
UG3 Operating Systems 2018-19

Practical Coursework

1 Introduction

The goal of the Operating Systems practical coursework is to implement important function-

ality in an existing research operating system called InfOS. The coursework counts for 30% of

the total course mark, and is marked out of a total of 100.

The coursework is split into three main tasks:

• Task 1: Implement a process scheduler. [10 marks]

(due Thursday 31st January 2019 at 4pm GMT—Week 3)

• Task 2: Implement a page-based memory allocator. [60 marks]

(due Thursday 7th March 2019 at 4pm GMT—Week 7)

• Task 3: Implement a device driver for a real-time clock. [30 marks]

(due Thursday 28th March 2019 at 4pm GMT—Week 10)

You may start any of the tasks as early as you wish, but you MUST submit each task before

their respective deadline. Coursework submitted after these deadlines may still be marked (at

the discretion of the marker), but will attract a score of zero.

The submission mechanism will be electronic, using the standard DICE submit command. No

other form of submission will be accepted.

1.1 Background

The research operating system that is the subject of this coursework is called InfOS and has

been developed specifically for this course. It is a 64-bit x86 operating that has been written

from scratch in C++, and is not based on any other particular OS.

InfOS is structured as a monolithic kernel, similar to Linux, but as it is written in C++, it

employs object-oriented principles in its implementation. It is not a Unix-like system, and does

not subscribe to the POSIX standards. It is modular in the sense that functionality can be

plugged in/out at compile time, but does not currently support dynamically loadable kernel

modules.

1

1.2 Necessary Skills

This coursework involves programming in C++, so familiarity with object oriented programming

and the C++ programming language will be very helpful. You should also take this as an

opportunity to expand your C++ programming skills.

The coursework tasks are designed to follow the syllabus, so it is essential that you keep up-to-

date with the course content.

1.3 Overview

For each task, you will be implementing a piece of core operating system functionality to be

loaded into the InfOS kernel. To ensure that each task is mutually exclusive, and that your

implementations do not predjudice each other, InfOS is shipped with basic implementations

already built-in. This means that InfOS will boot unmodified, and you can work on each task

separately, without worrying that one implementation might affect another.

1.3.1 Development Environment

You are encouraged to develop your coursework on DICE, as this is the only supported platform.

Questions about the development environment will only be answered for this set-up. Once

you have acquired the InfOS source-code, you can load it into an IDE such as NetBeans or

Eclipse.

If you want to work remotely, you can use the Informatics Remote Desktop Service to access a

remote DICE desktop. See the following website for details:

http://computing.help.inf.ed.ac.uk/remote-desktop

1.3.2 Testing

To test the operating system, Qemu will be used as an emulator. Qemu is a virtualisation

environment that can be used to boot real operating systems in a virtual machine. It is installed

on DICE and has been tested with the version of InfOS that you will be using.

Helper scripts are provided to quickly compile and run InfOS in Qemu. See the individual

tasks for more details.

2 InfOS

2.1 Introduction

InfOS is a new research operating system, developed from scratch by Tom Spink. It is a 64-bit

x86 operating system, designed in C++ to promote readability and use of familiar object-

oriented programming paradigms.

InfOS was developed because modern versions of the Linux kernel are incredibly complex,

and contain highly optimised implementations of core operating system operations, such as the

process scheduler and memory allocator. It is not feasible to understand the entirety of the Linux

kernel, nor is it feasible to re-implement core functionality without a significant understanding

2

of the kernel architecture. InfOS tackles this problem by providing well-defined interfaces for

these subsystems, and providing a “pluggable” architecture that enables swapping different

algorithms in and out.

2.2 Source Code

A fully booting version of the InfOS kernel, along with the associated user-space is available

in a public git repository, which lives here:

https://github.com/tspink/infos

https://github.com/tspink/infos-user

To assist in preparing the environment for your coursework, a helper script has been provided

that will create a new directory, clone the necessary repositories into it and copy in skeleton

files for the coursework tasks. To run this script, open a new terminal and from your home

directory execute the following command:

$ /afs/inf.ed.ac.uk/group/teaching/cs3/os/prepare-coursework.sh

This command will create a new directory called os-coursework in your home directory, and

clone the necessary repositories into it. It will also copy helper scripts into this directory that

are useful for building and running the kernel in the Qemu emulator.

This command also copies the skeleton files for each task into the os-coursework/coursework

subdirectory, which is where you will implement your algorithms. See the individual task

descriptions for further details.

To try out InfOS, change into the new os-coursework directory and run the build-and-run.sh

script:

$ cd $HOME/os-coursework

$./build-and-run.sh

The InfOS kernel will be compiled, followed by the userspace disk image, and then Qemu

will start booting the kernel. A lot of information will appear on your terminal, and a Qemu

graphics window will appear, where you can begin interacting with the shell.

2.2.1 Coursework Skeletons

You are provided with skeleton implementations for each coursework task, which are automat-

ically compiled by the InfOS build system when you use the build.sh or build-and-run.sh

scripts. This means that to complete your coursework, you simply need make modifications to

the skeletons in the os-coursework/coursework directory.

However, if you find that you’ve made a serious mistake and wish to start again, then read-

only copies of the skeleton have been copied into the os-coursework/coursework-skeletons

directory for you. You can then use these originals to restore the skeleton in whole or in

part.

3

2.2.2 Structure and Implementation

The top-level directory structure (which you will find in the $HOME/os-coursework/infos

directory) has the following directories, each loosely representing a major subsystem of the

InfOS kernel:

• arch/ Architecture-specific code.

• drivers/ Device drivers.

• fs/ File-system drivers and VFS subsystem.

• kernel/ Core kernel routines.

