NLU lecture 5: Word representations and morphology

Adam Lopez
alopez@inf.ed.ac.uk
• Essential epistemology
• Word representations and word2vec
• Word representations and compositional morphology

Reading: Mikolov et al. 2013, Luong et al. 2013
Essential Epistemology

<table>
<thead>
<tr>
<th></th>
<th>Exact Sciences</th>
<th>Empirical Sciences</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deals with</td>
<td>Axioms & theorems</td>
<td>Facts & theories</td>
<td>Artifacts</td>
</tr>
<tr>
<td>Truth is</td>
<td>Forever</td>
<td>Temporary</td>
<td>It works</td>
</tr>
<tr>
<td>Examples</td>
<td>Mathematics</td>
<td>Physics</td>
<td>Many, including applied C.S.</td>
</tr>
<tr>
<td></td>
<td>C.S. theory</td>
<td>Biology</td>
<td>e.g. NLP</td>
</tr>
<tr>
<td></td>
<td>F.L. theory</td>
<td>Linguistics</td>
<td></td>
</tr>
</tbody>
</table>
Essential epistemology

<table>
<thead>
<tr>
<th>Exact sciences</th>
<th>Empirical sciences</th>
<th>Engineering</th>
</tr>
</thead>
</table>

Deals with:
- Axioms & theorems
- Facts & theories

Artifacts:
- Mathematics
- C.S. theory
- Physics
- Biology
- Linguistics
- Many, including applied C.S.
 - e.g. MT

Truth is:
- Forever
- Temporary

It works
Essential epistemology

<table>
<thead>
<tr>
<th>Exact sciences</th>
<th>Empirical sciences</th>
<th>Engineering</th>
</tr>
</thead>
</table>

- Deals with axioms & theorems
- Deals with facts & theories
- Artifacts

Truth is forever.

- It works

Examples
- Mathematics
- C.S. theory
- Physics
- Biology
- Linguistics
- Many, including applied C.S., e.g. MT

- Morphological properties of words (facts)
Essential epistemology

<table>
<thead>
<tr>
<th>Exact sciences</th>
<th>Empirical sciences</th>
<th>Engineering</th>
</tr>
</thead>
</table>

- Exact sciences deals with axioms & theorems.
- Empirical sciences deals with facts & theories.
- Engineering deals with artifacts.

Truth is forever, but it works temporarily.

Examples:
- Mathematics
- C.S. theory (applied C.S., e.g., MT)
- Physics
- Biology
- Linguistics

Morphological properties of words (facts) and Optimality theory.
Essential epistemology

<table>
<thead>
<tr>
<th>Exact sciences</th>
<th>Empirical sciences</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimality theory is finite-state</td>
<td>morphological properties of words (facts)</td>
<td>Optimality theory</td>
</tr>
</tbody>
</table>
Essential epistemology

<table>
<thead>
<tr>
<th>Exact sciences</th>
<th>Empirical sciences</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deals with Axioms & theorems</td>
<td>Deals with Facts & theories</td>
<td>Deals with Artifacts</td>
</tr>
</tbody>
</table>
| Truth is Forever | | | |}

- Optimality theory is finite-state
- Morphological properties of words (facts)
- Optimality theory
- We can represent morphological properties of words with finite-state automata
INFORMATION theory has, in the last few years, become something of a scientific bandwagon. Starting as a technical tool for the communication engineer, it has received an extraordinary amount of publicity in the popular as well as the scientific press. In part, this has been due to connections with such fashionable fields as computing machines, cybernetics, and automation; and in part, to the novelty of its subject matter. As a consequence, it has perhaps been ballooned to an importance beyond its actual accomplishments. Our fellow scientists in many different fields, attracted by the fanfare and by the new avenues opened to scientific analysis, are using these ideas in their own problems. Applications are being made to biology, psychology, linguistics, fundamental physics, economics, the theory of organization, and many others. In short, information theory is currently partaking of a somewhat heady draught of general popularity.

Although this wave of popularity is certainly pleasant and exciting for those of us working in the field, it carries at the same time an element of danger. While we feel that information theory is indeed a valuable tool in providing fundamental insights into the nature of communication problems and will continue to grow in importance, it is certainly no panacea for the communication engineer or, a fortiori, for anyone else. Seldom do more than a few of nature's secrets give way at one time. It will be all too easy for our somewhat artificial prosperity to collapse overnight when it is realized that the use of a few exciting words like information, entropy, redundancy, do not solve all our problems.

What can be done to inject a note of moderation in this situation? In the first place, workers in other fields should realize that the basic results of the subject are aimed in a very specific direction, a direction that is not necessarily relevant to such fields as psychology, economics, and other social sciences. Indeed, the hard core of information theory is, essentially, a branch of mathematics, a strictly deductive system. A thorough understanding of the mathematical foundation and its communication application is surely a prerequisite to other applications. I personally believe that many of the concepts of information theory will prove useful in these other fields—and, indeed, some results are already quite promising—but the establishing of such applications is not a trivial matter of translating words to a new domain, but rather the slow tedious process of hypothesis and experimental verification. If, for example, the human being acts in some situations like an ideal decoder, this is an experimental and not a mathematical fact, and as such must be tested under a wide variety of experimental situations.

