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Advantages of using statistics 

!  Construction of NLG systems is extremely labour intensive! 
–  e.g., Methodius system took ca. 2 years with 2.5 developers  

!  Many statistical approaches focus on specific modules 
–  Example: stochastic content planner (Mellish et al., 1998) 

•  generation as search; search as stochastic process 

–  Best-studied: statistical realiser 
•  realisers that take input in some canonical form and rely on language 

models to generate output 

–  Advantages:  
•  easily ported to new domains/applications 

•  coverage can be increased (more data/training examples) 

An Early Statistical NLG System 

!  Yngve (1962) built generator for machine 
translation that used a CFG and random number 
generator to produce “grammatical” sentences 

!  System randomly selects a production from 
those applicable at each point (starting from 
<S>) 

!  Randomly selects words to fill in word categories 
(<NOUN>, <VERB>, etc.) 

!  Example: 
–  The water under the wheels in oiled whistles and its 

polished shiny big and big trains is black. 
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Overgeneration and ranking 

!  The core approaches we will consider rely on 
�overgenerate-and-rank� approach 

–  also known as �generate and select� 

!  Given: input specification (�semantics� or canonical form) 

–  Use a simple rule-based generator to produce many 
alternative realisations 

–  Rank them using a language model 

–  Output the best (= most probable) realisation 
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Advantages of overgeneration + ranking 

!  There are usually many ways to say the same thing. 

–  e.g. ORDER(eat(you,chicken)) 

•  Eat chicken! 

•  It is required that you eat chicken! 

•  It is required that you eat poulet! 

•  Poulet should be eaten by you. 

•  You should eat chicken/chickens. 

•  Chicken/Chickens should be eaten by you. 
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Where does the data come from? 

!  Some statistical NLG systems were built based on parallel 
data/text corpora. 

–  allows direct learning of correspondences between content 
and output 

–  rarely available 

!  Some work relies on Treebanks: 

–  Extract input: process the treebank to extract �canonical 
specifications� from parsed sentences 

–  train a language model 

–  re-generate using a realiser and evaluate against original 
treebank 
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Nitrogen: Two-level generation for MT 

!  Langkilde�s 1998 pioneering realisation system with wide 
coverage, i.e., handles many phenomena of English grammar 

–  Based on overgeneration & ranking 

!  In the original Nitrogen 

–  generator is a non-deterministic, symbolic generator 

–  ranker is bigram or trigram language model. 

!  Application: Japanese/English MT, where the input to generation 
may lack crucial number information   

–  Number agreement is treated as a �fluency� goal, since the 
propositional input doesn’t specify it. 

–  The n-gram model selects for number agreement 

How well do statistical n-grams make linguistic decisions? 

Subject-Verb Agreement                       Article-Noun Agreement 
I am    2797                           a trust  394    an trust  0      the trust  1355 
I are       47                            a trusts    2    an trusts 0     the trusts  115 
I is         14 
 
 
Singular vs Plural                                                   Word Choice 
their trust  28                                          reliance  567       trust   6100 
their trusts  8                                          reliances    0       trusts  1083 
 



More Examples 

Relative pronoun                                                     Preposition 
visitor who    9   visitors who  20                in Japan  5413   to Japan 1196 
visitor which 0   visitors which 0 
visitor that    9   visitors that  14                 came to  2443     arrived in  544 
                                                                   came in  1498     arrived to    35 
Singular vs Plural                                     came into 244     arrived into   0 
visitor   575  visitors  1083   
                                                               came to Japan 7      arrived to Japan     0 
Verb Tense                                            came into Japan  1  arrived into Japan  0 
admire   212  admired  211                     came in Japan 0      arrived in Japan    4 
admires  107 
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Symbolic Generator 

• Rules to map input 
representation to 
syntactic structures 

• Lexicon 

• Morphology 

multiple outputs 
represented in a �forest� 

Statistical ranker 

• n-gram model 
(from Penn Treebank) 

best sentence 

Structure of HALogen 

!  HALogen (Langkilde-Geary 2002) is a successor to Nitrogen 
–  main differences:  

•  representation data structure for possible realisation alternatives 
•  HALogen handles more grammatical features 
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HALogen Input 

Grammatical specification 
(e1 /  eat 

 :subject (d1 / dog) 
 :object (b1 / bone 
  :premod (m1 / meaty)) 
 :adjunct (t1 / today)) 

 
Semantic specification 
(e1 /  eat 

 :agent (d1 / dog) 
 :patient (b1 / bone 
  :premod (m1 / meaty)) 
 :temp-loc (t1 / today)) 

!  Labelled feature-value 
representation specifying 
properties and relations of 
domain objects (e1, d1, etc) 

!  Recursively structured 
!  Order-independent 
!  Can be either grammatical 

or semantic (or mixture of 
both) 
–  recasting mechanism maps 

from one to another 
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HALogen base generator 

!  Consists of about 255 hand-written rules 

!  Rules map an input representation into a packed set of 
possible output expressions. 
–  Each part of the input is recursively processed by the rules, 

until only a string is left. 