• mm/ Memory management subsystem.

• util/ Utility functions.

There are also some directories that contain support files:

• build/ Build system support files.

• include/ C++ header files (following the source-code structure)

• out/ Kernel build output directory.

InfOS is written in C++, and so all source-code files have the extension .cpp. However, due

to the low-level nature of operating system development, some code is written in x86 assembly

language. Being architecture specific, these files primarily live in the arch/x86 directory, and

have the extension .S.

Nearly every C++ source-code file has an associated header file (although there are some

exceptions), which exists under the include/ directory. The structure of the include directory

follows that of the top-level source-code directory, except the header files have the extension .h.

Normally, there is one class declaration per header file, and then one corresponding source-code

file that implements that class. For strongly related classes, occasionally there will be multiple

declarations in the header file.

To better organise the class hierarchy, and promote readability, nested directories typically

correspond to C++ namespaces, with the root namespace being infos.

For example, if you are interested in looking at the ATA storage device driver, you will be

interested in looking at the following files:

• drivers/ata/ata-device.cpp

• include/drivers/ata/ata-device.h

A class called ATADevice is declared in the header file ata-device.h, and it is implemented

in the source-code file ata-device.cpp. The class is declared within the following namespace

hierarchy:

infos 7→ drivers 7→ ata 7→ ATADevice

4

It should be clear that each level of the namespace hierarchy corresponds to the directory in

which the source-code and header file live.

2.2.3 Modules

InfOS is built on modules, but it currently does not support dynamically loading them. Instead,

the architecture of the OS is built around object-oriented principles, and as such producing a

different implementation for a particular feature simply requires subclassing the appropriate

type, and implementing the interface.

2.3 Start-up

InfOS uses the multiboot protocol to boot, which is a very convenient way of starting an

operating system. This protocol is supported by many boot loaders, and Qemu supports

booting multiboot enabled kernels natively.

Execution starts in 32-bit mode, in the multiboot start assembly language function. This

function lives in the arch/x86/multiboot.S source-code file. After this, execution transi-

tions into the start32 assembly language function, in the arch/x86/start32.S source-code

file.

This function initialises 64-bit mode, and jumps to start64 in the arch/x86/start64.S source-

code file. Finally, control transfers to the x86 init top function, which is the first executed

C++ function, in the arch/x86/start.cpp source-code file. From there, you can follow the

sequence of events that bring up the operating system.

2.4 Memory Manager

The memory manager is responsible for providing memory to programs/subsystems that request

it. The majority of requests will be for memory that can be used to store objects, (e.g. via the

C++ new operator), but some requests may be for entire pages of memory (e.g. for allocating

page tables).

A page of memory is a block of memory that is the most fundamental unit dealt with by the

underlying architecture. Pages are always aligned to their size boundaries (i.e. the address of

a page is always a multiple of their size) and on x86 (and therefore in InfOS) the page size is

4096 bytes.

InfOS has two memory allocators: a physical memory allocator, and an object allocator. The

physical memory allocator deals with allocating physical pages of memory, whilst the object

allocator deals with satisfying arbitrarily sized amounts of memory for storing objects. The

object allocator calls into the physical memory allocator to request large blocks of memory,

which are then used to store smaller objects.

The object allocator used is the open-source dlmalloc allocator. The built-in physical memory

allocator is an inefficient linear scan allocator.

5

2.4.1 Physical Memory

Fundamentally, a computer system has an amount of physical memory (RAM). This memory is

what is actually available for the storage of data, and is exposed in the physical memory space.

In modern systems, it is possible to address up to 52-bits (4096 Tb) of physical memory, but a

normal desktop system may have between 2-16Gb of memory installed.

The physical memory space consists of various regions of usable and unusable pages. It also

contains memory mapped devices that are not real memory, but allow the configuration and

operation of those devices by reading and writing to the associated memory address. To work

out what pages are available, an operating system needs some support from the bootloader and

the architecture.

2.4.2 Virtual Memory

Virtual memory is a flat view of memory as seen by the programs that are running. Each

program has its own virtual memory area (or VMA), which maps virtual addresses to physical

addresses. This mapping also includes protections, to prevent programs from reading and

writing to pages that it should not have access to, e.g. kernel pages.

The mapping specifies which virtual memory address corresponds to which physical memory

address, at the granularity of a page (i.e. 4096 bytes). A physical address may have multiple

virtual addresses pointing to it.

2.5 Process Scheduler

The InfOS process scheduler is responsible for sharing out execution time on the CPU for each

process that is on the ready queue. InfOS uses a timer, ticking at a frequency of 100Hz to

interrupt and pre-empt processes to determine if they need to be re-scheduled.

2.5.1 Scheduling Algorithms

There are many scheduling algorithms for process scheduling, and the built-in scheduler im-

plements an inefficient version of the Linux CFS scheduler. InfOS does not support process

priorities, greatly simplifying the scheduler implementation.

2.6 Device Manager

The InfOS device manager is responsible for detecting the devices that exist on the system,

and creating an abstraction that allows them to be accessed by programs that require them.

For example, it interrogates the system’s PCI bus to detect storage devices, and allows that

storage device to be accessed by file-system drivers.

2.7 Virtual Filesystem Switch (VFS)

The Virtual Filesystem Switch (or VFS) subsystem presents an abstract interface for accessing

files. Within a virtual file-system, physical file-systems (for example those that exist on a disk)

are mounted and can be accessed. Multiple physical file-systems can be mounted within the

6

virtual file-system, and they appear as normal directories within the VFS tree. Physical file-

systems could be local, on-disk file-systems, or they could be remote network file-systems. Some

file-systems could be dynamically created, e.g. InfOS creates a device file-system which contains

files that represent each registered device in the system. You can see this by entering:

> /usr/ls /dev

At the InfOS shell, to list the contents of the /dev directory.