Secondly, we must keep our own house in first class order. The subject of information theory has certainly been sold, if not oversold. We should now turn our attention to the business of research and development at the highest scientific plane we can maintain. Research rather than exposition is the keynote, and our critical thresholds should be raised. Authors should submit only their best efforts, and these only after careful criticism by themselves and their colleagues. A few first rate research papers are preferable to a large number that are poorly conceived or half-finished. The latter are no credit to their writers and a waste of time to their readers. Only by maintaining a thoroughly scientific attitude can we achieve real progress in communication theory and consolidate our present position.
Remember the bandwagon

What do you believe that AI capabilities could be in the close future?

Speech recognition and machine translation between any languages should be fully solvable.
Word representations
Feedforward model

\[p(e) = \prod_{i=1}^{\frac{|e|}{1}} p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) \]

\[p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) = \]

![Diagram of feedforward model]
Feedforward model

\[p(e) = \prod_{i=1}^{|e|} p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) \]

\[p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) = \]

Every word is a vector (a one-hot vector)

The concatenation of these vectors is an \(n \)-gram
Feedforward model

\[
p(e) = \prod_{i=1}^{\frac{e}{|e|}} p(e_i \mid e_{i-n+1}, \ldots, e_{i-1})
\]

\[
p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) =
\]

Word embeddings are vectors: continuous representations of each word.
Feedforward model

\[p(e) = \prod_{i=1}^{\left| e \right|} p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) \]

\[p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) = \]

\(n \)-grams are vectors: continuous representations of \(n \)-grams (or, via recursion, larger structures)
Feedforward model

\[
p(e) = \prod_{i=1}^{\left| e \right|} p(e_i \mid e_{i-n+1}, \ldots, e_{i-1})
\]

\[
p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) = \]

A discrete probability distribution over \(V \) outcomes is a vector: \(V \) non-negative reals summing to 1.
Feedforward model

\[p(e) = \prod_{i=1}^{|e|} p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) \]

\[p(e_i \mid e_{i-n+1}, \ldots, e_{i-1}) = \]

No matter what we do in NLP, we’ll (almost) always have words… Can we reuse these vectors?
Design a POS tagger using an RRNLM
Design a POS tagger using an RRNLM

What are some difficulties with this?

What limitation do you have in learning a POS tagger that you don’t have when learning a LM?
Design a POS tagger using an RRNLM

What are some difficulties with this?

What limitation do you have in learning a POS tagger that you don’t have when learning a LM?

One big problem:
LIMITED DATA
“You shall know a word by the company it keeps”

—John Rupert Firth (1957)
Learning word representations using language modeling

• Idea: we’ll learn word representations using a language model, then reuse them in our POS tagger (or any other thing we predict from words).

• Problem: Bengio language model is slow. Imagine computing a softmax over 10,000 words!
Continuous bag-of-words (CBOW)

- Mikolov et al. (2013, ICLR)
- CBOW adds inputs from words within short window to predict the current word
- The weights for different positions are shared
- Computationally much more efficient than normal NNLM
- The hidden layer is just linear
Skip-gram

- We can reformulate the CBOW model by predicting surrounding words using the current word.
- Find word representations useful for predicting surrounding words in a sentence or document.
Skip-gram

Word vector for “ants”

Output weights for “car”

\[
\frac{e^x}{\sum e^x}
\]

300 features
Learning skip-gram

- Stochastic gradient descent and backpropagation
- It is useful to sub-sample the frequent words (e.g., the, is, a)
- Words are thrown out proportional to their frequency (makes things faster, reduces importance of frequent words like IDF)
- Non-linearity does not seem to improve performance of these models, thus the hidden layer does not use activation function
- **Problem**: very large output layer - size equal to vocabulary size, can easily be in order of millions (too many outputs to evaluate)
- **Solution**: negative sampling (also Hierarchical softmax)
Learning skip-gram

- Instead of propagating signal from the hidden layer to the whole output layer, only the output neuron that represents the positive class + few randomly sampled neurons are evaluated.
- The output neurons are treated as independent logistic regression classifiers.
- This makes the training speed independent of the vocabulary size (can be easily parallelized).
Word representations capture some world knowledge.
Continuous Word Representations

man \rightarrow \text{king} \rightarrow \text{woman} \rightarrow \text{queen}

\text{read} \rightarrow \text{walks} \rightarrow \text{walk}

\text{Semantics} \quad \text{Syntactic}
Will it learn this?
(Additional) limitations of word2vec

- Closed vocabulary assumption
- Cannot exploit **functional relationships** in learning
Is this language?

