
1

NLG Lecture 12:
Statistical generation 1

19 March 2013

Johanna Moore

With thanks to Jon Oberlander
Irene Langkilde-Geary, Michael White and Albert Gatt

Adapted from slide by Albert Gatt 2

Advantages of using statistics

!  Construction of NLG systems is extremely labour intensive!
–  e.g., Methodius system took ca. 2 years with 2.5 developers

!  Many statistical approaches focus on specific modules
–  Example: stochastic content planner (Mellish et al., 1998)

•  generation as search; search as stochastic process

–  Best-studied: statistical realiser
•  realisers that take input in some canonical form and rely on language

models to generate output

–  Advantages:
•  easily ported to new domains/applications

•  coverage can be increased (more data/training examples)

An Early Statistical NLG System

!  Yngve (1962) built generator for machine
translation that used a CFG and random number
generator to produce “grammatical” sentences

!  System randomly selects a production from
those applicable at each point (starting from
<S>)

!  Randomly selects words to fill in word categories
(<NOUN>, <VERB>, etc.)

!  Example:
–  The water under the wheels in oiled whistles and its

polished shiny big and big trains is black.

Adapted from slide by Albert Gatt 4

Overgeneration and ranking

!  The core approaches we will consider rely on
�overgenerate-and-rank� approach

–  also known as �generate and select�

!  Given: input specification (�semantics� or canonical form)

–  Use a simple rule-based generator to produce many
alternative realisations

–  Rank them using a language model

–  Output the best (= most probable) realisation

Adapted from slide by Albert Gatt 5

Advantages of overgeneration + ranking

!  There are usually many ways to say the same thing.

–  e.g. ORDER(eat(you,chicken))

•  Eat chicken!

•  It is required that you eat chicken!

•  It is required that you eat poulet!

•  Poulet should be eaten by you.

•  You should eat chicken/chickens.

•  Chicken/Chickens should be eaten by you.

Adapted from slide by Albert Gatt 6

Where does the data come from?

!  Some statistical NLG systems were built based on parallel
data/text corpora.

–  allows direct learning of correspondences between content
and output

–  rarely available

!  Some work relies on Treebanks:

–  Extract input: process the treebank to extract �canonical
specifications� from parsed sentences

–  train a language model

–  re-generate using a realiser and evaluate against original
treebank

7

Nitrogen: Two-level generation for MT

!  Langkilde�s 1998 pioneering realisation system with wide
coverage, i.e., handles many phenomena of English grammar

–  Based on overgeneration & ranking

!  In the original Nitrogen

–  generator is a non-deterministic, symbolic generator

–  ranker is bigram or trigram language model.

!  Application: Japanese/English MT, where the input to generation
may lack crucial number information

–  Number agreement is treated as a �fluency� goal, since the
propositional input doesn’t specify it.

–  The n-gram model selects for number agreement

How well do statistical n-grams make linguistic decisions?

Subject-Verb Agreement Article-Noun Agreement
I am 2797 a trust 394 an trust 0 the trust 1355
I are 47 a trusts 2 an trusts 0 the trusts 115
I is 14

Singular vs Plural Word Choice
their trust 28 reliance 567 trust 6100
their trusts 8 reliances 0 trusts 1083

More Examples

Relative pronoun Preposition
visitor who 9 visitors who 20 in Japan 5413 to Japan 1196
visitor which 0 visitors which 0
visitor that 9 visitors that 14 came to 2443 arrived in 544
 came in 1498 arrived to 35
Singular vs Plural came into 244 arrived into 0
visitor 575 visitors 1083
 came to Japan 7 arrived to Japan 0
Verb Tense came into Japan 1 arrived into Japan 0
admire 212 admired 211 came in Japan 0 arrived in Japan 4
admires 107

Adapted from slide by Albert Gatt 12

Symbolic Generator

• Rules to map input
representation to
syntactic structures

• Lexicon

• Morphology

multiple outputs
represented in a �forest�

Statistical ranker

• n-gram model
(from Penn Treebank)

best sentence

Structure of HALogen

!  HALogen (Langkilde-Geary 2002) is a successor to Nitrogen
–  main differences:

•  representation data structure for possible realisation alternatives
•  HALogen handles more grammatical features

Adapted from slide by Albert Gatt 13

HALogen Input

Grammatical specification
(e1 / eat

 :subject (d1 / dog)
 :object (b1 / bone
 :premod (m1 / meaty))
 :adjunct (t1 / today))

Semantic specification
(e1 / eat

 :agent (d1 / dog)
 :patient (b1 / bone
 :premod (m1 / meaty))
 :temp-loc (t1 / today))

!  Labelled feature-value
representation specifying
properties and relations of
domain objects (e1, d1, etc)

!  Recursively structured
!  Order-independent
!  Can be either grammatical

or semantic (or mixture of
both)
–  recasting mechanism maps

from one to another

Adapted from slide by Albert Gatt 14

HALogen base generator

!  Consists of about 255 hand-written rules

!  Rules map an input representation into a packed set of
possible output expressions.
–  Each part of the input is recursively processed by the rules,

until only a string is left.

!  Types of rules:
–  recasting
–  ordering
–  filling
–  morphing

Adapted from slide by Albert Gatt 15

Recasting

!  Map semantic input representation to one that
is closer to surface syntax

Grammatical specification
(e1 / eat

 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today)
 :subject (d1 / dog))

Semantic specification
(e1 / eat

 :patient (b1 / bone
 :premod(m1 / meaty))
 :temp-loc(t1 / today)
 :agent (d1 / dog))

IF relation = :agent
 AND sentence is not passive
THEN map relation to :subject

Adapted from slide by Albert Gatt 16

Ordering

!  Assign a linear order to the values in the input.

Grammatical specification
(e1 / eat

 :object (b1 / bone
 :premod(m1 /
 meaty))
 :adjunct(t1 / today)
 :subject (d1 / dog))

Grammatical specification + order
(e1 / eat

 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

Put subject first unless
sentence is passive.
Put adjuncts as sentence-final

Adapted from slide by Albert Gatt 17

Filling

!  If input is under-specified for some features,
add all possible values for them.
–  NB: this allows for different degrees of specification, from

minimally to maximally specified input.
–  Can create multiple �copies� of same input

Grammatical specification + order
(e1 / eat

 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

+:tense (past)

+:tense (present)

Adapted from slide by Albert Gatt 18

Morphing

!  Given the properties of parts of the input,
add the correct inflectional features.

Grammatical specification + order
(e1 / eat

 :tense(past)
 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

Grammatical specification + order
(e1 / ate

 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

Adapted from slide by Albert Gatt 19

The output of the base generator

!  Problem:
–  a single input may have literally hundreds

of possible realisations after base generation
–  these need to be represented in an efficient way to facilitate

search for the best output

!  Options:
–  word lattice
–  forest of trees
–  (and in OpenCCG, chart)

Adapted from slide by Irene Langkilde-Geary 20

Option 1: lattice structure (Langkilde 2000)

�You may have to eat chicken�: 576 versions

Adapted from slide by Albert Gatt 22

Properties of lattices

!  In a lattice, a complete left-right path represents a
possible sentence.

!  Lots of duplication!

–  e.g., word �chicken��occurs multiple times

–  ranker will be scoring the same substring more than once

!  In a lattice path, every word is dependent on all other
words.

–  can�t model local dependencies

Adapted from slide by Albert Gatt 23

Option 2: Forests (Langkilde 2000,2002)

S

OR

S.328 S.358

PRP.3 VP.327

you

VP.357

to be eaten by

PRP.3

NP.318

NP.318 VP.248

…

OR

the chicken …

Adapted from slide by Albert Gatt 24

Properties of forests

!  Efficient representation:
–  each individual constituent represented only once, with

pointers
–  alternatives represented by disjunctive (�OR�) nodes

–  ranker will only compute a partial score for a subtree once

!  Equivalent to a non-recursive context-free grammar
–  S.469 " S.328
–  S.469 " S.358
–  …

Adapted from slide by Albert Gatt 25

Statistical ranking

!  Uses n-gram language models to choose the best
realisation r:

∏

∏

=
−∈

=
−∈

=

=

n

i
iiforestr

n

i
iiforestrbest

wwP

wwwPr

1
1

1
11

]assumption [Markov)|(maxarg

)...|(maxarg

Sample Results of Bigram model

Random path: (out of a set of 11,664,000 semantically-related sentences)
 Visitant which came into the place where it will be Japanese has admired
that there was Mount Fuji.

