
Sentence Realisation with
OpenCCG

February 1, 2013

Lecture 4

Recap
•  What have you learned so far?

– hybrid logic dependency structures (HLDSs)
•  What goes into the OpenCCG surface realiser?

– categorial grammars (CGs)
–  integrating HLDSs into CGs

•  Today:
– Combinatory Categorial Grammar

•  an extension of Categorial Gramar
– How chart realisation works

So where are we?

•  We�ve seen how to define a lexicon in CG
•  We�ve learned about two important operators in

CG, i.e., forward and backward application
•  We�ve seen how to combine words both

–  Syntactically (derivations, unification), and

–  Semantically (set union of elementary predications)

•  But, Combinatory Categorial Grammar gives us
more expressive power

From CG to CCG

CCG is an “extension” of CG

CCG has more rules:
•  forward and backward type raising
•  forward and backward composition

Everything else remains the same
•  in particular the HLDS representations.

Forward type raising

X

Y/(Y\X)
T

John
NP

S/(S\NP)
T

Type Raising
•  CCG includes type-raising rules, which turn arguments into

functions over functions over such arguments
•  Forward type raising

•  Example:

•  Rules are order preserving. Here we turn an NP into a
rightward looking function over leftward functions,
preserving the linear order of constituents

X

Y/(Y\X)
T

John

NP

S/(S\NP)
T

Forward composition

X/Y Y/Z

X/Z
B

John likes
S/(S\NP) (S\NP)/NP

S/NP
B

CCG is more flexible

CCG generates more sentences:

•  object relative clauses –

 “a restaurant that [John likes]S/NP”

•  right node raising –
 “[John likes]S/NP but [Charles hates]S/NP
Giovanni’s”

Right Node Raising

Example:

CCG is more flexible

CCG allows one sentence to be derived in
many ways

•  reflecting different intonation patterns

•  allowing incremental (i.e. left-branching)
derivations from a right-branching lexicon

 Multiple derivations
Q1: I know what restaurant serves French food, but what

restaurant serves Italian food?

A1: Babbo serves Italian food.

NP S\NP/NP NP

Q2: I know what kind of food Pierre�s serves, but what kind of
food does Babbo serve?

A2: Babbo serves Italian food.

NP S\NP/NP NP

S\NP

S/(S\NP)

S/NP

T

B

CCC allows Incremental Processing

Can interpret from left to right

Modularity - the NLG pipeline Linguistic realisation with OpenCCG

Sentence plans are labelled directed
graphs

i.e. nodes, edges, labels

Labelled directed graphs can be
represented as hybrid logic formulas

 @e (very-good ^ <THEME> (x ^ Giovanni's))
^ @f (serve ^ <AGENT> x ^ <THEME> (y ^ food))
^ @g (Italian ^ <THEME> y)
^ @h (cheap ^ <THEME> y)

Sentence plans are sets of elementary
predications in hybrid logic

{@e very-good, @x Giovanni's, @f serve, @y food,
@g Italian, @h cheap, @e <THEME> x, @f <AGENT> x,
@f <THEME> y, @g <THEME> y, @h <THEME> y}

Why hybrid logic?

Ideal for representing labelled directed graphs
•  extension of modal logic

Hybrid logic is well understood
•  decidable fragment of first order logic

Hybrid logic allows a graph to be represented in two different,
but equivalent, ways -
•  hierarchically - good for viewing by humans
•  flat - good for processing by computers

Flat representions are particularly useful for doing surface
realisation.

Linguistic realisation with OpenCCG Representing Syntax in XML

Atomic categories - S, NP, N, ...

<atomcat type="S"/>

<atomcat type="NP"/>

<atomcat type="N"/>

Complex categories - (N\N)/(S\NP)

<complexcat>
 <atomcat type="N"/>
 <slash dir="\"/>
 <atomcat type="N"/>
 <slash dir="/"/>
 <complexcat>
 <atomcat type="S"/>
 <slash dir="\"/>
 <atomcat type="NP"/>
 </complexcat
</complexcat>

Adding Semantics in XML

<satop nomvar="E">
 <prop name="very-good"/>
</satop>

<satop nomvar="E">
 <diamond mode="theme">
 <nomvar name="X"/>
 </diamond>
</satop>

@e very-good

@e <THEME> x

A grammar is a lexicon

Giovanni's :- NP

food :- N

Italian :- N/N

cheap :- N/N

rocks :- S\NP

serves :- S\NP/NP

some :- NP/N

Forward and backward application

Integrating HLDS - (1) Add nominals

Giovanni's :- NPx

food :- Nx

Italian :- Nx/Nx

cheap :- Nx/Nx

rocks :- Se\NPx

serves :- Se\NPx/NPy

some :- NPx/Nx

Adding nominals in XML

<atomcat type="S">
 <fs>
 <feat attr="index">
 <lf>
 <nomvar name=�x"/>
 </lf>
 </feat>
 </fs>
</atomcat>

Integrating HLDS - (2) Add EPs
Giovanni's :- NPx : @x Giovanni's

food :- Nx : @x food

Italian :- Nx/Nx : @e Italian, @e <THEME> x

cheap :- Nx/Nx : @e cheap, @e <THEME> x

rocks :- Se\NPx : @e very-good, @e <THEME> x

serves :- Se\NPx/NPy : @e serve, @e <AGENT> x, @e <THEME> y

some :- NPx/Nx :

Semantic construction

Type raising and composition Why CCG?
CCGs are lexicalised
•  allows for efficient NLG

CCGs are powerful
•  it is easy to generate sentences with unbounded

dependencies (object relative clauses, right node raising)

CCGs are flexible
•  we can simulate incremental processing
•  easy to integrate with models of intonation for spoken

language generation

CCGs have transparent semantics
•  easy to integrate with HLDSs

Chart realisation

An algorithm for converting flat semantic representations into
text, using a lexicalised grammar.

