Operating Systems
2019

Introduction

Michael O’Boyle
mob(@inf.ed.ac.uk

mailto:myungjin.lee@ed.ac.uk

Overview

Introduction

Definition of an operating system
— Hard to pin down

Historical look

Key functions

— Timesharing
— Multitasking

Various types of OS

— Depends on platform and scenario

Computing systems are everywhere

Measuring... @

'] ~pm ey

U R

Atmel® ATMega128

\

1) Top-side

T

amm

Chipcon® CC
(b) Bottom-side

=y u p—

skype; ,a//b;jlse MINECRRFY

— ol @7 -
B Gittelt: twitterd "'t‘lneln
VO R,

Modern computer system

— USB controller Graphics
controller adapter

System Bus

Memory
controller

Four Components of a Computer System

user user user user
1 2 3 e n
f 3
h 4
compiler assembler text editor e database
system

system and application programs

operating system

computer hardware

What is an Operating System?

* A Dbig program
— Linux kernel has 20M lines of code
* A program that

— manages a computer’s hardware

* A program that

— acts an intermediary between the user of a computer and computer
hardware

6

Operating System Definition

e OS is aresource allocator

— Manages all resources

— Decides between conflicting requests for efficient
and fair resource use

 OSis a control program

— Controls execution of programs to prevent errors
and improper use of the computer

Operating System Definition (Cont.)

No universally accepted definition

“Everything a vendor ships when you order an
operating system” is a good approximation

— But varies wildly

“The one program running at all times on the computer’
Is the kernel.

— Not the case in bare-metal embedded systems

Everything else is either

— a system program (ships with the operating system) , or

— an application program.

Some goals of operating systems

Simplify the execution of user programs and make solving
user problems easier

Use computer hardware efficiently
— Allow sharing of hardware and software resources

Make application software portable and versatile

Provide isolation, security and protection among user
programs

Improve overall system reliability
— error confinement, fault tolerance, reconfiguration

The traditional Picture

Applications

OS

Hardware

* “The OS is everything you don’t need to write in order to run
your application”
« This depiction invites you to think of the OS as a library; we’ll see that
— In some ways, it is:
« all operations on I/O devices require OS calls (syscalls)
— In other ways, it isn't:
« you use the CPU/memory without OS calls
 itintervenes without having been explicitly called

The OS and Hardware

 An OS mediates programs’ access to hardware resources
(sharing and protection)
— computation (CPU)
— volatile storage (memory) and persistent storage (disk, etc.)
— network communications (TCP/IP stacks, Ethernet cards, etc.)
— input/output devices (keyboard, display, sound card, etc.)

 The OS abstracts hardware into logical resources and well-
defined interfaces to those resources (ease of use)
— processes (CPU, memory)
— files (disk)
— programs (sequences of instructions)
— sockets (network)

11

Why Bother with an OS?

« Application benefits
— programming simplicity
» see high-level abstractions (files) instead of low-level hardware details
(device registers)
« abstractions are reusable across many programs
— portability (across machine configurations or architectures)
» device independence: 3com card or Intel card?

« User benefits

— safety
« program “sees” its own virtual machine, thinks it “owns” the computer
» OS protects programs from each other
» OS fairly multiplexes resources across programs

— efficiency (cost and speed)
» share one computer across many users
« concurrent execution of multiple programs

Hardware/Software Changes with Time

Transistor count

Hardware Complexity Increases

Microprocessor Transistor Counts 1971-2011 & Moore’s Law Moore’s Law: 2X transistors/
Chip Every 1.5 years

