NLG Lecture 12:
Statistical generation 1

19 March 2013

Johanna Moore

With thanks to Jon Oberlander
Irene Langkilde-Geary, Michael White and Albert Gatt

] School of _ ¢
informatics

Advantages of using statistics

Construction of NLG systems is extremely labour intensive!
— e.g., Methodius system took ca. 2 years with 2.5 developers
Many statistical approaches focus on specific modules
— Example: stochastic content planner (Mellish et al., 1998)
» generation as search; search as stochastic process
— Best-studied: statistical realiser

« realisers that take input in some canonical form and rely on language
models to generate output

— Advantages:
« easily ported to new domains/applications

» coverage can be increased (more data/training examples)

An Early Statistical NLG System

- Yngve (1962) built generator for machine
translation that used a CFG and random number
generator to produce “grammatical” sentences

. System randomly selects a production from
those applicable at each point (starting from
<S>)

- Randomly selects words to fill in word categories
(<NOUN>, <VERB>, etc.)

- Example:

— The water under the wheels in oiled whistles and its
polished shiny big and big trains is black.

Overgeneration and ranking

The core approaches we will consider rely on
“overgenerate-and-rank” approach

- also known as “generate and select”

Given: input specification (“semantics” or canonical form)

- Use a simple rule-based generator to produce many
alternative realisations

- Rank them using a language model

— Output the best (= most probable) realisation

Advantages of overgeneration + ranking

There are usually many ways to say the same thing.
- e.g. ORDER(eat(you,chicken))
e Eat chicken!
e It is required that you eat chicken!
e It is required that you eat poulet!
e Poulet should be eaten by you.
e You should eat chicken/chickens.

e Chicken/Chickens should be eaten by you.

Adapted from slide by Albert Gatt

Where does the data come from?

Some statistical NLG systems were built based on parallel

data/text corpora.

— allows direct learning of correspondences between content
and output

- rarely available
- Some work relies on Treebanks:

- Extract input: process the treebank to extract “canonical
specifications” from parsed sentences

- train a language model

- re-generate using a realiser and evaluate against original
treebank

Nitrogen: Two-level generation for MT
L

Langkilde’ s 1998 pioneering realisation system with wide
coverage, i.e., handles many phenomena of English grammar

— Based on overgeneration & ranking

In the original Nitrogen
— generator is a non-deterministic, symbolic generator
— ranker is bigram or trigram language model.

- Application: Japanese/English MT, where the input to generation
may lack crucial number information

— Number agreement is treated as a “fluency” goal, since the
propositional input doesn’t specify it.

— The n-gram model selects for number agreement

How well do statistical n-grams make linguistic decisions?

Subject-Verb Agreement Article-Noun Agreement

lam 2797 atrust 394 antrust 0 thetrust 1355
| are 47 atrusts 2 antrusts0 thetrusts 115
lis 14

Singular vs Plural Word Choice

their trust 28 reliance 567 trust 6100
their trusts 8 reliances 0 trusts 1083

More Examples

Relative pronoun
visitorwho 9 visitors who 20

visitor which 0 visitors which 0
visitor that 9 visitors that 14

Singular vs Plural
visitor 575 visitors 1083

Verb Tense
admire 212 admired 211
admires 107

Preposition
in Japan 5413 to Japan 1196

came to 2443 arrived in 544
camein 1498 arrivedto 35
came into 244 arrived into 0

cametoJapan7 arrivedtoJapan 0
came into Japan 1 arrived into Japan 0
cameinJapan 0 arrived in Japan 4

Structure of HALogen

HALogen (Langkilde-Geary 2002) is a successor to Nitrogen
- main differences:
e representation data structure for possible realisation alternatives
e HALogen handles more grammatical features

Symbolic Generator

eRules to map input

representation to .

syntactic structures multiple outputs ,
represented in a “forest

eLexicon

eMorphology

Statistical ranker
best sentence - en-gram model

(from Penn Treebank)

HALogen Input

Grammatical specification
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod (m1 / meaty))
:adjunct (t1 / today))

Semantic specification
(el / eat
:agent (d1 / dog)
:patient (b1 / bone
:premod (m1 / meaty))
:temp-loc (t1 / today))

Labelled feature-value
representation specifying
properties and relations of
domain objects (el, di, etc)

Recursively structured
Order-independent

Can be either grammatical
or semantic (or mixture of
both)

- recasting mechanism maps
from one to another

HALogen base generator

Consists of about 255 hand-written rules

- Rules map an input representation into a packed set of
possible output expressions.