2.8 InfOS API

As InfOS is a bare-metal operating system, it cannot use the standard C++ library, and hence

standard C++ routines and objects (such as strings, lists and maps) are not available.

Since these containers can be quite useful, InfOS implements its own versions of some of these

containers and exposes them for use by operating system code. They do not directly correspond

to the standard C++ implementations, but they provide all the methods you would expect these

containers to have. This section will describe some of these containers, particularly those which

you will find useful for the coursework, and how to use them.

You can see many examples of their use throughout the InfOS source-code.

2.8.1 List<T>

The templated List<T> class is a container for objects that is implemented as a linked-list. It

can be used by declaraing a variable of type List<T>, where T is the type of object contained

within the list. To use it, you must #include the infos/util/list.h header file.

As an example, to create a list that contains integers, one would write:

List<int> my_list;

The list object can be used as a stack or a queue, and can be iterated over with a C++ iterator

statement:

int sum = 0;

for (auto& elem : my_list) {

sum += elem;

}

The List<T> class exposes the following methods:

void append(T elem) Appends elem to the end of the list.

void remove(T elem) Removes any element that equals elem from the list.

void enqueue(T elem) Appends elem to the end of the list.

T dequeue() Removes the element at the start of the list, and returns it.

void push(T elem) Inserts elem at the start of the list.

T pop() Removes the element at the start of the list, and returns it.

7

T first() Returns the element at the start of the list.

T last() Returns the element at the end of the list.

T at(int index) Returns the element at the given index in the list.

unsigned int count() Returns the number of elements in the list.

bool empty() Returns true if the list is empty.

void clear() Removes all items from the list.

2.8.2 Map<TKey, TValue>

The templated Map<TKey, TValue> class is a tree-based implementation of an associative array.

It is implemented as a red-black tree, so it is reasonably efficient, but the implementation details

are not important.

To use it, you must #include the infos/util/map.h header file.

As an example, to create a map that associates integers to integers, you would declare it as

follows:

Map<int, int> my_map;

You could then insert elements into the map, and look them up:

my_map.add(1, 10);

my_map.add(2, 20);

my_map.add(3, 30);

int value;

if (my_map.try_get_value(2, value)) {

// Element with key 2 was found, variable ’value’

// now contains the value.

} else {

// Element with key 2 was not found

}

The Map<> class exposes the following methods:

void add(TKey key, TElem elem) Inserts elem into the map with the given key.

void remove(TKey key) Removes the element in the map associated with key.

bool try get value(TKey key, TElem& elem) Looks up the value associated with key. Re-

turns true if the key exists, and updates the contents of elem with the value. Returns

false if the key does not exist, and elem is undefined.

void clear() Removes all elements in the map.

8

2.8.3 Use of Containers

Important Note: The List<> and Map<> containers both use dynamic memory allocation to

create the internal structures that represent the respective data-structure, and as such are not

suitable for use in code that executes before the memory allocator has been fully initialised—this

applies to memory allocation code itself.

2.8.4 Logging and Debugging

InfOS emits a significant amount of debugging information by default, which can be turned

on and off via command-line arguments. The provided helper script that launches InfOS in

Qemu allows you to append command-line arguments, and details about which arguments are

relevant to a particular subsystem are provided in later sections.

Being a bare-metal operating system, it is difficult to debug InfOS in a debugger such as GDB,

and so you must rely on logging output to discover problems. The launch script will direct

InfOS debugging output to the terminal, so you can scroll through the output to read the

log.

All of the skeleton files are set-up for logging, and you can use a printf-style function to write

out to the log:

int var = 5;

syslog.messagef(LogLevel::DEBUG, "A log message without formatting");

syslog.messagef(LogLevel::DEBUG, "A log message with formatting value=%d", var);

The first parameter indicates the level of the message, the second parameter is the message to

be displayed, and the optional following parameters are the values for the printf-style format

string in the message text. You do not need to include a new-line in the message text, as the

logging system will do this for you.

Again, there are many examples throughout the source-code that use the logging infrastructure.

Some subsystems use their own logging object, e.g. the VFS subsystem has a vfs log object,

but the syslog object is always available for logging.

3 Building and Testing

Throughout this coursework, you will be required to repeatedly build and test your implemen-

tations. After using the prepare-coursework.sh script to create the development environment

in your home directory, you can issue the build-and-run.sh command to compile and test the

operating system.

As previously mentioned, this will launch InfOS inside Qemu, as it is a virtualisation environ-

ment that supports running native operating systems.

3.1 User Space

An operating system kernel on its own does not do anything useful for the user. In order for you

to interact with the kernel, an example user-space is provided. This user-space contains a very

9

basic shell program that allows you to execute commands, along with some other commands

that you can use for testing purposes.

When you launch InfOS the shell will automatically load, and instructions are provided on what

commands are available. Use the /usr/ls command to list a directory and see the available

files.

The InfOS user space is built automatically if you use the build-and-run.sh script, and a

disk image is automatically created and loaded into Qemu at run time.

4 General Note on Writing Solutions

In general, you are provided with skeleton files to help you get started with your implementation,

and you are free to make whatever modifications to the skeleton that you see fit—including

adding helper functions and modifying class variables. In fact, to improve readability you are

encouraged to do so.

However, bear in mind that you cannot change the InfOS API, i.e. you cannot modify the In-

fOS source-code for your solution. Your implementation must be wholly contained within the

skeleton file for that particular task. For each task you may only submit the named files as spec-

ified in the respective Marking and Deliverables section, which means your implementation

must be restricted to those files.