Top three:

 Visitors who came in Japan admire Mount Fuji .
 Visitors who came in Japan admires Mount Fuji .
 Visitors who arrived in Japan admire Mount Fuji .

Strengths
!  Reflects reality that 55% (Stolke et al. 1997) of dependencies are

binary, and between adjacent words
!  Embeds linear ordering constraints

Adapted from slide by Irene Langkilde-Geary 27

Performance of HALogen

Minimally specified input frame (bigram model):

!  It would sell its fleet age of Boeing Co. 707s because of
maintenance costs increase the company announced earlier.

Minimally specified input frame (trigram model):

!  The company earlier announced it would sell its fleet age of Boeing
Co. 707s because of the increase maintenance costs.

Almost fully specified input frame:

!  Earlier the company announced it would sell its aging fleet of
Boeing Co. 707s because of increased maintenance costs.

Limitations of Bigram model

Example Reason

Visitors come in Japan. A three-way dependency

He planned increase in sales. Part-of-speech ambiguity

A tourist who admire Mt. Fuji... Long-distance dependency

A dog eat/eats bone. Previously unseen ngrams

I cannot sell their trust. Nonsensical head-arg relationship

The methods must be modified to Improper subcat structure
 the circumstances.

Adapted from slide by Irene Langkilde-Geary

29

N-gram models: strengths and weaknesses

Strengths:
!  Fully automatic method for ranking realizations
!  Easy to train
!  Based on statistical models, so are robust
!  Can potentially be used for deep as well as surface generation

But:
!  The usual issues with n-gram models apply:

–  bigger n " better output, but more data sparsity
!  Expensive to apply

–  To rank candidates, have to generate all possible realizations
and compute probabilities

!  Bias towards shorter strings

30

Generation as decision making (Belz, 2005)

!  Start with input data, trace a path of decisions to
final realization

realization
nodes

decision
nodes

Closer Look at Generation Space

31 32

Belz - comparing rankers (n-gram vs treebanks)

Weather domain example
–  Built basic generator semi-automatically

 reflects all the variation found in the corpus
–  Gold standard = human generated weather report
–  Compare bigrams with rankers trained on treebank, with

different (local vs global) decision algorithms
•  Given a treebank, can compute the probability of each expansion

of non-terminal in induced CFG grammar
•  Treebank rankers compute probability of a string given its

semantics

33

Belz - comparing rankers (n-gram vs treebanks)

!  Bigrams:
–  Reduce error compared to treebank-based rankers
–  But quite slow

 % reduction in string edit distance, absolute in ()

44

Current approaches to statistical generation

!  Different levels of generation process can be addressed
–  In MATCH, sentence planner is trained (Next lecture)

!  But most work has looked at realization
!  N-grams give best results, but are inefficient
!  OpenCCG combines a principled (and thus only mildly

overgenerating) grammar with an efficient approach to
overgeneration and ranking (White 2004, 2006).

45

COMIC: Conversational Multimodal Interaction with Computers

“This design is
also modern.
The tiles draw
from the
Helenus
collection, by
Sphinx Tiles.
It features …”

Project Team: Mary Ellen Foster, John Lee, Johanna
Moore, Jon Oberlander, Michael White

OpenCCG was developed for COMIC, a multimodal generation
system with an embodied conversational agent (ECA).

Adapted from slide by Michael White 46

The OpenCCG Realiser was first developed in COMIC

!  Surface realiser based on Steedman’s theory of
Combinatory Categorial Grammar
–  Input: logical form (meaning representation)
–  Output: text with prosodic markup (APML) suitable for Festival

speech synthesizer

!  Novel ensemble of efficiency methods, with integrated
n-gram scoring

!  First implementation of CCG realisation that is practical
for dialogue systems (!)

