS) lacked support for 

virtual memory, in part because at that time PCs lacked necessary 
hardware support

• Until  recently, Intel-based PCs still lacked support for 64-bit 
addressing 
– has been available for a decade on other platforms:  MIPS, Alpha, 

IBM, etc…
– Changed driven by AMD’s 64-bit architecture
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Architectural features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation
– synchronization instructions 

• e.g., atomic test-and-set
– memory protection
– I/O control operations
– interrupts and exceptions
– protected modes of execution 

• kernel vs. user mode
– privileged instructions
– system calls 

• Including software interrupts
– virtualization architectures

• ASPLOS
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Privileged instructions

• Some instructions are restricted to the OS
– known as privileged instructions

• Only the OS can:
– directly access I/O devices (disks, network cards)

– manipulate memory state management
• page table pointers, TLB loads, etc.

– manipulate special ‘mode bits’
• interrupt priority level

• Restrictions provide safety and security 
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OS protection
• So how does the processor know if a privileged instruction 

should be executed?
– the architecture must support at least two modes of operation: 

kernel mode and user mode
• x86 support 4 protection modes

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel (privileged) mode   (OS == kernel)

• Privileged instructions can only be executed in kernel 
(privileged) mode
– if code running in user mode attempts to execute a privileged 

instruction the Illegal excecutin trap
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Crossing protection boundaries

• So how do user programs do something privileged?
– e.g., how can you write to a disk if you can’t execute an I/O 

instructions?
• User programs must call an OS procedure – that is ask  the 

OS to do it for them
– OS defines a set of system calls
– User-mode program executes system call instruction

• Syscall instruction
– Like a protected procedure call
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• The syscall instruction atomically:
– Saves the current PC
– Sets the execution mode to privileged
– Sets the PC to a handler address

• Similar to  a procedure call
– Caller puts arguments in a place callee expects (registers or stack)

• One of the args is a syscall number, indicating which OS function 
to invoke

– Callee (OS) saves caller’s state (registers, other control state) so it 
can use the CPU

– OS function code runs
• OS must verify caller’s arguments (e.g., pointers)

– OS returns using a special instruction
• Automatically sets PC to return address and sets execution 

mode to user
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API – System Call – OS Relationship



A kernel crossing illustrated
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user mode
kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read( ) handler in vector table

trap handler

sys_read( ) kernel routine
Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

ERET instruction
http://syscalls.kernelgrok.com/

PC = saved PC
Enter user mode



Examples of Windows and  Unix System Calls



System call issues

• A syscall is not  subroutine call, with the caller specifying 
the next PC.
– the caller knows where the subroutines are located in memory; 

therefore they can be target of attack. 
• The kernel saves state?

– Prevents overwriting  of values
• The kernel verify arguments

– Prevents buggy code crashing system
• Referring to  kernel objects as arguments

– Data  copied between user buffer and kernel buffer
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Exception Handling and Protection

• All entries to the OS occur via the mechanism just shown
– Acquiring privileged mode and branching to the trap handler are 

inseparable
• Terminology:

– Interrupt:  asynchronous; caused by an external device
– Exception: synchronous; unexpected problem with instruction
– Trap: synchronous; intended transition to OS due to an instruction

• Privileged instructions and resources are the basis for most 
everything:  memory protection, protected I/O, limiting user 
resource consumption, …
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OS structure

• The OS sits between application programs and the 
hardware
– it mediates access and abstracts away ugliness
– programs request services via traps or exceptions
– devices request attention via interrupts
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Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but 
some approaches have proven successful

• Internal structure of different Operating Systems  can 
vary widely

• Start the design by defining goals and specifications 
• Affected by choice of hardware, type of system
• User goals and System goals

– User goals – operating system should be convenient to use, 
easy to learn, reliable, safe, and fast

– System goals – operating system should be easy to design, 
implement, and maintain, as well as flexible, reliable, error-free, 
and efficient



Operating System Design and Implementation

• Important principle to separate
Policy:   What will be done?
Mechanism:  How to do it?

• Mechanisms determine how to do something, policies 
decide what will be done

• The separation of policy from mechanism is a very 
important principle, it allows maximum flexibility if policy 
decisions are to be changed later (example – timer)

• Specifying and designing an OS is highly creative task of 
software engineering
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Major OS components

• processes
• memory
• I/O
• secondary storage
• file systems
• protection
• shells (command interpreter, or OS UI)
• GUI
• Networking
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OS structure

• It’s not always clear how to stitch OS modules together:
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OS structure

• An OS consists of all of these components, plus:
– many other components
– system programs (privileged and non-privileged)

• e.g., bootstrap code, the init program, …
• Major issue:

– how do we organize all this?
– what are all of the code modules, and where do they exist?
– how do they cooperate?

• Massive software engineering and design problem
– design a large, complex program that:

• performs well, is reliable, is extensible, is backwards compatible, 
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Early structure: Monolithic

• Traditionally, OS’s (like UNIX) were built as a monolithic
entity:

everything

user programs

hardware

OS



Monolithic design

• Major advantage:
– cost of module interactions is low (procedure call)

• Disadvantages:
– hard to understand
– hard to modify
– unreliable (no isolation between system modules)
– hard to maintain

• What is the alternative?
– find a way to organize the OS in order to simplify its design and 

implementation
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Layering

• The traditional approach is layering
– implement OS as a set of layers
– each layer presents an enhanced ‘virtual machine’ to the layer above

• The first description of this approach was Dijkstra’s THE system
– Layer 5:  Job Managers

• Execute users’ programs
– Layer 4:  Device Managers

• Handle devices and provide buffering
– Layer 3:  Console Manager

• Implements virtual consoles
– Layer 2: Page Manager

• Implements virtual memories for each process
– Layer 1: Kernel

• Implements a virtual processor for each process
– Layer 0: Hardware

• Each layer can be tested and verified independently
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Problems with layering

• Imposes hierarchical structure
– but real systems are more complex:

• file system requires VM services (buffers)
• VM would like to use files for its backing store

– strict layering isn’t flexible enough
• Poor performance

– each layer crossing has overhead associated with it
• Disjunction between model and reality

– systems modeled as layers, but not really built that way
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Hardware Abstraction Layer

• An example of layering in modern 
operating systems

• Goal: separates hardware-specific 
routines from the “core” OS
– Provides portability
– Improves readability
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Microkernels

• Popular in the late 80’s, early 90’s
– recent resurgence of popularity 

• Goal:
– minimize what goes in kernel
– organize rest of OS as user-level processes

• This results in:
– better reliability (isolation between components)
– ease of extension and customization
– poor performance (user/kernel boundary crossings)

• First microkernel system was Hydra (CMU, 1970)
– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X 

(Apple), in some ways NT (Microsoft)
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Microkernel structure illustrated
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Loadable Kernel Modules

• (Perhaps) the best practice for OS design
• Core services in the kernel and others dynamically loaded
• Common in modern implementations

– Solaris, Linux, etc.
• Advantages

– convenient: no need for rebooting for newly added modules
– efficient: no need for message passing unlike microkernel
– flexible: any module can call any other module unlike layered model
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Summary

• Fundamental distinction between user and priviliged mode 
supported by most hardware

• OS design has been an evolutionary process of trial and 
error. Probably more error than success

• Successful OS designs have run the spectrum from 
monolithic, to layered, to micro kernels

• The role and design of an OS are still evolving

• It is impossible to pick one “correct” way to structure an OS
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