When designing a solution, pay careful attention to potential sources of errors. Marks are

available for including appropriate error handling code. Marks are also available for use of

efficient algorithms, and the readability of your solution.

Use logging facilities to help you produce your solution, but don’t go overboard—logging is

expensive and can slow your implementation down.

10

5 Task 1: Round-robin Process Scheduler

Your first coursework task is to implement a round-robin process scheduler.

It is due by 4PM GMT on Thursday 31st January 2019 (week 3), and is worth 10 marks

out of 100.

5.1 Introduction

The process scheduler of an operating system is the component that decides which tasks get

to run on the CPU. When there is only a single physical processor in a system, each task that

is running needs to be given an opportunity to actually run on that processor, so that the

processor can be shared amongst all runnable tasks.

A task can be in a number of states:

STOPPED The task is not running.

RUNNABLE The task wants to run on a CPU.

RUNNING The task is currently running on a CPU.

SLEEPING The task is waiting for an event to occur, before it becomes runnable.

Only runnable tasks can be scheduled onto a CPU, and scheduling is the act of determining

which task should run next. Ideally, a scheduler will make sure that every task gets a chance

to run.

The Linux kernel scheduler implements a so-called completely fair scheduler. It orders tasks

by virtual runtime, and allows the runnable tasks with the lowest virtual runtime to run first.

As the Linux kernel supports process priorities, the virtual runtime is weighted, depending on

the process’ priority.

A round-robin scheduling algorithm can be implemented as a simple list of tasks. When a new

task is to be picked for execution, it is removed from the front of the list, and placed at the

back. Then, this task is allowed to run for its timeslice.

This task is designed to make sure you are comfortable with the InfOS development environ-

ment, and so is quite straightforward to implement. You should take this as an opportunity to

become familiar with the InfOS source code and C++ programming in general.

5.2 Important Files and Interaction with InfOS

The generic scheduler core exists in the kernel/sched.cpp source-code file. This is where the

majority of the scheduling subsystem lives. You will not be required to change this code, but it

is useful to know where this is so that you can refer back to it. In InfOS, the generic scheduler

calls into a scheduling algorithm when a scheduling event occurs. The scheduling algorithm is

what you must implement.

The generic scheduler core will automatically detect your algorithm when you compile it into

the source-code, but you MUST tell InfOS to use it when running and debugging, otherwise

it will be using the built-in scheduler. See Section 5.4 for more details.

11

Implementing the scheduling algorithm interface requires implementing three methods:

• add to runqueue: This is called by the scheduler core when a task becomes eligible to

run on the CPU (e.g. it has started, or has woken up from sleep).

• remove from runqueue: This is called by the scheduler core when a task is no longer

eligible to run (e.g. it has terminated, or is going to sleep).

• pick next task: This is called by the scheduler core when it is time for a new task to

run. This is where you will implement the majority of the algorithm.

You can take a look at the built-in scheduler, which is loosely based on the Linux CFS scheduler

(although it is much less efficient). This code lives in kernel/sched-cfs.cpp.

You must make sure that interrupts are disabled when manipulating the run queue. You can

use a scoped UniqueIRQLock for this.

5.3 Skeleton

You are provided with a skeleton scheduling algorithm interface, in which you must write your

code to implement the round-robin scheduler. The skeleton is commented, and indicates what

methods you should fill in, and where you should write your code.

If you have used the prepare-coursework.sh script, you will find the skeleton in

os-coursework/coursework/sched-rr.cpp. Do not copy or move this file out of the course-

work directory, just open it up in your IDE of choice and edit the file.

5.4 Testing

To test your algorithm, provided you have used the prepare-coursework.sh script, your source-

code will be automatically compiled into the InfOS kernel.

To compile and run InfOS, issue the build-and-run.sh command from your os-coursework

directory, and tell InfOS to use your scheduler with the sched.algorithm=rr option

e.g.:

[ardgay]tspink: pwd

/afs/inf.ed.ac.uk/user/t/tspink/os-coursework

[ardgay]tspink: ./build-and-run.sh sched.algorithm=rr

It is important that you put the sched.algorithm=rr option on the command-line,

otherwise the built-in scheduler will be used instead.

Your source-code will be built, and if there are any errors, these will be displayed to you and

the operating system will not load.

To double-check that InfOS is using your scheduler, scroll back in the log window and look for

the line:

notice: *** USING SCHEDULER ALGORITHM: rr

12

If your algorithm does not work at all, then the system will likely not boot and may crash.

You can use the sched.debug=1 option to produce more debugging output from the scheduler

core:

[ardgay]tspink: ./build-and-run.sh sched.algorithm=rr sched.debug=1

If the system boots up to the InfOS shell, then you can try running some test programs that

will exercise the scheduler:

> /usr/sched-test1

> /usr/sched-test2

5.5 Marking and Deliverables

This part of the coursework attracts 10 marks. Marks will be given for correctly implementing

the algorithm, for readability/coding style, and for the inclusion of basic error checking.

You must submit your implementation, using the DICE electronic submission command BE-

FORE 4PM GMT on Thursday 31st January, 2019. No other form of submission will be

accepted, and late submission will attract a score of zero.

Make sure you are in the directory containing your implementation, and issue the following

command:

$ submit os 1 sched-rr.cpp

13

6 Task 2: Physical Memory Buddy Allocator

Your second coursework task is to implement a physical memory allocator, based on the buddy

system.

It is due by 4PM GMT on Thursday 7th March 2019 (week 7), and is worth 60 marks

out of 100.

6.1 Introduction

Normally, when a program requests memory it will simply ask for a particular amount. It

expects the memory allocator to find space for this, and it does not care where that memory

is. But, memory allocators need to put this memory somewhere, and at a very low-level, this

memory has to exist in physical memory.