!  Types of rules: 
–  recasting 
–  ordering 
–  filling 
–  morphing 
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Recasting 

!  Map semantic input representation to one that 
is closer to surface syntax 

Grammatical specification 
(e1 /  eat 

 :object (b1 / bone 
    :premod(m1 / meaty)) 
 :adjunct(t1 / today) 
 :subject (d1 / dog)) 

Semantic specification 
(e1 /  eat 

 :patient (b1 / bone 
    :premod(m1 / meaty)) 
 :temp-loc(t1 / today) 
 :agent (d1 / dog)) 

IF relation = :agent  
    AND sentence is not passive 
THEN map relation to :subject 
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Ordering  

!  Assign a linear order to the values in the input. 

Grammatical specification 
(e1 /  eat 

 :object (b1 / bone 
    :premod(m1 / 
   meaty)) 
 :adjunct(t1 / today) 
 :subject (d1 / dog)) 

Grammatical specification + order 
(e1 /  eat 

 :subject (d1 / dog) 
 :object (b1 / bone 
    :premod(m1 / meaty)) 
 :adjunct(t1 / today)) 

Put subject first unless 
sentence is passive. 
Put adjuncts as sentence-final 
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Filling 

!  If input is under-specified for some features, 
add all possible values for them. 
–  NB: this allows for different degrees of specification, from 

minimally to maximally specified input. 
–  Can create multiple �copies� of same input 

Grammatical specification + order 
(e1 /  eat 

 :subject (d1 / dog) 
 :object (b1 / bone 
    :premod(m1 / meaty)) 
 :adjunct(t1 / today)) 

+:tense (past) 

+:tense (present) 
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Morphing 

!  Given the properties of parts of the input, 
add the correct inflectional features. 

Grammatical specification + order 
(e1 /  eat 

 :tense(past) 
 :subject (d1 / dog) 
 :object (b1 / bone 
    :premod(m1 / meaty)) 
 :adjunct(t1 / today)) 

Grammatical specification + order 
(e1 /  ate 

 :subject (d1 / dog) 
 :object (b1 / bone 
    :premod(m1 / meaty)) 
 :adjunct(t1 / today)) 
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The output of the base generator 

!  Problem: 
–  a single input may have literally hundreds 

of possible realisations after base generation 
–  these need to be represented in an efficient way to facilitate 

search for the best output 

!  Options: 
–  word lattice  
–  forest of trees 
–  (and in OpenCCG, chart) 
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Option 1: lattice structure (Langkilde 2000) 

�You may have to eat chicken�: 576 versions 
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Properties of lattices 

!  In a lattice, a complete left-right path represents a 
possible sentence. 

!  Lots of duplication! 

–  e.g., word �chicken��occurs multiple times 

–  ranker will be scoring the same substring more than once 

!  In a lattice path, every word is dependent on all other 
words. 

–  can�t model local dependencies 
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Option 2: Forests (Langkilde 2000,2002) 

S 

OR 

S.328 S.358 

PRP.3 VP.327 

you 

VP.357 

to be eaten by 

PRP.3 

NP.318 

NP.318 VP.248 

… 

OR 

the chicken … 
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Properties of forests 

!  Efficient representation: 
–  each individual constituent represented only once, with 

pointers 
–  alternatives represented by disjunctive (�OR�) nodes 

–  ranker will only compute a partial score for a subtree once 

!  Equivalent to a non-recursive context-free grammar 
–  S.469 " S.328 
–  S.469 " S.358 
–  … 
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Statistical ranking 

!  Uses n-gram language models to choose the best 
realisation r: 
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Sample Results of Bigram model 

Random path:   (out of a set of 11,664,000 semantically-related sentences) 
 Visitant which came into the place where it will be Japanese has admired 
that there was Mount Fuji. 

 
Top three: 

 Visitors who came in Japan admire Mount Fuji . 
 Visitors who came in Japan admires Mount Fuji . 
 Visitors who arrived in Japan admire Mount Fuji . 

 

Strengths 
!  Reflects  reality  that 55%  (Stolke et al. 1997) of dependencies are 

binary, and between adjacent words 
!  Embeds linear ordering constraints 
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Performance of HALogen 

Minimally specified input frame (bigram model): 

!  It would sell its fleet age of Boeing Co. 707s because of  
maintenance costs increase the company announced earlier. 

Minimally specified input frame (trigram model): 

!  The company earlier announced it would sell its fleet age of Boeing 
Co. 707s because of the increase maintenance costs. 

Almost fully specified input frame: 

!  Earlier the company announced it would sell its aging fleet of 
Boeing Co. 707s because of increased maintenance costs. 