16-Core SPARC T3
Six-Core Core i7
2.600,000,000 - Six-Core Xeon 74°°\\. ©10-Core Xeon Westmere-EX
Dual-Core ltanium 2@ @ goore POWER?
AMD K10 +—Quad-core 2196)
1 ’000’0001000] powgns.\‘ ‘\g'@gf%%mémgum%&a
Itanium 2 with 9MB cache @ "\ Six-Core Opteron 2400
AMD K1 Core i7 (Quad)
ore 2 Duo
Itanium 2 @
100,000,000
Pentium 4 @ Barton ® Atom
AMD K7
@ AND K6-IIl
curve shows transistor AMD K6
10,000,000 count doubling every ey Pertiurm I
o yeers @AMD K5
Pentium
1,000,000
100,000
10,000
80080
2,300 = 4004@ /RCA 1802
I T T T]
1971 1980 1990 2000 2011

Date of introduction

14

Software Complexity Increases

- 60"

gmﬂ

§40"

:-= 30", ;] | 3 N

3 11

'g 20

=2 10"

= " l . | ,

NN XN S RN AP & H N L L0

S & é{b AP o F o ©" G o7 O © W
R NN Q}‘\\\‘\\\q"\\\q’-{\\)O%
Qbo\$%(\<06\®0®\>,b$

Source: http://bit.ly/KIB_linescode 15

Hardware/Software Changes with Time

1960s: mainframe computers (IBM)
1970s: minicomputers (DEC)

1980s: microprocessors and workstations (SUN), local-area
networking, the Internet

1990s: PCs (rise of Microsoft, Intel, Dell), the Web
2000s:

— Internet Services / Clusters (Amazon)
— General Cloud Computing (Google, Amazon, Microsoft)

— Mobile/ubiquitous/embedded computing (iPod, iPhone, iPad,
Android)

2010s: sensor networks, “data-intensive computing,”
computers and the physical world

2020: exascale, loT 7?7

Progression of Concepts and Form Factors

1950 1960 1970 1980

MULTICS
ainframes Q\
no compilers time distributed

software shared multiuser systems

batch multiprocessor

resident networked

- fault tolerant
monitors

UNIX

minicomputers .
no compilers

software . . .
time multiuser multiprocessor

\
networked fault tolerant

\
clustered
UNIX

resident shared
monitors

desktop computers .
no compilers

software interactive multiprocessor

multiuser Bl orked

UNIX

compilers no
software

handheld computers

interactive
networked

An OS History Lesson

Operating systems are the result of a 60 year long
evolutionary process
— They were born out of need

Examine their evolution

Explains what some of their functions are, and why

THINK [

Early days

1943 i 1

— T.J. Watson (created IBM): | .
“1 think there is a world market for maybe five — L

computers.”

Fast forward ... 1950 t

— There are maybe 20 computers in the world
« They were unbelievably expensive
* Machine time is considerably more valuable than person time!
» Ergo: efficient use of the hardware is paramount

— Operating systems are born

« They carry with them the vestiges of these economic
assumptions

19

Simplified early computer

Prmter

Disk —[Input Device 1

Memory

The OS as a linked library

* In the very beginning...

— OS was just a library of code that you linked into your program;
programs were loaded in their entirety into memory, and executed

« “OS” had an “API” that let you control the disk, control the printer,
etc.

— Interfaces were literally switches and blinking lights
— When you were done running your program, you'd leave and turn the
computer over to the next person

* Not so very different from some embedded devices today

Asynchronous |/O

The disk was really slow

Add hardware so that the disk could operate without tying up
the CPU

— Disk controller

Programmers could now write code that:
— Starts an I/O

— Goes off and does some computing

— Checks if the I/O is done at some later time
Upside

— Helps increase (expensive) CPU utilization
Downsides
— It's hard to get right e o —
— The benefits are job specific

File 10

IBM 1401

23

Multiprogramming

To further increase system utilization, multiprogramming
OSs were invented

— keeps multiple runnable jobs loaded in memory at once
— overlaps I/O of one job with computing of another
« while one job waits for I/O completion, another job uses the CPU

Can get rid of asynchronous I/O within individual jobs

« Life of application programmer becomes simpler; only the OS
programmer needs to deal with asynchronous events

How do we tell when devices are done?
* Interrupts
* Polling

What new requirements does this impose?