Physical memory allocation is the act of allocating real physical memory pages to places that

require them. Typically, higher-level memory allocators (such as the InfOS object allocator)

request physical pages, which are used for storage of smaller objects.

A particular algorithm for managing this physical memory is the buddy allocation algorithm,

and this is what you are required to implement for InfOS.

Like the scheduler, InfOS comes with a built-in physical memory allocation algorithm, but it is

very simple and inefficient. This task requires you to implement the buddy allocation algorithm

as described in the lectures and from various resources online1.

6.2 Background

A page of memory is the most fundamental unit of memory that can be allocated by the page

allocator. In InfOS, the page size is 4096 bytes. Pages are always aligned to their size, and can

be referred to with either:

1. Their page frame number (PFN), or

2. their base address.

PFNs are zero-indexed, so for example, the second page in the system has a PFN of 1. Since

pages are aligned, the base address of PFN 1 is 0x1000. Likewise, given a page base address of

0x20000, a simple division by 4096 (or right-shift by 12) yields a PFN of 32.

For every physical page of memory available in the system, a page descriptor object exists

which holds information about that page. These pages descriptors are held as a contiguous

array, and so can be efficiently indexed, given the physical address or PFN of a page. This

property will become important in your implementation, as it means that given a pointer to a

particular page descriptor, you can look at the adjacent page descriptor by simply incrementing

the pointer.

The most interesting field in the page descriptor for you is the next free pointer, which you

can use to build a linked-list of page descriptors. This will be very useful when building the

1For example, https://en.wikipedia.org/wiki/Buddy memory allocation

14

per-order free lists. You should not modify any other fields in the page descriptors, as the

memory management core is responsible for these.

The physical page allocator does not allocate by memory size, or even by number of pages.

Instead it allocates by order. The order is the power-of-2 number of pages to allocate. So,

an allocation of order zero is an allocation of 20 = 1 page. An allocation of order four is an

allocation of 24 = 16 pages. Allocating by order makes it significantly easier to implement the

buddy allocator.

The buddy allocator maintains a list of free areas for each order, up to a maximum order. The

maximum order should be configurable, and is #defined for you already in the skeleton. Use

this definition when implementing your algorithm.

6.3 Important Files and Interaction with InfOS

The memory allocation subsystem is quite complex, and so has its own top-level directory (mm/)

in the InfOS source code. Under this directory lives the following files:

dlmalloc.cpp An import of the dlmalloc memory allocator, used for allocating objects within

physical pages. This is the allocator that is called when memory is requested for use.

dlmalloc itself calls into the physical page allocator when it needs more physical pages.

mm.cpp The generic memory manager core.

object-allocator.cpp The generic allocation routines for allocating objects (e.g. those allo-

cated with the new keyword).

page-allocator.cpp The generic allocation routines for allocating physical pages. This calls

into the page allocation algorithm that you will be implementing.

simple-page-alloc.cpp The built-in page allocation algorithm that does a linear scan for free

ranges—hence it is highly inefficient.

vma.cpp A virtual memory area (or VMA) is the view of virtual memory seen by a particular

task. This file contains the routines that manipulate the page tables that map virtual

addresses to physical addresses.

The memory management core will automatically detect your algorithm when you compile

it into the source-code, but you MUST tell InfOS to use it when running and debugging,

otherwise it will be using the built-in page allocator. See Section 6.7 for more details.

Some of the ground-work for buddy allocation has already been done for you, and placed in

the skeleton file you are provided with. Implementing the page algorithm interface requires

implementing these methods:

• split block: Given a particular page, being correctly aligned for the given order, this

function splits the block in half and inserts each half into the order below. For example,

calling split block on page four in order one will remove the block starting at page four

(in order one) and insert two blocks into order zero, starting at page four and page five.

This method is a helper method

15

• merge block: Given a particular page, being correctly aligned for the given order, this

function will merge this page and its buddy into the order above. For example, calling

merge block on page five in order zero will remove page four and page five from order

zero, and insert a new block into order one, starting at page four.

This method is a helper method

• alloc pages: This is called by the memory mangement core to allocate a number of

contiguous pages.

• free pages: This is called by the memory management core to release a number of

contiguous pages.

• reserve page: This is called by the memory management core during initialisation to

mark a particular page as unavailable for allocation. For example, this would be called to

mark the pages that contain the kernel code in memory as unavailable.

• init: This is called by the memory management core during start-up, so that the algo-

rithm can initialise its internal state.

Note: Two of the above methods are helper methods, and you should use them in your imple-

mentation of the other methods.

Remember: When implementing your algorithm, you cannot use dynamic memory allocation

in your memory allocator! This means you cannot use the new operator, and you cannot use

containers such as List<T> and Map<T, U>, since these rely on dynamic memory allocation.

As mentioned previously, you can use the next free field in the page descriptor structures to

build linked lists.

The skeleton file contains the following helper methods, which you should use in your imple-

mentation. You should also use these functions as a guide:

• pages per block: This function returns the number of pages that make up a block of

memory for a particular order. For example, in order 1, the number of pages that make

up a block is 2.

• is correct alignment for order: This function determines if the supplied page is cor-

rectly aligned for a particular order. For example, page zero is correctly aligned in order

1, but page one is not.

• buddy of: Given a particular page, and the order in which this page lies, this function

returns this page’s buddy. The buddy is the page either in front or behind the given page,

depending on the alignment of the supplied page. See Figure 1. For example, in order

zero, the buddy of page three is page two and the buddy of page two is page three.

• insert block: Given a particular page, being correctly aligned for the given order, this

function inserts that block into the free list.