OpenCCG Efficiency methods

1.  Small set of hand-crafted rules for chunking input
logical forms into sub-problems to be solved
independently before combination
!  Solves problem that chart realizers waste time generating paths

containing semantically incomplete phrases

2.  Prune edges from chart based on n-gram score
3.  Formulate search as a best-first anytime search using

n-gram scores to sort edges on the agenda

!  Basic Idea: ensure a good realization can be fund
quickly, even when it would take a long time to find best
realization out of all possible realizations.

 (White, 2006)
47 Adapted from slide by Michael White 49

Case Study

!  White measured effect of n-grams on accuracy and
search times

!  COMIC test suite
–  HLDS LF/target pairs from the COMIC system
–  Example (with pitch accents and boundary tones)

once_again_L+H* LH% there are floral_H* motifs_H* LH% and
geometric_H* shapes_H* on the decorative_H* tiles LL% , but L
here_L+H* LH% the colours are off_white_H* LH% and
dark_red_H* LL% .

Adapted from slide by Michael White 50

Experiment

!  Baseline 1: no n-gram scoring, breadth-first search,
other efficiency methods in use

!  Baseline 2: same, but with depth-first search
!  Topline: n-gram scoring based on target string
!  All efficiency methods, 3-best pruning

–  Accuracy = exact match
–  Score = modified BLEU (n-gram precision) score
–  Times in ms.

Adapted from slide by Michael White 51

N-grams

!  N-gram models: deliver probabilities of words given
n-1 previous words

!  25-fold cross-validation for training models
!  5-gram backoff models with semantic class

replacement
–  the tiles draw from SERIES_H* LL% , by

MANUFACTURER_H* LL% .

!  Modifier order and type/placement of boundary tones
largely determined by n-grams

Adapted from slide by Michael White 52

White’s OpenCCG results

Accuracy Score Mean (±σ) Max Mean (±σ) Max
Baseline 1 284/549 0.78 497 (±380) 2273 497 (±380) 2273
Baseline 2 41/549 0.38 400 (±286) 1932 400 (±286) 1932

Topline 549/549 1 152 (±93) 744 154 (±95) 744
CV-25 548/549 0.99 206 (±138) 1013 206 (±138) 1013

Time 'til First Time 'til Best

#  With n-gram scoring, possible to get near perfect results!

53

Summary

!  Most statistical approaches to generation have
focused on realization

!  Many have used over-generation and ranking
–  Inspired by approaches to Machine Translation

!  OpenCCG offers state of the art facilities
–  N-grams can get you a long way, so long as the

process is “reined in”
–  Where do its n-grams come from?

•  Corpora … processed into language models

54

References

!  Anja Belz. 2005. Statistical Generation: Three Methods Compared and
Evaluated. In ENLG-05.

!  Kevin Knight and Vasileios Hatzivassiloglou.1995.Two-level, many-paths
generation. In Proc. ACL-95.

!  I. Langkilde and K. Knight. 1998. Generation that exploits corpus-based
statistical knowledge. In Proc COLING-ACL-98, 704-710.

!  Irene Langkilde. 2000. Forest-based statistical sentence generation. In
Proc. NAACL-00.

!  Irene Langkilde-Geary. 2002. An empirical verification of coverage and
correctness for a general-purpose sentence generator. In Proc. INLG-02.

!  Mellish, C., Knott, A., Oberlander, J., & O’Donnell, M., 1998. Experiments
using stochastic search for text planning. In Proc. INLG-9.

!  M. Walker, O. Rambow, and M. Rogati. 2001. SPoT: A trainable sentence
planner. In Proc. NAACL- 01.

!  Michael White. 2004. Reining in CCG Chart Realization. In Proc. INLG-04.
!  Michael White. 2006. Efficient Realization of Coordinate Structures in

Combinatory Categorial Grammar. Research on Language and Computation
4:39-75.