First proposed in Martin Kay (1996): "Chart generation" (ACL).

Adapted for OpenCCG by Michael White.

More efficient than other realisation algorithms
•  semantic head-driven generation

Inspired by chart parsing.

Chart parsing?

More efficient than normal top-down or bottom-up parsing
•  keeps a record of what it has learned
•  so doesn't have to keep repeating the same computations

Example - input sentence plan

1. @a serve
2. @b Italian
3. @c Giovanni's
4. @d food
5. @a <AGENT> c
6. @a <THEME> d
7. @b <THEME> d

Every sentence plan EP gets a
unique index.

Example - lexicon

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

Every entry has exactly one "indexing EP", represented by the
underline.

Example - sentence plan + lexicon

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @y <THEME> x
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve 5. @a <AGENT> c
2. @b Italian 6. @a <THEME> d
3. @c Giovanni's 7. @b <THEME> d
4. @d food

Step 1: add lexical edges

repeat for every EP φ in the sentence plan:
 repeat for every entry E in the lexicon:
 if E's indexing EP matches φ
 then add the relevant lexical edge
 to the chart.

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve 5. @a <AGENT> c
2. @b Italian 6. @a <THEME> d
3. @c Giovanni's 7. @b <THEME> d
4. @d food

The chart (1)

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve* 5. @a <AGENT> c
2. @b Italian 6. @a <THEME> d
3. @c Giovanni's 7. @b <THEME> d
4. @d food

The chart (2)

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve* 5. @a <AGENT> c
2. @b Italian* 6. @a <THEME> d
3. @c Giovanni's 7. @b <THEME> d
4. @d food

The chart (3)

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve* 5. @a <AGENT> c
2. @b Italian* 6. @a <THEME> d
3. @c Giovanni's* 7. @b <THEME> d
4. @d food*

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve* 5. @a <AGENT> c*
2. @b Italian* 6. @a <THEME> d*
3. @c Giovanni's* 7. @b <THEME> d*
4. @d food*

Step 1: add lexical edges

repeat for every EP φ in the sentence plan:
 repeat for every entry E in the lexicon:
 if E's indexing EP matches φ
 then add the relevant lexical edge
 to the chart.

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

1. @a serve* 5. @a <AGENT> c*
2. @b Italian* 6. @a <THEME> d*
3. @c Giovanni's* 7. @b <THEME> d*
4. @d food*

Step 1: add lexical edges (revised)

repeat for every EP φ in the sentence plan:
 repeat for every entry E in the lexicon:
 if E's indexing EP matches φ
 then add the relevant lexical edge
 to the chart.

repeat for every entry E in the lexicon:
 if E has no EPs
 then add the relevant lexical edge
 to the chart anyway.

The chart (4)

Step 2: apply CCG rules

repeat for every edge E on the chart:
 repeat for every edge F on the chart:
 if there is a CCG rule
 that can combine E and F
 and the EP in-sets of E and F are disjoint
 then add the relevant edge to the chart.

The chart (5)

The chart (6) The chart (7)

The chart (8) The chart (9)

The chart (10) The chart (11)

The chart (12) The chart (13)

The chart (14) The chart (15)

The chart (16) Result!

"Giovanni's serves some Italian food"

Chart realisation algorithm

1. repeat for every EP φ in the sentence plan:
 repeat for every entry E in the lexicon:
 if E's indexing EP matches φ
 then add the relevant lexical edge to the chart.

2. repeat for every entry E in the lexicon:
 if E has no EPs
 then add the relevant lexical edge to the chart.

3. repeat for every edge E on the chart:
 repeat for every edge F on the chart:
 if there is a CCG rule that can combine E and F
 and the EP in-sets of E and F are disjoint
 then add the relevant edge to the chart.

Another example
1. @a cheap
2. @b Italian
3. @c food
4. @a <THEME> c
5. @b <THEME> c

Giovanni's :- NPx : @x Giovanni's
food :- Nx : @x food
Italian :- Nx/Nx : @y Italian, @y <THEME> x
cheap :- Nx/Nx : @y cheap, @y <THEME> x
rocks :- Sx\NPy : @x very-good, @x <THEME> y
serves :- Sx\NPy/NPz : @x serve, @x <AGENT> y, @x <THEME> z
some :- NPx/Nx :

The chart - lexical edges added The chart - CCG rules applied

Result

"Italian cheap food"
"some Italian cheap food"

"cheap Italian food"
"some cheap Italian food"

One for the road

Giovanni's :- NPx : @x Giovanni's
great :- Ax : @x very-good
rocks :- Sx\NPy : @x very-good, @x <THEME> y
is :- Sx\NPy/Ax : @x <THEME> y

What you need to know

Convert a labelled directed graph into a set of hybrid logic
elementary predications, and vice versa.

Given a CCG lexicon, show how sentence S can be derived
•  including semantic representations

Given a CCG lexicon, show how labelled directed graph G can
be realised, using the chart realisation algorithm.