What our data contains:
A Lorillard spokeswoman said, “This is an old story.”

What word2vec thinks our data contains:
A UNK UNK said, “This is an old story.”
Is it ok to ignore words?

12 * Honour thy father and thy mother, thy dayes may bee long vpon the land whis LORD thy God giueth thee.
13 * Thou shalt not kill.
14 Thou shalt commit adultery.
15 Thou shalt not steale.
16 Thou shalt not beare false witness ag thy neighbour.
17 * Thou shalt not covet thy neighbours houe, nor his man-servant, nor his maid-servant, nor his ox,
Is it ok to ignore words?

12 * Honour thy father and thy mother, thy days may bee long upon the land whereunto the LORD thy God giueth thee.
13 * Thou shalt not kill.
14 Thou shalt commit adultery.
15 Thou shalt not steale.
16 Thou shalt not bear false witness aganst thy neighbour.
17 * Thou shalt not covet thy neighbour's house, thou shalt not covet thy neighbour's wife, nor his manservant, nor his maidservant, nor his ox, nor his ass, nor anything that is thy neighbour's.
What **we** know about linguistic structure

Morpheme: the smallest meaningful unit of language

“loves”

love +s

root/stem: love

affix: -s

morph. analysis: 3rd.SG.PRES
What if we embed morphemes rather than words?

Basic idea: compute representation recursively from children

\[p = f(W_m[x_{\text{stem}}; x_{\text{affix}}] + b_m) \]

\(f \) is an activation function (e.g. tanh)

Vectors in green are morpheme embeddings (parameters)

Vectors in grey are computed as above (functions)
Train compositional morpheme model by minimizing distance to reference vector.

Target output: reference vector p_r

Conformed vector is p_c

Minimize:

$$s(x_i) = \|p_c(x_i) - p_r(x_i)\|^2$$

$$J(\theta) = \sum_{i=1}^{N} s(x_i) + \frac{\lambda}{2} \|\theta\|^2$$
Or, train in context using backpropagation

Vectors in blue are word or n-gram embeddings (parameters)
Vectors in green are morpheme embeddings (parameters)
Vectors in grey are computed as above (functions)

(Basically a feedforward LM)
Where do we get morphemes?

- Use an unsupervised morphological analyzer (we’ll talk about unsupervised learning later on).

- How many morphemes are there?
New stems are invented every day!

fleeking, fleeked, and fleeker are all attested...
Representations learned by compositional morphology model

<table>
<thead>
<tr>
<th>Words</th>
<th>C&W</th>
<th>C&W + csmRNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>commenting</td>
<td>insisting insisted focusing hinted</td>
<td>commented comments criticizing</td>
</tr>
<tr>
<td>comment</td>
<td>commentary rant statement remark</td>
<td>rant commentary statement anecdote</td>
</tr>
<tr>
<td>distinctness</td>
<td>morphologies pesawat clefts different distinctive broader narrower</td>
<td>indistinct distinctiveness largeness uniquely</td>
</tr>
<tr>
<td>distinct</td>
<td></td>
<td>divergent diverse distinctive homogeneous</td>
</tr>
<tr>
<td>unaffected</td>
<td>unnoticed dwarfed mitigated caused plagued impacted damaged</td>
<td>undesired unhindered unrestricted</td>
</tr>
<tr>
<td>affected</td>
<td></td>
<td>complicated desired constrained reasoned</td>
</tr>
<tr>
<td>unaffected</td>
<td>exacerbate impacts characterize</td>
<td>affective affecting affectation restrictive</td>
</tr>
<tr>
<td>affect</td>
<td></td>
<td>decrease arise complicate exacerbate</td>
</tr>
<tr>
<td>heartlessness</td>
<td>∅</td>
<td>depersonalization terrorizes sympathizes</td>
</tr>
<tr>
<td>heartless</td>
<td></td>
<td>sadistic callous merciless hideous</td>
</tr>
<tr>
<td>heart</td>
<td></td>
<td>death brain blood skin lung mouth</td>
</tr>
<tr>
<td>saudi-owned</td>
<td>avatar mohajir kripalani fountainhead kindled waylaid endeared peopled</td>
<td>saudi-based syrian-controlled syrian-backed</td>
</tr>
<tr>
<td>short-changed</td>
<td></td>
<td>short-termism short-positions self-sustainable</td>
</tr>
</tbody>
</table>
Summary

• Deep learning is not magic and will not solve all of your problems, but representation learning is a very powerful idea.

• Word representations can be transferred between models.

• Word2vec trains word representations using an objective based on language modeling—so it can be trained on unlabeled data.

• Sometimes called unsupervised, but objective is supervised!

• Vocabulary is not finite.

• Compositional representations based on morphemes make our models closer to open vocabulary.