- Each part of the input is recursively processed by the rules,
until only a string is left.

Types of rules:
- recasting

— ordering

- filling

- morphing

Adapted from slide by Albert Gatt

Recasting

Map semantic input representation to one that
is closer to surface syntax

Semantic specification

(el / eat) IF relation = :agent
:patient (b1 / bone AND sentence is not passive
:premod(m1 / meaty)) THEN map relation to :subject

:temp-loc(tl / today)
:agent (d1 / dog))

Grammatical specification
(el / eat
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today)
:subject (d1 / dog))

Ordering

Assign a linear order to the values in the input.

Grammatical specification

(el/ eat
:Opjfgh(gdl(r/ntl)o/ne Put subject first unless
‘P meaty)) sentence is passive.
Put adjuncts as sentence-final

:adjunct(tl / today)
:subject (d1 / dog))

Grammatical specification + order
(el / eat
:subject (d1 / dog)
:object (b1 / bone

:premod(m1 / meaty))
:adjunct(tl / today))

Filling i

If input is under-specified for some features,

add all possible values for them.

- NB: this allows for different degrees of specification, from
minimally to maximally specified input.
- Can create multiple “copies” of same input

Grammatical specification + order +:tense (past)

(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))
+:tense (present)

Morphing

Given the properties of parts of the input,
add the correct inflectional features.

Grammatical specification + order
(el / eat
:tense(past)
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))

Grammatical specification + order
(el / ate
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))

Option 1: lattice structure (Langkilde 2000)

The output of the base generator ‘
N
- Problem: '

- a single input may have literally hundreds
of possible realisations after base generation

- these need to be represented in an efficient way to facilitate
search for the best output

Options:

- word lattice

- forest of trees

- (and in OpenCCG, chart)

“You may have to eat chicken”: 576 versions

Adapted from slide by Albert Gatt

' Properties of lattices

hickens

o - In a lattice, a complete left-right path represents a
- rcken possible sentence.

AN :'v:* e we b - - Lots of duplication!
be
/‘ ponle coold e o—_\

- e.g., word “chicken” occurs multiple times

nigt paks
el = — ranker will be scoring the same substring more than once
p— \ - In a lattice path, every word is dependent on all other
puls
chicken words.

- can’t model local dependencies

Adapted from slide by Albert Gatt

Option 2: Forests (Langkilde 2000,2002)

OR
/\
S.328 S.358
/\ —
PRP.3 VP.327 NP.318 VP.357
you VP, 248 NP.318 PRP.3
A OR
to be eaten by
the chicken

Properties of forests
N

Efficient representation:

- each individual constituent represented only once, with
pointers

- alternatives represented by disjunctive (“OR”) nodes

- ranker will only compute a partial score for a subtree once

Equivalent to a non-recursive context-free grammar
- S5.469 > S.328
- 5.469 > S.358

Adapted from slide by Albert Gatt

Statistical ranking

Uses n-gram language models to choose the best
realisation r:

n
Thest = arg maXrE_fbrest I | P(Wz‘ | Wl"'wi—l)
i=

n

= aArgmaXx, e peq H P(w; | w;_;) [Markov assumption]
=

Adapted from slide by Albert Gatt

Sample Results of Bigram model

Random path: (out of a set of 11,664,000 semantically-related sentences)

Visitant which came into the place where it will be Japanese has admired
that there was Mount Fuji.

Top three:

Visitors who came in Japan admire Mount Fuji .
Visitors who came in Japan admires Mount Fuji .
Visitors who arrived in Japan admire Mount Fuji .

Strengths

- Reflects reality that 55% (Stolke et al. 1997) of dependencies are
binary, and between adjacent words

- Embeds linear ordering constraints

Performance of HALogen

Minimally specified input frame (bigram model):

It would sell its fleet age of Boeing Co. 707s because of
maintenance costs increase the company announced earlier.

Minimally specified input frame (trigram model):

The company earlier announced it would sell its fleet age of Boeing
Co. 707s because of the increase maintenance costs.