• remove block: Given a particular page, being correctly aligned for the given order, this

function removes that block from the free list.

You don’t necessarily need to use all of these functions for your implementation, but some may

come in handy during debugging.

16

0 1 2 3

Buddies

order-0

0

Buddies

order-1 2

Buddies

4 5 6 7
4 6

Buddies

Buddies Buddies

0order-2 4

Buddies

Figure 1: An illustration of block buddy relationships, in different allocation orders.

6.4 Allocating Pages

There are two ways to allocate a page (or pages) with the algorithm interface, and you will be

implementing both of these:

1. Calling alloc pages

2. Calling reserve page

Each of these will now be described in turn, as they behave similarly but have different seman-

tics.

6.4.1 PageDescriptor *alloc pages(int order) override

The alloc pages method is called when a contiguous number of pages needs to be allocated.

The caller does not care where in memory these pages are, just that the pages returned are

contiguous. Because of this guarantee, if the caller asks (for example) for an order 1 allocation

(i.e. two pages), the routine simply needs to return the first page descriptor of a sequence

of two page descriptors that are available for allocation (by following the buddy allocation

algorithm).

This works because the pages are contiguous, and because the page descriptor array is contigu-

ous.

6.4.2 bool reserve page(PageDescriptor *pgd)

The reserve page method is called when a particular page must be made unavailable. This

page is passed in by the caller as a page descriptor object.

It is likely that the page being reserved exists in a higher order allocation block, therefore your

implementation must split the allocation blocks down (as per the buddy allocation algorithm)

until only the page being reserved is allocated.

17

6.5 Freeing Pages

You must implement the free pages method, which takes in a page descriptor previously

allocated by your system, and puts the block back into the free list, coalescing buddies back up

to the maxium order as per the buddy allocation algorithm.

6.6 Skeleton

You are provided with a skeleton page allocation algorithm interface, in which you must write

your code to implement the buddy allocator. The skeleton is commented, and indicates what

methods you should fill in, and where you should write your code.

If you have used the prepare-coursework.sh script, you will find the skeleton in

os-coursework/coursework/buddy.cpp. Do not copy or move this file anywhere, just open it

up in your IDE of choice and edit the file.

6.7 Testing

Because memory allocation is such a fundamental operation, it is quite likely that during the

course of you implementing your algorithm the system will either:

1. Not boot at all.

2. Triple fault, and continually restart.

3. Behave very strangely.

Therefore, a good test is: does the system boot to the shell? and can I run programs?

However, in order to more accurately quantify the success of your implementation, a self-test

mode is available that will test the memory allocator during start-up. This self-test mode will

make a series of allocations and check that standard conditions hold, and will also use the dump()

method of the allocation algorithm to print out the state of the buddy system. You should use

this output to make sure your buddy system is behaving correctly when allocating and freeing

pages. The dump() method will display the free list for each order. See Appendix A for example

output of the self-test mode, which you should use to make sure your own implementation is

behaving in a similar fashion.

You can activate this self-test mode by adding pgalloc.self-test=1 to the command-line, see

below for an example, making sure you still specify pgalloc.algorithm=buddy.

To compile and run InfOS, issue the build-and-run.sh command from your os-coursework

directory, and tell InfOS to use your page allocator with the pgalloc.algorithm=buddy

option e.g.:

[ardgay]tspink: pwd

/afs/inf.ed.ac.uk/user/t/tspink/os-coursework

[ardgay]tspink: ./build-and-run.sh pgalloc.algorithm=buddy

It is important that you put the pgalloc.algorithm=buddy option on the command-

line, otherwise the built-in allocator will be used instead.

18

Your source-code will be built, and if there are any errors, these will be displayed to you and

the operating system will not load.

To double-check that InfOS is using your algorithm, scroll back in the log window and look for

the line:

notice: *** USING PAGE ALLOCATION ALGORITHM: buddy

If your algorithm does not work at all, then the system will likely not boot and may crash. You

can use the pgalloc.debug=1 and pgalloc.self-test=1 options to produce more debugging

output from the memory management core, and to run the self tests.

[ardgay]tspink: ./build-and-run.sh pgalloc.algorithm=buddy pgalloc.debug=1

pgalloc.self-test=1

6.8 Marking and Deliverables

This part of the coursework attracts 60 marks. Marks will be given for correctly implementing

the algorithm, for readability/coding style, for use of efficient algorithms, and for inserting

appropriate error checking.

You must submit your implementation, using the DICE electronic submission command BE-

FORE 4PM GMT on Thursday 7th of March, 2019. No other form of submission will be

accepted, and late submission will attract a score of zero.

Make sure you are in the directory containing your implementation, and issue the following

command:

$ submit os 2 buddy.cpp

19

7 Task 3: Device driver for Real-time Clock

Your third and final coursework task is to implement a device driver for a generic real-time

clock.

It is due by 4PM GMT on Thursday 28th March 2019 (week 10), and is worth 30 marks

out of 100.

7.1 Introduction

A real-time clock (RTC) is tasked with keeping track of the current date and time. RTCs are

generally powered separately, usually by a battery, and keep ticking even when the main power

to the computer has been removed. Without an internet connection, this is the only way for

the computer to know what the current date and time is, although if the battery runs out (or

the data becomes corrupt), then the time will be wrong.

7.2 Background

The CMOS RTC has been around since the 90s, and is accessed in quite a straightforward

way. There is a tiny area of static memory that is accessed a byte at a time, and certain bytes

correspond to certain components of the current date and time, as managed by the RTC.

Each second, the RTC updates these bytes, incrementing seconds, minutes, hours, etc accord-

ingly.