Limitations of Bigram model 

Example        Reason 

 

Visitors come in Japan.       A three-way dependency 

He planned increase in sales.      Part-of-speech ambiguity 

A tourist who admire Mt. Fuji...      Long-distance dependency 

A dog eat/eats bone.       Previously unseen ngrams 

I cannot sell their trust.        Nonsensical head-arg relationship 

The methods must be modified to      Improper subcat  structure 
 the circumstances.  
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N-gram models:  strengths and weaknesses 

Strengths: 
!  Fully automatic method for ranking realizations 
!  Easy to train 
!  Based on statistical models, so are robust 
!  Can potentially be used for deep as well as surface generation 

But: 
!  The usual issues with n-gram models apply: 

–  bigger n " better output, but more data sparsity 
!  Expensive to apply 

–  To rank candidates, have to generate all possible realizations 
and compute probabilities 

!  Bias towards shorter strings 
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Generation as decision making (Belz, 2005) 

!  Start with input data, trace a path of decisions to 
final realization 

realization 
nodes 

decision 
nodes 



Closer Look at Generation Space 
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Belz - comparing rankers (n-gram vs treebanks) 

Weather domain example 
–  Built basic generator semi-automatically 

 reflects all the variation found in the corpus 
–  Gold standard = human generated weather report 
–  Compare bigrams with rankers trained on treebank, with 

different (local vs global) decision algorithms 
•  Given a treebank, can compute the probability of each expansion 

of non-terminal in induced CFG grammar 
•  Treebank rankers compute probability of a string given its 

semantics 
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Belz - comparing rankers (n-gram vs treebanks) 

!  Bigrams: 
–  Reduce error compared to treebank-based rankers 
–  But quite slow 

 % reduction in string edit distance, absolute in () 
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Current approaches to statistical generation 

!  Different levels of generation process can be addressed 
–  In MATCH, sentence planner is trained  (Next lecture) 

!  But most work has looked at realization 
!  N-grams give best results, but are inefficient 
!  OpenCCG combines a principled (and thus only mildly 

overgenerating) grammar with an efficient approach to 
overgeneration and ranking (White 2004, 2006). 
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COMIC: Conversational Multimodal Interaction with Computers 

“This design is 
also modern.  
The tiles draw 
from the 
Helenus 
collection, by 
Sphinx Tiles.  
It features …” 

Project Team:  Mary Ellen Foster, John Lee, Johanna 
Moore, Jon Oberlander, Michael White 

OpenCCG was developed for COMIC, a multimodal generation 
system with an embodied conversational agent (ECA). 
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The OpenCCG Realiser was first developed in COMIC 

!  Surface realiser based on Steedman’s theory of 
Combinatory Categorial Grammar 
–  Input:  logical form (meaning representation) 
–  Output:  text with prosodic markup (APML) suitable for Festival 

speech synthesizer 

!  Novel ensemble of efficiency methods, with integrated 
n-gram scoring 

!  First implementation of CCG realisation that is practical 
for dialogue systems (!) 

OpenCCG Efficiency methods  
 

1.  Small set of hand-crafted rules for chunking input 
logical forms into sub-problems to be solved 
independently before combination 
!  Solves problem that chart realizers waste time generating paths 

containing semantically incomplete phrases 

2.  Prune edges from chart based on n-gram score 
3.  Formulate search as a best-first anytime search using 

n-gram scores to sort edges on the agenda 

!  Basic Idea:  ensure a good realization can be fund 
quickly, even when it would take a long time to find best 
realization out of all possible realizations. 

                                                                     (White, 2006)     
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Case Study 

!  White measured effect of n-grams on accuracy and 
search times 

!  COMIC test suite 
–  HLDS LF/target pairs from the COMIC system 
–  Example (with pitch accents and boundary tones) 

once_again_L+H* LH% there are floral_H* motifs_H* LH% and 
geometric_H* shapes_H* on the decorative_H* tiles LL% , but L 
here_L+H* LH% the colours are off_white_H* LH% and 
dark_red_H* LL% . 
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Experiment 

!  Baseline 1: no n-gram scoring, breadth-first search, 
other efficiency methods in use 

!  Baseline 2: same, but with depth-first search 
!  Topline: n-gram scoring based on target string 
!  All efficiency methods, 3-best pruning 

–  Accuracy = exact match 
–  Score = modified BLEU (n-gram precision) score 
–  Times in ms. 
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N-grams 

!  N-gram models:  deliver probabilities of words given 
n-1 previous words 

!  25-fold cross-validation for training models 
!  5-gram backoff models with semantic class 

replacement 
–  the tiles draw from SERIES_H* LL% , by 

MANUFACTURER_H* LL% . 

!  Modifier order and type/placement of boundary tones 
largely determined by n-grams 
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White’s OpenCCG results 

Accuracy Score Mean (±σ) Max Mean (±σ) Max
Baseline 1 284/549 0.78 497 (±380) 2273 497 (±380) 2273
Baseline 2 41/549 0.38 400 (±286) 1932 400 (±286) 1932

Topline 549/549 1 152 (±93) 744 154 (±95) 744
CV-25 548/549 0.99 206 (±138) 1013 206 (±138) 1013

Time 'til First Time 'til Best

#  With n-gram scoring, possible to get near perfect results! 
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Summary 

!  Most statistical approaches to generation have 
focused on realization 

!  Many have used over-generation and ranking 
–  Inspired by approaches to Machine Translation 

!  OpenCCG offers state of the art facilities 
–  N-grams can get you a long way, so long as the 

process is “reined in” 
–  Where do its n-grams come from? 

•  Corpora … processed into language models 
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