Almost fully specified input frame:

Earlier the company announced it would sell its aging fleet of
Boeing Co. 707s because of increased maintenance costs.

Limitations of Bigram model

Example Reason

Visitors come in Japan. A three-way dependency

He planned increase in sales. Part-of-speech ambiguity

A tourist who admire Mt. Fuji... Long-distance dependency

A dog eat/eats bone. Previously unseen ngrams

I cannot sell their trust. Nonsensical head-arg relationship

The methods must be modified to
the circumstances.

Improper subcat structure

N-gram models: strengths and weaknesses

Strengths:
= Fully automatic method for ranking realizations
Easy to train
Based on statistical models, so are robust
- Can potentially be used for deep as well as surface generation

But:
« The usual issues with n-gram models apply:
- bigger n > better output, but more data sparsity

- Expensive to apply

- To rank candidates, have to generate all possible realizations
and compute probabilities

Bias towards shorter strings

Generation as decision making (Belz, 2005)

Start with input data, trace a path of decisions to
final realization

Inputs
decision
nodes

=
o

BT
W
“p\

[oloo‘pooocﬁlood'; 5o

realization - =
nodes coddolobooood8lbooo oo NLSentences

Figure 1: Generation space as decision tree.

Closer Look at Generation Space

T --> TRAIN DEPART
TRAIN --> the Caledonian Express
the train

TRAIN --> it

DEPART --> leaves LOCATION TIME
DEPART --> departs LOCATION TIME
DEPART --> departs from LOCATION
LOCATION --> Aberdeen

TIME --> at 10am

TIME --> at 10 o’clock in the mo

aggregation

present/future

departs/leaves

referring expression

O
O_
y
O

(e}

Semantic Reps]

2am

it will leave at

the caledonian express will leave af

2am
2am
2am
2am
m 4
m 4

it departs at 12:
the train departs af

the caledonian express departs at 12:
itleaves at 12am from plat

the trin leaves at 12am from platf

the caledonian express leaves a

Belz - comparing rankers (n-gram vs treebanks)

Weather domain example
- Built basic generator semi-automatically
reflects all the variation found in the corpus
- Gold standard = human generated weather report
- Compare bigrams with rankers trained on treebank, with
different (local vs global) decision algorithms
e Given a treebank, can compute the probability of each expansion
of non-terminal in induced CFG grammar

e Treebank rankers compute probability of a string given its
semantics

10Nov2000.16/1:

Gold N 10 OR LESS VEERING SE AND RISING 20-24 LATE IN THE PERIOD

Random N 10 OR LESS THEN LATE IN PERIOD BACKING SE STEADILY INCREASING TO 20-24 IN FRONTAL
ZONE FOR A TIME EARLY EVENING

Greedy SOON N 10 OR LESS VEERING SE INCREASING 20-24 LATER

Viterbi ~ SOON N 10 OR LESS VEERING SE INCREASING 20-24 LATER

2-gram N 10 OR LESS BACKING SE AND 20-24 BY EVENING

Belz - comparing rankers (n-gram vs treebanks)

Bigrams:

— Reduce error compared to treebank-based rankers

- But quite slow

Training set

Test set

Random
TT/Greedy
TT/Viterbi
2-gram

14.92
-50.64% (7.36)
-52.32% (7.11)
-58.44% (6.20)

1437
-50.30% (7.41)
-52.11% (7.14)
-57.91% (6.27)

% reduction in string edit distance, absolute in ()

Total time (minutes) | Training set Test set |
TT/greedy 23m52s 2m06s
TT/Viterbi 3h22m33s 27m05s
2-gram 24h04m05s | 3h35m06s

Current approaches to statistical generation

o
- Different levels of generation process can be addressed'
— In MATCH, sentence planner is trained (Next lecture)
= But most work has looked at realization
= N-grams give best results, but are inefficient

« OpenCCG combines a principled (and thus only mildly
overgenerating) grammar with an efficient approach to
overgeneration and ranking (White 2004, 2006).

COMIC: Conversational Multimodal Interaction with Computers .

OpenCCG was developed for COMIC, a multimodal generation
system with an embodied conversational agent (ECA).

“This design is
also modern.
The tiles draw
from the
Helenus
collection, by
Sphinx Tiles.
It features ...~

.....