7.3 Accessing the RTC

In order to access the RTC, interrupts must first be disabled (you can use a scoped UniqueIRQLock

to do this). Then, you must wait for an update cycle to begin, and for an update cycle to com-

plete before reading CMOS data. Once this situation has occurred, the best course of action is

to read a block of bytes from CMOS memory into a buffer, then process those bytes individu-

ally. The idea is to read CMOS memory quickly, before the next update cycle occurs (which, if

you’ve followed the procedure above, should be in about a second).

CMOS memory is accessed through the I/O space, and requires the use of the low-level outb

(for writing a byte) and inb (for reading a byte) instructions. To access a byte of CMOS

memory, the memory offset for the byte you are interested in is written to port 0x70, then the

value is read from port 0x71. These low-level access routines are found in the arch/x86/pio.h

header file.

For example, to read the byte at offset 3 in CMOS memory, you would issue the following

instructions:

__outb(0x70, 3); // Activate offset 3

uint8_t v = __inb(0x71); // Read data

v now contains the value in offset 3 of CMOS memory.

20

7.3.1 The Update Cycle

The RTC has two status registers (A and B), and status register A contains a bit that indicates

whether or not an update is in progress. Status register A lives at offset 0xA, and the update-

in-progress flag is stored in bit 7. This bit is set when an update is in progress, and cleared

otherwise.

To read from the RTC, you should wait for an update to begin, then wait for the update to

complete, before reading any CMOS registers.

7.3.2 CMOS Registers

The following table lists the interesting CMOS registers for the real-time clock:

Offset Description

0x00 Seconds

0x02 Minutes

0x04 Hours

0x06 Weekday

0x07 Day of Month

0x08 Month

0x09 Year

0x0A Status Register A

0x0B Status Register B

7.3.3 Register Format

The values contained within the registers may be in either binary or binary coded decimal,

and you must figure out which this is by interrogating status register B. If bit 2 is set in status

register B, then the register values are stored in binary. If bit 2 is cleared, then the register

values are in binary coded decimal, and you must convert them into binary before returning

them out of the function.

Your code must handle both of these situations, although you have no influence on whether or

not the RTC operates in binary or BCD mode.

7.4 Returning the Date and Time

Once you have read and parsed the real-time clock, you must return the necessary in the

appropriate fields of the structure supplied in the read timepoint function (parameter tp).

The structure contains the following fields:

struct RTCTimePoint {

unsigned short seconds, minutes, hours;

unsigned short day_of_month, month, year;

};

These fields must be filled in from the (possibly converted) values read from the RTC, before

the function returns. You can ignore the weekday register from the RTC.

21

7.5 Resources

There is detailed information about accessing the CMOS RTC on the osdev website:

https://wiki.osdev.org/CMOS

This website provides all the information necessary to implement this task, although feel free

to search for further information elsewhere, if it helps.

7.6 Important Files and Interaction with InfOS

InfOS uses the RTC to set it’s internal representation of the date and time, which it increments

locally on each clock tick. This is because it’s quite expensive to read the RTC, since you must

wait for an update cycle to complete. Therefore, the two clocks can become out-of-sync and

drift. In this task, we’re not concerned with drift, so you can safely ignore any minor deviation

between the two times.

Your job is to implement the read timepoint function in the cmos-rtc.cpp file, to interrogate

the real-time clock, and store the values in the provided structure.

7.7 Skeleton

You are provided with a skeleton module, in which you must write your code to implement the

device driver. The skeleton is commented, and indicates where you should write your code. You

are free to modify this skeleton in any way you see fit, and you are encouraged to write helper

functions to make your code more readable.

If you have used the prepare-coursework.sh script, you will find the skeleton in

os-coursework/coursework/cmos-rtc.cpp. Do not copy or move these files anywhere, just

open them up in your IDE of choice and edit the files.

7.8 Testing

To compile and run InfOS, issue the build-and-run.sh command from your os-coursework

directory:

[ardgay]tspink: pwd

/afs/inf.ed.ac.uk/user/t/tspink/os-coursework

[ardgay]tspink: ./build-and-run.sh

Your source-code will be built, and if there are any errors, these will be displayed to you and the

operating system will not load. Unlike the other two tasks, this task does not require special

command-line arguments to get the device to operate.

In the InfOS shell, run the /usr/date command, to see what the kernel’s view of the current

date is:

> /usr/date

the current system date & time is: 01/01/19 10:13:22

the current hardware date & time is: 01/01/19 10:13:25

22

This program prints out two times: (1) what the kernel thinks the date and time is, based on

it’s (lousy) internal counter, and (2) the date and time as reported by the hardware real-time

clock.

The internal counter drifts quite significantly from the hardware clock, as there is no drift

correction code implemented, but this is not important for this task. What is important is that

the hardware date and time is close to the current real date and time. If your implementation

works, then the hardware date and time output should be correct (± a few minutes is fine).

This assumes that the clock on the host machine is correct.

If you have made any errors, then you’ll likely see very strange date and times being dis-

played.

7.9 Marking and Deliverables

This part of the coursework attracts 30 marks.

Marks will be given for correctly interrogating the CMOS real-time clock (as per the specifica-

tion), and correctly parsing and returning the values from the clock. Marks will also be given

for readability/coding style, and for inserting appropriate error checking.

You must submit your implementation, using the DICE electronic submission command BE-

FORE 4PM GMT on Thursday 28th March, 2019. No other form of submission will be

accepted, and late submission will attract a score of zero.

Make sure you are in the directory containing your implementation, and issue the following

command:

$ submit os 3 cmos-rtc.cpp

23

A Page Allocator Self Test Output

The following listing shows what output you should expect to see from InfOS when using the

self-test mode for the page allocator. A number of different tests are performed, and the dump()

method is used to print out the state of the buddy system.