Ry .
5 B > -
- -

IBM System 360

25

Timesharing

« To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself
— optimize response time, perhaps at the cost of throughput

* Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g., editor), then can jump between
programs and users faster than users can generate work

— permits users to interactively view, edit, debug running programs
« Multics system (operational 1968) was the first large

timeshared system

— nearly all OS concepts can be traced back to Multics

26

Parallel Systems

Some applications can be written as multiple parallel threads or
processes

— can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs [Burroughs D825, 1962]

— need OS and language primitives for dividing program into multiple parallel
activities
— need OS primitives for fast communication among activities
» degree of speedup dictated by communication/computation ratio

Many flavors of parallel computers today
* Multi-cores — all(ish) processors are parallel
« SMPs (symmetric multi-processors)
 MPPs (massively parallel processors)
 NOWs (networks of workstations) —less common
» Massive clusters (Google, Amazon.com, Microsoft)
» Heterogeneous accelerators eg GPUs

27

Personal Computing

Primary goal was to enable new kinds of applications
Bit mapped display [Xerox Alto,1973]

— new classes of applications
— new input device (the mouse)

Move computing near the display
— why?

Window systems

— the display as a managed resource
Local area networks [Ethernet]

— why?

Effect on OS?

28

Distributed Operating Systems (DOS)

Machine A Machine B Machine C

[LI
Distributed applications

Distributed OS

Distributed operating system services ‘

’ eeeeee ‘ ’ Kernel ‘ ’ Kernel ‘

Distributed systems to facilitate use of geographically
distributed resources

— workstations on a LAN

— servers across the Internet

Supports communications between programs
— interprocess communication

* message passing, shared memory
— networking stacks

Sharing of distributed resources (hardware, software)
— load balancing, authentication and access contral, ...

Speedup isn’t the issue
— access to diversity of resources is goal

Client/Server Computing

Dumb terminals supplanted by smart PCs
— Many systems now servers, responding to requests generated by clients

Compute-server system
— provides an interface to client to request services (i.e., database)

File-server system
— provides interface for clients to store and retrieve files

client
desktop

Mail server/service
Print server/service
Game server/service
Music server/service
Web server/service
etc.

client

smartpw

Peer-to-Peer (p2p) Systems

Another model of distributed system
Does not distinguish clients and servers Catent)

— All nodes are considered peers " —

Each may act as client or server
client client

Node must join P2P network
— Regqisters its service with central lookup service on network, or

— Broadcast request for service and respond to requests for service via
discovery protocol

Examples include Napster and Gnutella, Voice over IP
(VolP) such as Skype

31

Applications

"

OS

Hardware

Virtualization

Programming
Interface

Applications | Applications

{ |

OS OS

VM1 VM2

Virtual Machine Manager
(Hypervisor)

Hardware

Cloud Computing

* Amazon EC2 Customer
* Microsoft Azure S adoatdl T requests
e HP Helion Public Clod @4 /= >
Cloud
Firewall Customer
I interface
Load Balancer E Cloud

management
commands

Cloud
Management
services

Virtual
machines

Virtual
machines

Storage

33

The major OS issues

structure: how is the OS organized?

sharing: how are resources shared across users?

naming: how are resources named (by users or programs)?
security: how is the integrity of the OS and its resources ensured?
protection: how is one user/program protected from another?
performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either with hardware
or with a program)?
extensibility: can we add new features?

communication: how do programs exchange information, including
across a network?

More OS issues...

concurrency: how are parallel activities (computation and 1/O)
created and controlled?

scale: what happens as demands or resources increase?

persistence: how do you make data last longer than program
executions?

distribution: how do multiple computers interact with each
other?

accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are tradeoffs, solution depends on scenario

© 2012 Gribble, Lazowska, Levy, Zahorjan 35

Summary

Introduction

Definition of an operating system
— Hard to pin down

Historical look

Key functions

— Timesharing
— Multitasking

Various types of OS

— Depends on platform and scenario
Next lecture: structure and organisation