M
J

' Al
4040 o

s
b
b
4
D¢
¢
¢
¢

L
{
’

Project Team: Mary Ellen Foster, John Lee, Johanna
Moore, Jon Oberlander, Michael White

The OpenCCG Realiser was first developed in COMIC

o
- Surface realiser based on Steedman'’s theory of '
Combinatory Categorial Grammar

— Input: logical form (meaning representation)

— Output: text with prosodic markup (APML) suitable for Festival
speech synthesizer

= Novel ensemble of efficiency methods, with integrated
n-gram scoring

= First implementation of CCG realisation that is practical
for dialogue systems (!)

Adapted from slide by Michael White

OpenCCG Efficiency methods

@
1. Small set of hand-crafted rules for chunking input '
logical forms into sub-problems to be solved
independently before combination

= Solves problem that chart realizers waste time generating paths
containing semantically incomplete phrases

2. Prune edges from chart based on n-gram score

3. Formulate search as a best-first anytime search using
n-gram scores to sort edges on the agenda

= Basic Idea: ensure a good realization can be fund
quickly, even when it would take a long time to find best
realization out of all possible realizations.

(White, 2006)

Case Study

= White measured effect of n-grams on accuracy and '
search times

= COMIC test suite

— HLDS LF/target pairs from the COMIC system
— Example (with pitch accents and boundary tones)

once_again_L+H* LH% there are floral_H* motifs_H* LH% and
geometric_H* shapes_H* on the decorative_H* tiles LL% , but L
here_L+H* LH% the colours are off _white_H* LH% and
dark_red H*LL% .

Experiment

- Baseline 1: no n-gram scoring, breadth-first search,
other efficiency methods in use

- Baseline 2: same, but with depth-first search
= Topline: n-gram scoring based on target string

= All efficiency methods, 3-best pruning
— Accuracy = exact match
— Score = modified BLEU (n-gram precision) score
— Times in ms.

Adapted from slide by Michael White

N-grams

= N-gram models: deliver probabilities of words given
n-1 previous words

= 25-fold cross-validation for training models

= 5-gram backoff models with semantic class
replacement

— the tiles draw from SERIES_H* LL% , by
MANUFACTURER_H*LL% .

= Modifier order and type/placement of boundary tones
largely determined by n-grams

Adapted from slide by Michael White

White's OpenCCG results

Time 'til First Time 'til Best
Accuracy Score Mean (+0) Max Mean (+o) Max
Baseline 1 284/549 0.78 497 (£380) 2273 497 (£380) 2273
Baseline2 41/549 0.38 400 (+286) 1932 400 (+286) 1932
Topline 549/549 1 152 (+93) 744 154 (+95) 744
CV-25 548/549 0.99 206 (¥138) 1013 206 (¥138) 1013

» With n-gram scoring, possible to get near perfect results!

Adapted from slide by Michael White

Summary

= Most statistical approaches to generation have
focused on realization
= Many have used over-generation and ranking
— Inspired by approaches to Machine Translation
= OpenCCG offers state of the art facilities

— N-grams can get you a long way, so long as the
process is “reined in”

— Where do its n-grams come from?

» Corpora ... processed into language models

References .

'
- Anja Belz. 2005. Statistical Generation: Three Methods Compared and
Evaluated. In ENLG-05.

Kevin Knight and Vasileios Hatzivassiloglou.1995.Two-level, many-paths
generation. In Proc. ACL-95.

I. Langkilde and K. Knight. 1998. Generation that exploits corpus-based
statistical knowledge. In Proc COLING-ACL-98, 704-710.

Irene Langkilde. 2000. Forest-based statistical sentence generation. In
Proc. NAACL-00.

Irene Langkilde-Geary. 2002. An empirical verification of coverage and
correctness for a general-purpose sentence generator. In Proc. INLG-02.
Mellish, C., Knott, A., Oberlander, J., & O’Donnell, M., 1998. Experiments
using stochastic search for text planning. In Proc. INLG-9.

M. Walker, O. Rambow, and M. Rogati. 2001. SPoT: A trainable sentence
planner. In Proc. NAACL- 01.

Michael White. 2004. Reining in CCG Chart Realization. In Proc. INLG-04.
Michael White. 2006. Efficient Realization of Coordinate Structures in
Combinatory Categorial Grammar. Research on Language and Computation
4:39-75.