This dump iterates over each allocation order, zero up to the maximum (which is 16), and then

follows the chain of blocks in the linked list, printing out their page frame numbers (PFNs).

For example, in the initial state (when no allocations have been made), only the highest order

contains blocks. You may see slightly variations in the PFNs allocated, depending on how you

split blocks, but this output should give you an indication of the expected behaviour.

What is most important is that the ending state of the self test matches the initial state, that

is no allocations have been made.

notice: mm: PAGE ALLOCATOR SELF TEST - BEGIN

notice: mm: ------------------------

info: mm: * INITIAL STATE

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (1) ALLOCATING ONE PAGE

info: mm: ALLOCATED PFN: 0x0

debug: mm: BUDDY STATE:

debug: mm: [0] 1

debug: mm: [1] 2

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

24

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (2) FREEING ONE PAGE

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (3) ALLOCATING TWO CONTIGUOUS PAGES

info: mm: ALLOCATED PFN: 0x0

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1] 2

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

25

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (4) FREEING TWO CONTIGUOUS PAGES

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (5) OVERLAPPING ALLOCATIONS

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

26

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (6) MULTIPLE ALLOCATIONS, RANDOM ORDER FREE

info: mm: * AFTER ALLOCATION

debug: mm: BUDDY STATE:

debug: mm: [0] b

debug: mm: [1]

debug: mm: [2] c

debug: mm: [3]

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x8

debug: mm: BUDDY STATE:

debug: mm: [0] 8 b

debug: mm: [1]

debug: mm: [2] c

debug: mm: [3]

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

27

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x4

debug: mm: BUDDY STATE:

debug: mm: [0] 8 b

debug: mm: [1]

debug: mm: [2] 4 c

debug: mm: [3]

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x9

debug: mm: BUDDY STATE:

debug: mm: [0] b

debug: mm: [1] 8

debug: mm: [2] 4 c

debug: mm: [3]

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

28

info: mm: FREE 0xa

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x2

debug: mm: BUDDY STATE:

debug: mm: [0] 2

debug: mm: [1]

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x1

debug: mm: BUDDY STATE:

debug: mm: [0] 1 2

debug: mm: [1]

debug: mm: [2] 4

29

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x0

debug: mm: BUDDY STATE:

debug: mm: [0] 2

debug: mm: [1] 0

debug: mm: [2] 4

debug: mm: [3] 8

debug: mm: [4] 10

debug: mm: [5] 20

debug: mm: [6] 40

debug: mm: [7] 80

debug: mm: [8] 100

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: FREE 0x3

info: mm: * AFTER RANDOM ORDER FREEING

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

30

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (7) RESERVING PAGE 0x14e000 and 0x14f000

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1] 14c

debug: mm: [2] 148

debug: mm: [3] 140

debug: mm: [4] 150

debug: mm: [5] 160

debug: mm: [6] 100

debug: mm: [7] 180

debug: mm: [8] 0

debug: mm: [9] 200

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (8) FREEING RESERVED PAGE 0x14f000

debug: mm: BUDDY STATE:

debug: mm: [0] 14f

debug: mm: [1] 14c

debug: mm: [2] 148

debug: mm: [3] 140

debug: mm: [4] 150

debug: mm: [5] 160

debug: mm: [6] 100

debug: mm: [7] 180

debug: mm: [8] 0

debug: mm: [9] 200

31

debug: mm: [10] 400

debug: mm: [11] 800

debug: mm: [12] 1000

debug: mm: [13] 2000

debug: mm: [14] 4000

debug: mm: [15] 8000

debug: mm: [16] 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: (9) FREEING RESERVED PAGE 0x14e000

debug: mm: BUDDY STATE:

debug: mm: [0]

debug: mm: [1]

debug: mm: [2]

debug: mm: [3]

debug: mm: [4]

debug: mm: [5]

debug: mm: [6]

debug: mm: [7]

debug: mm: [8]

debug: mm: [9]

debug: mm: [10]

debug: mm: [11]

debug: mm: [12]

debug: mm: [13]

debug: mm: [14]

debug: mm: [15]

debug: mm: [16] 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 a0000 b0000

c0000 d0000 e0000 f0000 100000 110000 120000 130000 140000

info: mm: ------------------------

info: mm: PAGE ALLOCATOR SELF TEST - COMPLETE

32

	Introduction
	Background
	Necessary Skills
	Overview
	Development Environment
	Testing

	InfOS
	Introduction
	Source Code
	Coursework Skeletons
	Structure and Implementation
	Modules

	Start-up
	Memory Manager
	Physical Memory
	Virtual Memory

	Process Scheduler
	Scheduling Algorithms

	Device Manager
	Virtual Filesystem Switch (VFS)
	InfOS API
	List<T>
	Map<TKey, TValue>
	Use of Containers
	Logging and Debugging

	Building and Testing
	User Space

	General Note on Writing Solutions
	Task 1: Round-robin Process Scheduler
	Introduction
	Important Files and Interaction with InfOS
	Skeleton
	Testing
	Marking and Deliverables

	Task 2: Physical Memory Buddy Allocator
	Introduction
	Background
	Important Files and Interaction with InfOS
	Allocating Pages
	PageDescriptor *alloc_pages(int order) override
	bool reserve_page(PageDescriptor *pgd)

	Freeing Pages
	Skeleton
	Testing
	Marking and Deliverables

	Task 3: Device driver for Real-time Clock
	Introduction
	Background
	Accessing the RTC
	The Update Cycle
	CMOS Registers
	Register Format

	Returning the Date and Time
	Resources
	Important Files and Interaction with InfOS
	Skeleton
	Testing
	Marking and Deliverables

	Page Allocator Self Test Output

